Influence of Media Information Sources on Vaccine Uptake: The Full and Inconsistent Mediating Role of Vaccine Hesitancy
Abstract
:1. Introduction
2. Related Work
- Complacency: Some people might be complacent about vaccination because they perceive the risk of vaccine-preventable diseases as low. They may also believe they are safe from these diseases due to good health or living in a developed country.
- Convenience: Inconvenience can be a barrier to vaccination. People may hesitate to get vaccinated if it is not easily accessible or convenient for them.
- Confidence: People may hesitate to get vaccinated because they do not trust vaccines or are concerned about their safety. They may have heard misinformation about vaccines or have had a negative experience with vaccination.
3. Hypotheses
4. Materials and Methods
4.1. Sample
4.2. Measures
4.2.1. Model Measurement Constructs
4.2.2. Independent Variables
4.2.3. Mediator Variable (Vaccine Hesitancy)
4.2.4. Outcome Variable (Vaccine Uptake)
4.2.5. Control Variables
- Age Groups: We divided respondents into the following age brackets: 15–24 years (8.2%), 25–39 years (19.8%), 40–54 years (24.5%), and 55 years and older (47.5%).
- Gender: Participants were categorized as either male (45.3%) or female (54.7%).
- Educational Background: We considered the age at which individuals completed their full-time education: no full-time education (0.7%), up to 15 years (14%), 16–19 years (43.3%), 20 years and older (34.7%), still studying (6%), and missing values (1.3%).
- Marital Status: Respondents were classified as unmarried (16%), (re-)married/single with a partner (64.8%), divorced or separated (8.2%), widowed (10.4%), or with missing values (0.6%).
- Occupation: Occupation categories included self-employed (6.9%), managers (10.8%), other white-collar workers (12.5%), manual workers (21%), housepersons (4.7%), unemployed (5.2%), retired (33%), and students (6%).
- Residential Setting: Participants were situated in either rural areas or villages (33.7%), small or medium-sized towns (37.5%), or large towns (28.7%).
- Financial Strain: We assessed the difficulty in paying bills with categories such as most of the time (8.3%), from time to time (23.4%), and almost never/never (66.8%).
- Social Class: Social class distinctions included the working class of society (26.4%), the lower middle class of society (15.3%), the middle class of society (47%), the upper middle class of society (7%), and the higher class of society (0.6%).
- Political Views/Left–Right Positioning: Respondents identified their political leanings as left (24.5%), center (34.5%), right (21.7%), or missing values (19.3%).
- Usage of Online Social Networks: Frequency of using online social networks was categorized as every day or almost every day (14.4%), two or three times a week (4.3%), about once a week (1.9%), less often (10.4%), never (44.7%), or missing values (19.9%).
- Number of Children at Home: Participants reported the number of children living at home, including none (76%), one (11.8%), two (9.1%), three (2.2%), and four or more (0.8%).
4.3. Model and Analytic Strategy
- Information Sources: These are the sources from which individuals obtain information about vaccination. They are located on the left side of Figure 1.
- Vaccine Hesitancy (VH): This is a second-order latent variable represented in the middle of the model. It is constructed from two first-order latent variables: “Distrust” and “Useless”. Distrust measures individuals’ trust in various media and institutions, while Useless reflects the importance of routine vaccinations and the perceived consequences of not getting vaccinated. A set of observed variables indicates these first-order latent variables. The two first-order variables directly influence Vaccine Hesitancy. Distrust and Useless are located above VH in Figure 1.
- Vaccine Uptake: This is the outcome variable that represents the decision to get vaccinated. It is located on the right side of Figure 1. It is influenced by both Vaccine Hesitancy and the control variables defined in the previous section (not shown in the diagram).
5. Results
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Review Statement
Appendix A
COUNTRY | Number of Interviews | Population 15+ |
---|---|---|
Austria | 1006 | 7,554,711 |
Belgium | 1041 | 9,693,779 |
Bulgaria | 1026 | 6,537,535 |
Croatia | 1010 | 3,796,476 |
Czech Republic | 1068 | 9,238,431 |
Denmark | 1017 | 4,838,729 |
Estonia | 1005 | 1,160,064 |
Finland | 1000 | 4,747,810 |
France | 1013 | 54,097,255 |
Germany | 1507 | 70,160,634 |
Greece | 1014 | 9,937,810 |
Hungary | 1030 | 8,781,161 |
Ireland | 1078 | 3,592,162 |
Italy | 1021 | 52,334,536 |
Latvia | 1012 | 1,707,082 |
Lithuania | 1004 | 2,513,384 |
Luxemburg | 512 | 457,127 |
Malta | 497 | 364,171 |
Netherlands | 1017 | 13,979,215 |
Poland | 1011 | 33,444,171 |
Portugal | 1013 | 8,480,126 |
Republic of Cyprus | 505 | 741,308 |
Romania | 1025 | 16,852,701 |
Slovakia | 1020 | 4,586,024 |
Slovenia | 1016 | 1,760,032 |
Spain | 1014 | 39,445,245 |
Sweden | 1021 | 7,998,763 |
United Kingdom | 1021 | 52,651,777 |
TOTAL | 27,524 | 431,452,219 |
References
- Centers for Disease Control and Prevention (CDC) Ten great public health achievements—Worldwide, 2001–2010. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 814–818.
- Sherman, S.M.; Smith, L.E.; Sim, J.; Amlôt, R.; Cutts, M.; Dasch, H.; Rubin, G.J.; Sevdalis, N. COVID-19 vaccination intention in the UK: Results from the COVID-19 vaccination acceptability study (CoVAccS), a nationally representative cross-sectional survey. Hum. Vaccines Immunother. 2021, 17, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Majid, U. The value of information: A qualitative analysis of how trust in information sources influences the decision to vaccinate in parents. J. Risk Res. 2022, 25, 1444–1457. [Google Scholar] [CrossRef]
- Yaqub, O.; Castle-Clarke, S.; Sevdalis, N.; Chataway, J. Attitudes to vaccination: A critical review. Soc. Sci. Med. 2014, 112, 1–11. [Google Scholar] [CrossRef]
- Malik, A.A.; McFadden, S.M.; Elharake, J.; Omer, S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 2020, 26, 100495. [Google Scholar] [CrossRef] [PubMed]
- Patelarou, E.; Galanis, P.; Mechili, E.A.; Argyriadi, A.; Argyriadis, A.; Asimakopoulou, E.; Brokaj, S.; Bucaj, J.; Carmona-Torres, J.M.; Cobo-Cuenca, A.I.; et al. Factors influencing nursing students’ intention to accept COVID-19 vaccination: A pooled analysis of seven European countries. Nurse Educ. Today 2021, 104, 105010. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Ali, S.; Ahmed, M.; Hussain, S. The anti-vaccination movement: A regression in modern medicine. Cureus 2018, 10, e2919. [Google Scholar] [CrossRef]
- Benecke, O.; DeYoung, S.E. Anti-Vaccine Decision-Making and Measles Resurgence in the United States. Glob. Pediatr. Health 2019, 6, 2333794X19862949. [Google Scholar] [CrossRef]
- Kata, A. Anti-vaccine activists, Web 2.0, and the postmodern paradigm—An overview of tactics and tropes used online by the anti-vaccination movement. Vaccine 2012, 30, 3778–3789. [Google Scholar] [CrossRef]
- Witteman, H.O.; Zikmund-Fisher, B.J. The defining characteristics of Web 2.0 and their potential influence in the online vaccination debate. Vaccine 2012, 30, 3734–3740. [Google Scholar] [CrossRef]
- Anwar, A.; Malik, M.; Raees, V.; Anwar, A. Role of Mass Media and Public Health Communications in the COVID-19 Pandemic. Cureus 2020, 12, e10453. [Google Scholar] [CrossRef]
- Pérez Fernámdez, P.; Moreno Aríztegui, M. COVID-19 and social media. In COVID-19 Pandemic; Elsevier: Amsterdam, The Netherlands, 2021; pp. 85–97. [Google Scholar]
- Anwar, A.; Malik, M.; Raees, V.; Anwar, M.M.; Anwar, A. Role of Mass Media and Public Health Communications in COVID-19 Vaccination. Med. Res. Arch. 2023, 11, e3544. [Google Scholar] [CrossRef]
- Al-Zaman, M.S. An exploratory study of social media users’ engagement with COVID-19 vaccine-related content. F1000Research 2021, 10, 236. [Google Scholar] [CrossRef]
- Metzler, H.; Rimé, B.; Pellert, M.; Niederkrotenthaler, T.; Di Natale, A.F.; García, D. Collective emotions during the COVID-19 outbreak. Emotion 2021, 23, 844. [Google Scholar] [CrossRef]
- Zhunis, A.; Lima, G.; Song, H.; Han, J.; Cha, M. Emotion Bubbles: Emotional Composition of Online Discourse before and after the COVID-19 Outbreak. Proc. ACM Web Conf. 2022, 2022, 2603–2613. [Google Scholar]
- Basile, V.; Cauteruccio, F.; Terracina, G. How Dramatic Events Can Affect Emotionality in Social Posting: The Impact of COVID-19 on Reddit. Futur. Internet 2021, 13, 29. [Google Scholar] [CrossRef]
- Vemprala, N.; Bhatt, P.; Valecha, R.; Rao, H.R. Emotions during the COVID-19 Crisis: A Health Versus Economy Analysis of Public Responses. Am. Behav. Sci. 2021, 65, 1972–1989. [Google Scholar] [CrossRef]
- Yin, J.D.-C. Media Data and Vaccine Hesitancy: Scoping Review. JMIR Infodemiology 2022, 2, e37300. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, N.E. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef] [PubMed]
- Bussink-Voorend, D.; Hautvast, J.L.A.; Vandeberg, L.; Visser, O.; Hulscher, M.E.J.L. A systematic literature review to clarify the concept of vaccine hesitancy. Nat. Hum. Behav. 2022, 6, 1634–1648. [Google Scholar] [CrossRef]
- Larson, H.J.; Jarrett, C.; Eckersberger, E.; Smith, D.M.D.; Paterson, P. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature, 2007–2012. Vaccine 2014, 32, 2150–2159. [Google Scholar] [CrossRef] [PubMed]
- Larson, H.J. Defining and measuring vaccine hesitancy. Nat. Hum. Behav. 2022, 6, 1609–1610. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, I.M. The Health Belief Model and Preventive Health Behavior. Health Educ. Monogr. 1974, 2, 354–386. [Google Scholar] [CrossRef]
- Prochaska, J.O.; DiClemente, C.C. Transtheoretical therapy: Toward a more integrative model of change. Psychother. Theory Res. Pract. 1982, 19, 276. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ma, M.; Raza, S.H.; Yousaf, M.; Zaman, U.; Jin, Q. Investigating the Psychological, Social, Cultural, and Religious Predictors of COVID-19 Vaccine Uptake Intention in Digital Age: A Media Dependency Theory Perspective. Vaccines 2023, 11, 1338. [Google Scholar] [CrossRef]
- Adella, G.A.; Abebe, K.; Atnafu, N.; Azeze, G.A.; Alene, T.; Molla, S.; Ambaw, G.; Amera, T.; Yosef, A.; Eshetu, K.; et al. Knowledge, attitude, and intention to accept COVID-19 vaccine among patients with chronic diseases in southern Ethiopia: Multi-center study. Front. Public Health 2022, 10, 917925. [Google Scholar] [CrossRef]
- Lu, P.; Euler, G.; Jumaan, A.; Harpaz, R. Herpes zoster vaccination among adults aged 60 years or older in the United States, 2007: Uptake of the first new vaccine to target seniors. Vaccine 2009, 27, 882–887. [Google Scholar] [CrossRef]
- de Albuquerque Veloso Machado, M.; Roberts, B.; Wong, B.L.H.; van Kessel, R.; Mossialos, E. The Relationship Between the COVID-19 Pandemic and Vaccine Hesitancy: A Scoping Review of Literature Until August 2021. Front. Public Health 2021, 9, 1370. [Google Scholar] [CrossRef]
- Kohlhammer, Y.; Schnoor, M.; Schwartz, M.; Raspe, H.; Schäfer, T. Determinants of influenza and pneumococcal vaccination in elderly people: A systematic review. Public Health 2007, 121, 742–751. [Google Scholar] [CrossRef]
- Park, S.; Massey, P.M.; Stimpson, J.P. Primary Source of Information About COVID-19 as a Determinant of Perception of COVID-19 Severity and Vaccine Uptake: Source of Information and COVID-19. J. Gen. Intern. Med. 2021, 36, 3088–3095. [Google Scholar] [CrossRef] [PubMed]
- Catalan-Matamoros, D.; Peñafiel-Saiz, C. The Use of Traditional Media for Public Communication about Medicines: A Systematic Review of Characteristics and Outcomes. Health Commun. 2019, 34, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Odone, A.; Ferrari, A.; Spagnoli, F.; Visciarelli, S.; Shefer, A.; Pasquarella, C.; Signorelli, C. Effectiveness of interventions that apply new media to improve vaccine uptake and vaccine coverage A systematic review. Hum. Vaccin. Immunother. 2015, 11, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Bhagianadh, D.; Arora, K. COVID-19 Vaccine Hesitancy Among Community-Dwelling Older Adults: The Role of Information Sources. J. Appl. Gerontol. 2021, 41, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Jennings, W.; Stoker, G.; Bunting, H.; Valgarðsson, V.O.; Gaskell, J.; Devine, D.; McKay, L.; Mills, M.C. Lack of Trust, Conspiracy Beliefs, and Social Media Use Predict COVID-19 Vaccine Hesitancy. Vaccines 2021, 9, 593. [Google Scholar] [CrossRef]
- Argyris, Y.A.; Kim, Y.; Roscizewski, A.; Song, W. The mediating role of vaccine hesitancy between maternal engagement with anti- and pro-vaccine social media posts and adolescent HPV-vaccine uptake rates in the US: The perspective of loss aversion in emotion-laden decision circumstances. Soc. Sci. Med. 2021, 282, 114043. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Zhou, Q.; Tan, Z.; Cao, J. The Mediating Roles of Medical Mistrust, Knowledge, Confidence and Complacency of Vaccines in the Pathways from Conspiracy Beliefs to Vaccine Hesitancy. Vaccines 2021, 9, 1342. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Eurobarometer 91.2, March 2019; Data file Version 1.0.0; Kantar Public [Producer], Gesis Data Archive: ZA7592; European Comission: Brussels, Belgium, 2019. [Google Scholar]
- Goldenberg, M.J. Vaccine Hesitancy; University of Pittsburgh Press: Pittsburgh, PA, USA, 2021; ISBN 9780822946557. [Google Scholar]
- Al-Jayyousi, G.F.; Sherbash, M.A.M.; Ali, L.A.M.; El-Heneidy, A.; Alhussaini, N.W.Z.; Elhassan, M.E.A.; Nazzal, M.A. Factors Influencing Public Attitudes towards COVID-19 Vaccination: A Scoping Review Informed by the Socio-Ecological Model. Vaccines 2021, 9, 548. [Google Scholar] [CrossRef]
- Ngangue, P.; Pilabré, A.H.; Barro, A.; Pafadnam, Y.; Bationo, N.; Soubeiga, D. Public attitudes towards COVID-19 vaccines in Africa: A systematic review. J. Public Health Africa 2022, 13, 2181. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Wyka, K.; White, T.M.; Picchio, C.A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Ratzan, S.C.; Kamarulzaman, A.; El-Mohandes, A. A survey of COVID-19 vaccine acceptance across 23 countries in 2022. Nat. Med. 2023, 29, 366–375. [Google Scholar] [CrossRef]
- Shin, H.; Jeon, S.; Cho, I.; Park, H. Factors Affecting Human Papillomavirus Vaccination in Men: Systematic Review. JMIR Public Health Surveill. 2022, 8, e34070. [Google Scholar] [CrossRef]
- Zintel, S.; Flock, C.; Arbogast, A.L.; Forster, A.; von Wagner, C.; Sieverding, M. Gender differences in the intention to get vaccinated against COVID-19: A systematic review and meta-analysis. J. Public Health 2023, 31, 1303–1327. [Google Scholar] [CrossRef]
- Paul, E.; Steptoe, A.; Fancourt, D. Attitudes towards vaccines and intention to vaccinate against COVID-19: Implications for public health communications. Lancet Reg. Health-Eur. 2021, 1, 100012. [Google Scholar] [CrossRef] [PubMed]
- Baniak, L.; Luyster, F.; Raible, C.A.; McCray, E.E.; Strollo, P. COVID-19 Vaccine Hesitancy and Uptake among Nursing Staff during an Active Vaccine Rollout. Vaccines 2021, 9, 858. [Google Scholar] [CrossRef] [PubMed]
- Vandermeulen, C.; Roelants, M.; Theeten, H.; Van Damme, P.; Hoppenbrouwers, K. Vaccination coverage and sociodemographic determinants of measles–mumps–rubella vaccination in three different age groups. Eur. J. Pediatr. 2008, 167, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Beale, S.; Burns, R.; Braithwaite, I.; Byrne, T.; Lam Erica Fong, W.; Fragaszy, E.; Geismar, C.; Hoskins, S.; Kovar, J.; Navaratnam, A.M.D.; et al. Occupation, Worker Vulnerability, and COVID-19 Vaccination Uptake: Analysis of the Virus Watch prospective cohort study. Vaccine 2022, 40, 7646–7652. [Google Scholar] [CrossRef] [PubMed]
- Schwarzinger, M.; Watson, V.; Arwidson, P.; Alla, F.; Luchini, S. COVID-19 vaccine hesitancy in a representative working-age population in France: A survey experiment based on vaccine characteristics. Lancet. Public Health 2021, 6, e210–e221. [Google Scholar] [CrossRef]
- Brownstein, N.C.; Reddy, H.; Whiting, J.; Kasting, M.L.; Head, K.J.; Vadaparampil, S.T.; Giuliano, A.R.; Gwede, C.K.; Meade, C.D.; Christy, S.M. COVID-19 vaccine behaviors and intentions among a national sample of United States adults ages 18–45. Prev. Med. 2022, 160, 107038. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Q.; Silver Tarimo, C.; Wang, M.; Gu, J.; Wei, W.; Ma, M.; Zhao, L.; Mu, Z.; Miao, Y. COVID-19 Vaccine Hesitancy Among Chinese Population: A Large-Scale National Study. Front. Immunol. 2021, 12, 781161. [Google Scholar] [CrossRef]
- Konopinska, J.; Obuchowska, I.; Lisowski, L.; Dub, N.; Kozera, M.; Rekas, M. Intention to Get COVID-19 Vaccinations among Ophthalmology Residents in Poland: A Cross-Sectional Survey. Vaccines 2021, 9, 371. [Google Scholar] [CrossRef]
- Liu, H.; Nowak, G.R., 3rd; Wang, J.; Luo, Z. A National Study of Marital Status Differences in Early Uptake of COVID-19 Vaccine among Older Americans. Geriatrics 2023, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Umberson, D.J. The times they are a changin’: Marital status and health differentials from 1972 to 2003. J. Health Soc. Behav. 2008, 49, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Ozdenerol, E.; Seboly, J. The Effects of Lifestyle on COVID-19 Vaccine Hesitancy in the United States: An Analysis of Market Segmentation. Int. J. Environ. Res. Public Health 2022, 19, 7732. [Google Scholar] [CrossRef] [PubMed]
- Borga, L.G.; Clark, A.E.; D’Ambrosio, C.; Lepinteur, A. Characteristics associated with COVID-19 vaccine hesitancy. Sci. Rep. 2022, 12, 12435. [Google Scholar] [CrossRef]
- Sowa, P.; Kiszkiel, Ł.; Laskowski, P.P.; Alimowski, M.; Szczerbiński, Ł.; Paniczko, M.; Moniuszko-Malinowska, A.; Kamiński, K. COVID-19 Vaccine Hesitancy in Poland-Multifactorial Impact Trajectories. Vaccines 2021, 9, 876. [Google Scholar] [CrossRef]
- Sun, Y.; Monnat, S.M. Rural-urban and within-rural differences in COVID-19 vaccination rates. J. Rural Heal. Off. J. Am. Rural. Health Assoc. Natl. Rural. Health Care Assoc. 2022, 38, 916–922. [Google Scholar] [CrossRef]
- Zhai, Y.; Santibanez, T.A.; Kahn, K.E.; Srivastav, A.; Walker, T.Y.; Singleton, J.A. Rural, urban, and suburban differences in influenza vaccination coverage among children. Vaccine 2020, 38, 7596–7602. [Google Scholar] [CrossRef]
- Osuji, V.C.; Galante, E.M.; Mischoulon, D.; Slaven, J.E.; Maupome, G. COVID-19 vaccine: A 2021 analysis of perceptions on vaccine safety and promise in a U.S. sample. PLoS ONE 2022, 17, e0268784. [Google Scholar] [CrossRef]
- Aurélie Bocquier Jeremy Ward, J.R.P.P.-W.; Verger, P. Socioeconomic differences in childhood vaccination in developed countries: A systematic review of quantitative studies. Expert Rev. Vaccines 2017, 16, 1107–1118. [Google Scholar]
- Glassman, L.W.; Szymczak, J.E. The influence of social class and institutional relationships on the experiences of vaccine-hesitant mothers: A qualitative study. BMC Public Health 2022, 22, 2309. [Google Scholar] [CrossRef]
- Borghouts, J.; Huang, Y.; Gibbs, S.; Hopfer, S.; Li, C.; Mark, G. Understanding underlying moral values and language use of COVID-19 vaccine attitudes on twitter. PNAS Nexus 2023, 2, pgad013. [Google Scholar] [PubMed]
- Fridman, A.; Gershon, R.; Gneezy, A. COVID-19 and vaccine hesitancy: A longitudinal study. PLoS ONE 2021, 16, e0250123. [Google Scholar] [CrossRef] [PubMed]
- Pierri, F.; Perry, B.L.; DeVerna, M.R.; Yang, K.-C.; Flammini, A.; Menczer, F.; Bryden, J. Online misinformation is linked to early COVID-19 vaccination hesitancy and refusal. Sci. Rep. 2022, 12, 5966. [Google Scholar] [CrossRef] [PubMed]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Iacobucci, D.; Saldanha, N.; Deng, X. A meditation on mediation: Evidence that structural equations models perform better than regressions. J. Consum. Psychol. 2007, 17, 139–153. [Google Scholar] [CrossRef]
- Ledgerwood, A.; Shrout, P.E. The trade-off between accuracy and precision in latent variable models of mediation processes. J. Pers. Soc. Psychol. 2011, 101, 1174–1188. [Google Scholar] [CrossRef]
- le Cessie, S.; Debeij, J.; Rosendaal, F.R.; Cannegieter, S.C.; Vandenbroucke, J.P. Quantification of bias in direct effects estimates due to different types of measurement error in the mediator. Epidemiology 2012, 23, 551–560. [Google Scholar] [CrossRef]
- Muthén, B.; Asparouhov, T. Causal Effects in Mediation Modeling: An Introduction with Applications to Latent Variables. Struct. Equ. Model. A Multidiscip. J. 2015, 22, 12–23. [Google Scholar] [CrossRef]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 2002, 7, 422–445. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall: New York, NY, USA, 1993. [Google Scholar]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Marsh, H.W.; Hau, K.-T.; Wen, Z. In Search of Golden Rules: Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit Indexes and Dangers in Overgeneralizing Hu and Bentler’s (1999) Findings. Struct. Equ. Model. A Multidiscip. J. 2004, 11, 320–341. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Muthén, B.O.; Muthén, L.K.; Asparouhov, T. Regression and Mediation Analysis Using Mplus; Bengt, O., Muthén, L.K., Muthén, T.A., Eds.; Muthén & Muthén: Los Angeles, CA, USA, 2016; ISBN 9780982998311. [Google Scholar]
- Mackinnon, D.P.; Fairchild, A.J.; Fritz, M.S. Mediation Analysis. Annu. Rev. Psychol. 2007, 58, 593–614. [Google Scholar] [CrossRef]
- Catalan-Matamoros, D.; Peñafiel-Saiz, C. How is communication of vaccines in traditional media: A systematic review. Perspect. Public Health 2019, 139, 34–43. [Google Scholar] [CrossRef]
- Cascini, F.; Pantovic, A.; Al-Ajlouni, Y.A.; Failla, G.; Puleo, V.; Melnyk, A.; Lontano, A.; Ricciardi, W. Social media and attitudes towards a COVID-19 vaccination: A systematic review of the literature. EClinicalMedicine 2022, 48, 101454. [Google Scholar] [CrossRef] [PubMed]
- Volpp, K.G.; Loewenstein, G.; Buttenheim, A.M. Behaviorally Informed Strategies for a National COVID-19 Vaccine Promotion Program. JAMA 2021, 325, 125–126. [Google Scholar] [CrossRef]
- Recio-Román, A.; Recio-Menéndez, M.; Román-González, M.V. Global Vaccine Hesitancy Segmentation: A Cross-European Approach. Vaccines 2021, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Recio-Román, A.; Recio-Menéndez, M.; Román-González, M.V. Political Populism, Institutional Distrust and Vaccination Uptake: A Mediation Analysis. Int. J. Environ. Res. Public Health 2022, 19, 3265. [Google Scholar] [CrossRef]
- Hiaeshutter-Rice, D.; Chinn, S.; Chen, K. Platform Effects on Alternative Influencer Content: Understanding How Audiences and Channels Shape Misinformation Online. Front. Polit. Sci. 2021, 3, 642394. [Google Scholar] [CrossRef]
- Murphy, J.; Vallières, F.; Bentall, R.P.; Shevlin, M.; McBride, O.; Hartman, T.K.; McKay, R.; Bennett, K.; Mason, L.; Gibson-Miller, J.; et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021, 12, 29. [Google Scholar] [CrossRef]
- Guillaume, L.R.; Bath, P.A. The impact of health scares on parents’ information needs and preferred information sources: A case study of the MMR vaccine scare. Health Inform. J. 2004, 10, 5–22. [Google Scholar] [CrossRef]
- Dubé, È.; Ward, J.K.; Verger, P.; MacDonald, N.E. Vaccine hesitancy, acceptance, and anti-vaccination: Trends and future prospects for public health. Annu. Rev. Public Health 2021, 42, 175–191. [Google Scholar] [CrossRef]
- Motta, M.; Sylvester, S.; Callaghan, T.; Lunz-Trujillo, K. Encouraging COVID-19 Vaccine Uptake through Effective Health Communication. Front. Polit. Sci. 2021, 3, 630133. [Google Scholar] [CrossRef]
- Perreault, M.F.; Perreault, G.P. Journalists on COVID-19 Journalism: Communication Ecology of Pandemic Reporting. Am. Behav. Sci. 2021, 65, 976–991. [Google Scholar] [CrossRef]
- Ahmad Rizal, A.R.; Nordin, S.M.; Ahmad, W.F.W.; Ahmad Khiri, M.J.; Hussin, S.H. How Does Social Media Influence People to Get Vaccinated? The Elaboration Likelihood Model of a Person’s Attitude and Intention to Get COVID-19 Vaccines. Int. J. Environ. Res. Public Health 2022, 19, 2378. [Google Scholar] [PubMed]
- Vandeweerdt, C.; Luong, T.; Atchapero, M.; Mottelson, A.; Holz, C.; Makransky, G.; Böhm, R. Virtual reality reduces COVID-19 vaccine hesitancy in the wild: A randomized trial. Sci. Rep. 2022, 12, 4593. [Google Scholar] [CrossRef]
- Xin, M.; Luo, S.; She, R.; Chen, X.; Li, L.; Li, L.; Chen, X.; Lau, J.T.F. The Impact of Social Media Exposure and Interpersonal Discussion on Intention of COVID-19 Vaccination among Nurses. Vaccines 2021, 9, 1204. [Google Scholar] [CrossRef]
Paths | Probit Standardized Path Coefficient, β Estimate (95% CI) | Logit Standardized Path Coefficient, β Estimate | Odds Ratio | p |
---|---|---|---|---|
Direct Effect | ||||
NI→V | −0.030 (−0.062 0.004) | −0.054 | 0.947 | 0.077 |
TV→V | −0.067 (−0.099 −0.037) | −0.121 | 0.886 | <0.001 |
RD→V | −0.009 (−0.032 0.013) | −0.016 | 0.984 | 0.438 |
NW→V | −0.015 (−0.053 0.016) | −0.027 | 0.973 | 0.398 |
OSN→V | −0.008 (−0.030 0.013) | −0.014 | 0.986 | 0.462 |
OI→V | −0.008 (−0.030 0.013) | −0.014 | 0.986 | 0.237 |
O→V | 0.000 (−0.019 0.018) | 0.000 | 1.000 | 0.965 |
DK→V | −0.007 (−0.026 0.014) | −0.013 | 0.987 | 0.508 |
Indirect Effect | ||||
NI→H→V | −0.034 (−0.063 −0.006) | −0.062 | 0.940 | <0.05 |
TV→H→V | 0.065 (0.039 0.093) | 0.118 | 1.125 | <0.001 |
RD→H→V | 0.046 (0.027 0.067) | 0.083 | 1.087 | <0.001 |
NW→H→V | 0.135 (0.105 0.172) | 0.244 | 1.277 | <0.001 |
OSN→H→V | 0.029 (0.010 0.048) | 0.052 | 1.054 | <0.05 |
OI→H→V | 0.013 (−0.005 0.032) | 0.024 | 1.024 | 0.165 |
O→H→V | −0.009 (−0.026 0.008) | −0.016 | 0.984 | 0.308 |
DK→H→V | −0.021 (−0.039 −0.003) | −0.038 | 0.963 | <0.05 |
Total Effect | ||||
NI→V | −0.063 (−0.090 −0.037) | −0.114 | 0.892 | <0.001 |
TV→V | −0.003 (−0.027 0.022) | −0.005 | 0.995 | 0.84 |
RD→V | 0.037 (0.021 0.053) | 0.067 | 1.069 | <0.001 |
NW→V | 0.120 (0.102 0.137) | 0.217 | 1.243 | <0.001 |
OSN→V | 0.021 (0.003 0.038) | 0.038 | 1.039 | <0.05 |
OI→V | 0.026 (0.009 0.043) | 0.047 | 1.048 | <0.05 |
O→V | −0.009 (−0.024 0.006) | −0.016 | 0.984 | 0.233 |
DK→V | −0.027 (−0.043 −0.011) | −0.049 | 0.952 | <0.001 |
95% | C.I. | |||||
---|---|---|---|---|---|---|
Variable | Categories | Probit | Lower 2.5% | Upper 2.5% | Logit | Odds Ratio |
Age | 15–24 years | Ref. | Ref. | Ref. | Ref. | Ref. |
25–39 years | −0.094 | −0.128 | −0.061 | −0.17 | 0.844 | |
40–54 years | −0.114 | −0.152 | −0.077 | −0.206 | 0.814 | |
55 years and older | −0.104 | −0.149 | −0.059 | −0.188 | 0.828 | |
Gender | Man | Ref. | Ref. | Ref. | Ref. | Ref. |
Woman | −0.006 | −0.021 | 0.01 | −0.011 | 0.989 | |
Occupation | Self-employed | Ref. | Ref. | Ref. | Ref. | Ref. |
Managers | 0.031 | 0.008 | 0.054 | 0.056 | 1.058 | |
Other white collars | 0.008 | −0.015 | 0.031 | 0.014 | 1.015 | |
Manual workers | 0.007 | −0.02 | 0.033 | 0.013 | 1.013 | |
House persons | −0.002 | −0.022 | 0.017 | −0.004 | 0.996 | |
Unemployed | −0.03 | −0.05 | −0.011 | −0.054 | 0.947 | |
Retired | 0.048 | 0.015 | 0.081 | 0.087 | 1.091 | |
Students | 0.069 | 0.044 | 0.095 | 0.125 | 1.133 | |
Education | None | −0.008 | −0.024 | 0.007 | −0.014 | 0.986 |
Up to 15 years | 0.048 | 0.032 | 0.064 | 0.087 | 1.091 | |
16–19 | −0.084 | −0.101 | −0.067 | −0.152 | 0.859 | |
20 years and older | 0.075 | 0.058 | 0.092 | 0.136 | 1.145 | |
Still studying | Ref. | Ref. | Ref. | Ref. | Ref. | |
Marital Status | Unmarried | Ref. | Ref. | Ref. | Ref. | Ref. |
(Re-)married/single with partner | −0.01 | −0.033 | 0.013 | −0.018 | 0.982 | |
Divorced or separated | 0.004 | −0.014 | 0.023 | 0.007 | 1.007 | |
Widowed | −0.029 | −0.05 | −0.008 | −0.052 | 0.949 | |
Other | −0.012 | −0.027 | 0.003 | −0.022 | 0.979 | |
Childs Living at Home | None | Ref. | Ref. | Ref. | Ref. | Ref. |
One | 0.019 | 0.002 | 0.035 | 0.034 | 1.035 | |
Two | 0.013 | −0.004 | 0.029 | 0.024 | 1.024 | |
Three | 0.008 | −0.008 | 0.023 | 0.014 | 1.015 | |
Four or more | −0.004 | −0.019 | 0.011 | −0.007 | 0.993 | |
Problems Paying Bills | Most of the time | Ref. | Ref. | Ref. | Ref. | Ref. |
From time to time | 0.000 | −0.025 | 0.025 | 0.000 | 1 | |
Almost never/never | 0.106 | 0.08 | 0.132 | 0.192 | 1.212 | |
Residential Setting | Rural area or village | 0.006 | −0.012 | 0.024 | 0.011 | 1.011 |
Small or middle size town | 0.018 | −0.001 | 0.035 | 0.033 | 1.033 | |
Large town | Ref. | Ref. | Ref. | Ref. | Ref. | |
Social Class | The working class | Ref. | Ref. | Ref. | Ref. | Ref. |
The lower middle class | 0.021 | 0.003 | 0.038 | 0.038 | 1.039 | |
The middle class | 0.016 | −0.003 | 0.034 | 0.029 | 1.029 | |
The upper middle class | 0.06 | 0.041 | 0.078 | 0.109 | 1.115 | |
The higher class | 0.013 | −0.003 | 0.029 | 0.024 | 1.024 | |
Political Left–Right | Left | 0.046 | 0.03 | 0.061 | 0.083 | 1.087 |
Center | Ref. | Ref. | Ref. | Ref. | Ref. | |
Right | 0.01 | −0.006 | 0.025 | 0.018 | 1.018 | |
Use Online Social Network | Every day or almost every day | Ref. | Ref. | Ref. | Ref. | Ref. |
Two or three times a week | 0.021 | 0.006 | 0.038 | 0.038 | 1.039 | |
About once a week | −0.008 | −0.023 | 0.007 | −0.014 | 0.986 | |
Two or three times a month | −0.019 | −0.036 | −0.003 | −0.034 | 0.966 | |
Less often | 0.001 | −0.015 | 0.018 | 0.002 | 1.002 | |
Never | 0.048 | 0.028 | 0.068 | 0.087 | 1.091 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recio-Román, A.; Recio-Menéndez, M.; Román-González, M.V. Influence of Media Information Sources on Vaccine Uptake: The Full and Inconsistent Mediating Role of Vaccine Hesitancy. Computation 2023, 11, 208. https://doi.org/10.3390/computation11100208
Recio-Román A, Recio-Menéndez M, Román-González MV. Influence of Media Information Sources on Vaccine Uptake: The Full and Inconsistent Mediating Role of Vaccine Hesitancy. Computation. 2023; 11(10):208. https://doi.org/10.3390/computation11100208
Chicago/Turabian StyleRecio-Román, Almudena, Manuel Recio-Menéndez, and María Victoria Román-González. 2023. "Influence of Media Information Sources on Vaccine Uptake: The Full and Inconsistent Mediating Role of Vaccine Hesitancy" Computation 11, no. 10: 208. https://doi.org/10.3390/computation11100208
APA StyleRecio-Román, A., Recio-Menéndez, M., & Román-González, M. V. (2023). Influence of Media Information Sources on Vaccine Uptake: The Full and Inconsistent Mediating Role of Vaccine Hesitancy. Computation, 11(10), 208. https://doi.org/10.3390/computation11100208