Unified Convergence Criteria of Derivative-Free Iterative Methods for Solving Nonlinear Equations
Abstract
:1. Introduction
2. Majorizing Sequence
- (I)
- (II)
3. Semi-Local Convergence
- ()
- , , , , and exist such that
- ()
- , , and exist such that for all
- ()
- Conditions of Lemma 1 hold with also satisfying
- ()
- .
4. Local Convergence
- (C1)
- There exists a simple solution of equation .
- (C2)
- For each
- (C3)
- The parameter satisfies the conditions
- (C4)
- , where .
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Argyros, I.K.; Magreñán, Á.A. Iterative Methods and Their Dynamics with Applications: A Contemporary Study; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Dennis, J.E., Jr.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Amat, S. On the local convergence of secant-type methods. Intern. J. Comput. Math. 2004, 81, 1153–1161. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Rubio, M.J. The Secant method for nondifferentiable operators. Appl. Math. Lett. 2002, 15, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations. J. Math. Anal. Appl. 2007, 332, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Kurchatov, V.A. On a method of linear interpolation for the solution of functional equations. Dokl. Akad. Nauk SSSR 1971, 198, 524–526. Translation in Soviet Math. Dokl. 1971, 12, 835–838(In Russian) [Google Scholar]
- Shakhno, S.M. On a Kurchatov’s method of linear interpolation for solving nonlinear equations. Pamm Proc. Appl. Math. Mech. 2004, 4, 650–651. [Google Scholar] [CrossRef]
- Shakhno, S.M. Nonlinear majorants for investigation of methods of linear interpolation for the solution of nonlinear equations. In Proceedings of the ECCOMAS 2004—European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, 24–28 July 2004. [Google Scholar]
- Amat, S.; Ezquerro, J.A.; Hernández-Verón, M.A. On a Steffensen-like method for solving nonlinear equations. Calcolo 2016, 53, 171–188. [Google Scholar] [CrossRef]
- Argyros, I.K.; George, S. Convergence of derivative free iterative methods. Creat. Math. Inform. 2019, 28, 19–26. [Google Scholar] [CrossRef]
- Argyros, G.; Argyros, M.; Argyros, I.K.; George, S. Semi-local convergence of a derivative-free method for solving equations. Probl. Anal. Issues Anal. 2021, 10, 18–26. [Google Scholar] [CrossRef]
- Sharma, R.; Gagandeep. A study of the local convergence of a derivative free method in Banach spaces. J Anal. 2022, 10, 18–26. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Hoboken, NJ, USA, 1964. [Google Scholar]
- Behl, R.; Sarría, Í.; González, R.; Magreñán, Á.A. Highly efficient family of iterative methods for solving nonlinear models. J. Comput. Appl. Math. 2019, 346, 110–132. [Google Scholar] [CrossRef]
Method | L | |||
---|---|---|---|---|
Newton | 0.9917 | 1.0744 | 4.3300 | 0.1023 |
Secant | 1.0101 | 1.0647 | 4.3300 | 0.1129 |
n | Newton Method | Secant Method | ||||
---|---|---|---|---|---|---|
1 | 1.0088 | 9.1185 × 10 | 9.1185 × 10 | 1.0096 | 9.0361 × 10 | 9.0361 × 10 |
2 | 1.0001 | 8.7386 × 10 | 1.0905 × 10 | 1.0009 | 8.7419 × 10 | 1.0991 × 10 |
3 | 1.0000 | 7.6802 × 10 | 1.6022 × 10 | 1.0000 | 8.8887 × 10 | 1.5283 × 10 |
4 | 1.0000 | 5.8989 × 10 | 3.4595 × 10 | 1.0000 | 8.5828 × 10 | 2.6685 × 10 |
5 | 1.0000 | 0 | 1.6098 × 10 | 1.0000 | 7.7050 × 10 | 5.7989 × 10 |
6 | 1.0000 | 6.6169 × 10 | 2.1673 × 10 |
Method | L | |||
---|---|---|---|---|
Newton | 1.3789 | 2.5774 | 2.7183 | 0.0864 |
Secant | 1.7784 | 2.5774 | 2.7183 | 0.1041 |
n | Newton Method | Secant Method | ||
---|---|---|---|---|
1 | 7.0000 × 10 | 7.0000 × 10 | 7.0000 × 10 | 7.0000 × 10 |
2 | 2.3910 × 10 | 1.5651 × 10 | 2.6368 × 10 | 1.7556 × 10 |
3 | 2.8629 × 10 | 8.2657 × 10 | 9.4309 × 10 | 5.9446 × 10 |
4 | 4.0981 × 10 | 2.3125 × 10 | 1.2890 × 10 | 5.7643 × 10 |
5 | 6.0867 × 10 | 1.5803 × 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regmi, S.; Argyros, I.K.; Shakhno, S.; Yarmola, H. Unified Convergence Criteria of Derivative-Free Iterative Methods for Solving Nonlinear Equations. Computation 2023, 11, 49. https://doi.org/10.3390/computation11030049
Regmi S, Argyros IK, Shakhno S, Yarmola H. Unified Convergence Criteria of Derivative-Free Iterative Methods for Solving Nonlinear Equations. Computation. 2023; 11(3):49. https://doi.org/10.3390/computation11030049
Chicago/Turabian StyleRegmi, Samundra, Ioannis K. Argyros, Stepan Shakhno, and Halyna Yarmola. 2023. "Unified Convergence Criteria of Derivative-Free Iterative Methods for Solving Nonlinear Equations" Computation 11, no. 3: 49. https://doi.org/10.3390/computation11030049
APA StyleRegmi, S., Argyros, I. K., Shakhno, S., & Yarmola, H. (2023). Unified Convergence Criteria of Derivative-Free Iterative Methods for Solving Nonlinear Equations. Computation, 11(3), 49. https://doi.org/10.3390/computation11030049