Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon
Abstract
:1. Introduction
2. Theory, Materials, and Method
2.1. Heterocycle Inhibiting Agents
2.2. Langmuir Adsorption Theory
2.3. Conceptual “ONOIM”
2.4. DFT Calculations
3. Results and Discussion
3.1. Infrared Spectroscopy Analysis
3.2. “NMR” Spectroscopy & “NBO” Analysis
3.3. Nuclear Quadrupole Resonance (“NQR”)
3.4. Charge Density Analysis
3.5. Potential Energy of Interatomic Interactions
3.6. “HOMO”, “LUMO”, and “UV-vis” Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lasagni, F.; Lasagni, A.; Marks, E.; Holzapfel, C.; Mücklich, F.; Degischer, H. Three-dimensional characterization of ‘as-cast’ and solution-treated AlSi12(Sr) alloys by high-resolution FIB tomography. Acta Mater. 2007, 55, 3875–3882. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach. Mol. Simul. 2023, 49, 365–376. [Google Scholar] [CrossRef]
- Requena, G.; Garcés, G.; Rodríguez, M.; Pirling, T.; Cloetens, P. 3D architecture and load partition in eutectic Al-Si alloys. Adv. Eng. Mater. 2009, 11, 1007–1014. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. In Silico-DFT Investigation of Nanocluster Alloys of Al-(Mg, Ge, Sn) Coated by Nitrogen Heterocyclic Carbenes as Corrosion Inhibitors. J. Clust. Sci. 2023, 1–18. [Google Scholar] [CrossRef]
- Asghar, Z.; Requena, G.; Kubel, F. The role of Ni and Fe aluminides on the elevated temperature strength of an AlSi12 alloy. Mater. Sci. Eng. A 2010, 527, 5691–5698. [Google Scholar] [CrossRef]
- Mollaamin, F.; Shahriari, S.; Monajjemi, M.; Khalaj, Z. Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption. J. Clust. Sci. 2023, 34, 1547–1562. [Google Scholar] [CrossRef]
- Stadler, F.; Antrekowitsch, H.; Fragner, W.; Kaufmann, H.; Uggowitzer, P. Effect of main alloying elements on strength of Al–Si foundry alloys at elevated temperatures. Int. J. Cast Met. Res. 2012, 25, 215–224. [Google Scholar] [CrossRef]
- Boughoues, Y.; Benamira, M.; Messaadia, L.; Ribouh, N. Adsorption and corrosion inhibition performance of some environmental friendly organic inhibitors for mild steel in HCl solution via experimental and theoretical study. Colloids Surf. A Physicochem. Eng. Asp. 2020, 593, 124610. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations. J. Comput. Theor. Nanosci. 2015, 12, 1030–1039. [Google Scholar] [CrossRef]
- Monajjemi, M.; Noei, M.; Mollaamin, F. Design of fMet-tRNA and Calculation of its Bonding Properties by Quantum Mechanics. Nucleosides Nucleotides Nucleic Acids 2010, 29, 676–683. [Google Scholar] [CrossRef]
- Guimarães, T.A.; da Cunha, J.N.; de Oliveira, G.A.; da Silva, T.U.; de Oliveira, S.M.; de Araújo, J.R.; Machado, S.d.P.; D’Elia, E.; Rezende, M.J. Nitrogenated derivatives of furfural as green corrosion inhibitors for mild steel in HCl solution. J. Mater. Res. Technol. 2020, 9, 7104–7122. [Google Scholar] [CrossRef]
- Monajjemi, M.; Mahdavian, L.; Mollaamin, F. Characterization of nanocrystalline silicon germanium film and nanotube in adsorption gas by Monte Carlo and Langevin dynamic simulation. Bull. Chem. Soc. Ethiop. 2008, 22, 277–286. [Google Scholar] [CrossRef]
- Mobin, M.; Aslam, R. Experimental and theoretical study on corrosion inhibition performance of environmentally benign nonionic surfactants for mild steel in 3.5% NaCl solution. Process Saf. Environ. Prot. 2018, 114, 279–295. [Google Scholar] [CrossRef]
- Singh, A.; Lin, Y.; Quraishi, M.A.; Olasunkanmi, L.O.; Fayemi, O.E.; Sasikumar, Y.; Ramaganthan, B.; Bahadur, I.; Obot, I.B.; Adekunle, A.S.; et al. Porphyrins as corrosion inhibitors for N80 steel in 3.5% NaCl solution: Electrochemical, quantum chemical, QSAR and Monte Carlo simulations studies. Molecules 2015, 20, 15122–15146. [Google Scholar] [CrossRef]
- Ali, S.A.; Mazumder, M.A.J.; Nazal, M.K.; Al-Muallem, H.A. Assembly of succinic acid and isoxazolidine motifs in a single entity to mitigate CO2 corrosion of mild steel in saline media. Arab. J. Chem. 2020, 13, 242–257. [Google Scholar] [CrossRef]
- Amar, H.; Benzakour, J.; Derja, A.; Villemin, D.; Moreau, B. A corrosion inhibition study of iron by phosphonic acids in sodium chloride solution. J. Electroanal. Chem. 2003, 558, 131–139. [Google Scholar] [CrossRef]
- Monajjemi, M.; Khaleghian, M.; Tadayonpour, N.; Mollaamin, F. The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study. Int. J. Nanosci. 2010, 9, 517–529. [Google Scholar] [CrossRef]
- Mollaamin, F.; Noei, M.; Monajjemi, M.; Rasoolzadeh, R. Nano theoretical studies of fMET-tRNA structuren in protein synthesis of prokaryotes and its comparison with the structure of fALA-tRNA. Afr. J. Microbiol. Res. 2011, 5, 2667–2674. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, M.; Zheng, J.; Castaneda, H. Corrosion inhibition of mild steel by an imidazolium ionic liquid compound: The effect of pH and surface pre-corrosion. RSC Adv. 2015, 5, 95160–95170. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sen-sors for NO, NO2, and NH3 adsorbing: A DFT study. J. Mol. Model. 2023, 29, 170. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective. J. Mol. Model. 2023, 29, 119. [Google Scholar] [CrossRef] [PubMed]
- Mollaamin, F.; Monajjemi, M. Doping of Graphene Nanostructure with Iron, Nickel and Zinc as Selective Detector for the Toxic Gas Removal: A Density Functional Theory Study. C 2023, 9, 20. [Google Scholar] [CrossRef]
- Amberchan, G.; Lopez, I.; Ehlke, B.; Barnett, J.; Bao, N.Y.; Allen, A.L.; Singaram, B.; Oliver, S.R. Aluminum Nanoparticles from a Ga–Al Composite for Water Splitting and Hydrogen Generation. ACS Appl. Nano Mater. 2022, 5, 2636–2643. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Tribocorrosion Framework of (Iron, Nickel, Zinc)-Doped Graphene Nanosheet: New Sights into Sulfur Dioxide and Hydrogen Sulfide Removal Using DFT/TD-DFT Methods. J. Bio-Tribo-Corros. 2023, 9, 47. [Google Scholar] [CrossRef]
- Monajjemi, M.; Farahani, N.; Mollaamin, F. Thermodynamic study of solvent effects on nanostructures: Phosphatidylserine and phosphatidylinositol membranes. Phys. Chem. Liq. 2012, 50, 161–172. [Google Scholar] [CrossRef]
- Mollaamin, F.; Ilkhani, A.; Sakhaei, N.; Bonsakhteh, B.; Faridchehr, A.; Tohidi, S.; Monajjemi, M. Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: Hydrogen bonding study. J. Comput. Theor. Nanosci. 2015, 12, 3148–3154. [Google Scholar] [CrossRef]
- Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminum and its alloys in acid solutions: A review. RSC Adv. 2016, 6, 62833–62857. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Graphene Embedded with Transition Metals for Capturing Carbon Dioxide: Gas Detection Study Using QM Methods. Clean Technol. 2023, 5, 20. [Google Scholar] [CrossRef]
- Mashuga, M.E.; Olasunkanmi, L.O.; Ebenso, E.E. Experimental and theoretical investigation of the inhibitory effect of new pyridazine derivatives for the corrosion of mild steel in 1M HCl. J. Mol. Struct. 2017, 1136, 127–139. [Google Scholar] [CrossRef]
- Shahriari, S.; Soofi, N.S.; Farzi, F.; Attarikhasraghi, N.; Khosravi, S.; BabaeiTuskiee, B.; Esmkhani, R.; Monajjemi, M. Interaction of Nano-Boron Nitride/Graphene Sheets with Anode Lithium Ion Battery. J. Comput. Theor. Nanosci. 2016, 13, 3070–3082. [Google Scholar] [CrossRef]
- Monajjemi, M.; Baie, M.T.; Mollaamin, F. Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1–3) complexes: Density functional calculations. Russ. Chem. Bull. 2010, 59, 886–889. [Google Scholar] [CrossRef]
- Svensson, M.; Humbel, S.; Froese, R.D.J.; Matsubara, T.; Sieber, S.; Morokuma, K. ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357–19363. [Google Scholar] [CrossRef]
- Brandt, F.; Jacob, C.R. Systematic QM Region Construction in QM/MM Calculations Based on Uncertainty Quantification. J. Chem. Theory Comput. 2022, 18, 2584–2596. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Andersen, S.J.; Marioara, C.D.; Vissers, R.; Frøseth, A.; Zandbergen, H.W. The structural relation between precipitates in AlMgSi alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1- MgAl2Si2. Mater. Sci. Eng. A 2007, 444, 157–169. [Google Scholar] [CrossRef]
- Bilić, A.; Reimers, J.R.; Hush, N.S. Adsorption of Pyridine on the Gold(111) Surface: Implications for “Alligator Clips” for Molecular Wires. J. Phys. Chem. B 2002, 106, 6740–6747. [Google Scholar] [CrossRef]
- Malone, W.; Kara, A. A coverage dependent study of the adsorption of pyridine on the (111) coinage metal surfaces. Surf. Sci. 2020, 693, 121525. [Google Scholar] [CrossRef]
- Monajjemi, M.; Mollaamin, F.; Gholami, M.R.; Yoosbashizadeh, H.; Sadrnezhad, S.K.; Passdar, H. Quantum Chemical Parameters of Some Organic Corrosion Inhibitors, Pyridine, 2-Picoline 4-Picoline and 2, 4- Lutidine, Adsorption at Aluminum Surface in Hydrocholoric and Nitric Acids and Comparison Between Two Acidic Media. Main Group Met. Chem. 2003, 26, 349–362. [Google Scholar] [CrossRef]
- Dumont, E.; De Bleye, C.; Haouchine, M.; Coïc, L.; Sacré, P.-Y.; Hubert, P.; Ziemons, E. Effect of the functionalisation agent on the surface-enhanced Raman scattering (SERS) spectrum: Case study of pyridine derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118180. [Google Scholar] [CrossRef]
- Mollenhauer, D.; Gaston, N.; Voloshina, E.; Paulus, B. Interaction of Pyridine Derivatives with a Gold (111) Surface as a Model for Adsorption to Large Nanoparticles. J. Phys. Chem. C 2013, 117, 4470–4479. [Google Scholar] [CrossRef]
- Isvoranu, C.; Wang, B.; Ataman, E.; Schulte, K.; Knudsen, J.; Andersen, J.N.; Bocquet, M.-L.; Joachim Schnadt, J. Pyridine Adsorption on Single-Layer Iron Phthalocyanine on Au(111). J. Phys. Chem. C 2011, 115, 20201–20208. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jordan, K.D. Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. J. Phys. Chem. 1994, 98, 10089–10094. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Cramer, C.J. Essentials of Computational Chemistry: Theories and Models, 2nd ed.; Wiley: New York, NY, USA, 2004; Available online: wiley.com (accessed on 24 June 2021).
- Monajjemi, M.; Falahati, M.; Mollaamin, F. Computational investigation on alcohol nanosensors in combination with carbon nanotube: A Monte Carlo and ab initio simulation. Ionics 2013, 19, 155–164. [Google Scholar] [CrossRef]
- Shahriari, S.; Mollaamin, F.; Monajjemi, M. Increasing the Performance of {[(1 − x − y)LiCo0.3Cu0.7] (Al and Mg doped)]O2}, xLi2MnO3, yLiCoO2 Composites as Cathode Material in Lithium-Ion Battery: Synthesis and Characterization. Micromachines 2023, 14, 241. [Google Scholar] [CrossRef]
- Ghalandari, B.; Monajjemi, M.; Mollaamin, F. Theoretical Investigation of Carbon Nanotube Binding to DNA in View of Drug Delivery. J. Comput. Theor. Nanosci. 2011, 8, 1212–1219. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M.; Salemi, S.; Baei, M.T. A Dielectric Effect on Normal Mode Analysis and Symmetry of BNNT Nanotube. Fuller. Nanotub. Carbon Nanostruct. 2011, 19, 182–196. [Google Scholar] [CrossRef]
- Bakhshi, K.; Mollaamin, F.; Monajjemi, M. Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA). J. Comput. Theor. Nanosci. 2011, 8, 763–768. [Google Scholar] [CrossRef]
- Tahan, A.; Mollaamin, F.; Monajjemi, M. Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russ. J. Phys. Chem. A 2009, 83, 587–597. [Google Scholar] [CrossRef]
- Monajjemi, M.; Khaleghian, M.; Mollaamin, F. Theoretical study of the intermolecular potential energy and second virial coefficient in the mixtures of CH4 and Kr gases: A comparison with experimental data. Mol. Simul. 2010, 36, 865–870. [Google Scholar] [CrossRef]
- Smith, J.A.S. Nuclear Quadrupole Resonance Spectroscopy. J. Chem. Educ. 1971, 48, 39–41. [Google Scholar] [CrossRef]
- Mollaamin, F.; Shahriari, S.; Monajjemi, M. Induced Metals on BN–Nanotube by DFT/EPR Methods. Russ. J. Phys. Chem. A 2021, 95 (Suppl. S2), S331–S337. [Google Scholar] [CrossRef]
- Mollaamin, F.; Monajjemi, M. Corrosion Inhibiting by Some Organic Heterocyclic Inhibitors Through Langmuir Adsorption Mechanism on the Al-X (X = Mg/Ga/Si) Alloy Surface: A Study of Quantum Three-Layer Method of CAM-DFT/ONIOM. J. Bio Tribo Corros. 2023, 9, 33. [Google Scholar] [CrossRef]
- Young, H.A.; Freedman, R.D. Sears and Zemansky’s University Physics with Modern Physics, 13th ed.; Addison-Wesley: Boston, MA, USA, 2012; p. 754. [Google Scholar]
- Monajjemi, M.; Khosravi, M.; Honarparvar, B.; Mollaamin, F. Substituent and solvent effects on the structural bioactivity and anticancer characteristic of catechin as a bioactive constituent of green tea. Int. J. Quantum Chem. 2011, 111, 2771–2777. [Google Scholar] [CrossRef]
- Heinz, H.; Vaia, R.A.; Farmer, B.L.; Naik, R.R. Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12-6 and 9-6 Lennard-Jones Potentials. J. Phys. Chem. C 2008, 112, 17281–17290. [Google Scholar] [CrossRef]
- Mahdavian, L.; Monajjemi, M. Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation. Microelectron. J. 2010, 41, 142–149. [Google Scholar] [CrossRef]
- Aihara, J. Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 1999, 103, 7487–7495. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds, 5th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1981. [Google Scholar]
- Zadeh, M.A.A.; Lari, H.; Kharghanian, L.; Balali, E.; Khadivi, R.; Yahyaei, H.; Mollaamin, F.; Monajjemi, M. Density functional theory study and anti-cancer properties of shyshaq plant: In view point of nano biotechnology. J. Comput. Theor. Nanosci. 2015, 12, 4358–4367. [Google Scholar] [CrossRef]
- Khalili Hadad, B.; Mollaamin, F.; Monajjemi, M. Biophysical chemistry of macrocycles for drug delivery: A theoretical study. Russ. Chem. Bull. 2011, 60, 238–241. [Google Scholar] [CrossRef]
- Monajjemi, M.; Lee, V.S.; Khaleghian, M.; Honarparvar, B.; Mollaamin, F. Theoretical Description of Electromagnetic Nonbonded Interactions of Radical, Cationic, and Anionic NH2BHNBHNH2 Inside of the B18N18 Nanoring. J. Phys. Chem. C 2010, 114, 15315–15330. [Google Scholar] [CrossRef]
- Ahmadi, R.; Pishghadam, S.; Mollaamine, F.Z.; Monfared, M.R. Comparing the Effects of Ginger and Glibenclamide on Dihydroxybenzoic Metabolites Produced in Stz-Induced Diabetic Rats. Int. J. Endocrinol. Metab. 2013, 11, e10266. [Google Scholar] [CrossRef] [PubMed]
- Mollaamin, F.; Monajjemi, M. DFT outlook of solvent effect on function of nano bioorganic drugs. Phys. Chem. Liq. 2012, 50, 596–604. [Google Scholar] [CrossRef]
- Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M. Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study. Fuller. Nanotub. Carbon Nanostruct. 2011, 19, 251–261. [Google Scholar] [CrossRef]
- Lee, V.S.; Nimmanpipug, P.; Mollaamin, F.; Kungwan, N.; Thanasanvorakun, S.; Monajjemi, M. Investigation of single wall carbon nanotubes electrical properties and normal mode analysis: Dielectric effects. Russ. J. Phys. Chem. A 2009, 83, 2288–2296. [Google Scholar] [CrossRef]
- Monajjemi, M.; Ghiasi, R.; Ketabi, S.; Passdar, H.; Mollaamin, F. A Theoretical Study of Metal-Stabilised Rare Tautomers Stability: N4 Metalated Cytosine (M = Be2+, Mg2+, Ca2+, Sr2+ and Ba2+) in Gas Phase and Different Solvents. J. Chem. Res. 2004, 2004, 11–18. [Google Scholar] [CrossRef]
- Mollaamin, F.; Varmaghani, Z.; Monajjemi, M. Dielectric effect on thermodynamic properties in vinblastine by DFT/Onsager modelling. Phys. Chem. Liq. 2011, 49, 318–336. [Google Scholar] [CrossRef]
Compound | ∆H° × 10−4 (kcal/mol) | ∆G° × 10−4 (kcal/mol) | S° (cal/K·mol) | Dipole Moment (Debye) |
---|---|---|---|---|
Al-Mg-Si | −177.5928 | −177.5950 | 75.321 | 1.7232 |
Benzotriazole | −24.5172 | −24.5196 | 80.255 | 3.3166 |
Benzotriazole →Al-Mg-Si | −202.0579 | −202.0606 | 88.085 | 5.7312 |
2-Mercaptobenzothiazole | −69.5234 | −69.5260 | 85.643 | 2.5108 |
2-Mercaptobenzothiazole → Al-Mg-Si | −247.0475 | −247.0503 | 92.232 | 3.3983 |
8-Hydroxyquinoline | −29.5526 | −29.5551 | 83.336 | 1.6389 |
8-Hydroxyquinoline → Al-Mg-Si | −207.1047 | −207.1074 | 91.009 | 2.7204 |
3-Amino-1,2,4-triazole-5-thiol | −43.1336 | −43.1358 | 73.839 | 1.5672 |
3-Amino-1,2,4-triazole-5-thiol → Al-Mg-Si | −220.6678 | −220.6704 | 87.657 | 2.4627 |
Benzotriazole → Al-Mg-Si | 2-Mercaptobenzothiazole → Al-Mg-Si | ||||||
---|---|---|---|---|---|---|---|
Atom Number | σCSI | σCSA | Q | Atom Number | σCSI | σCSA | Q |
C1 | 120.1330 | 144.3464 | −0.0637 | C1 | 139.2936 | 118.4161 | −0.0018 |
C2 | 111.6339 | 155.5331 | −0.0175 | C2 | 134.3232 | 132.1443 | −0.0112 |
C3 | 131.8879 | 138.7716 | 0.0136 | C3 | 148.8807 | 101.7628 | −0.2356 |
C4 | 105.1883 | 60.8572 | 0.0406 | C4 | 133.1030 | 92.2893 | 0.0725 |
C5 | 127.8178 | 132.3853 | 0.0024 | C5 | 134.1798 | 130.9800 | 0.0100 |
C6 | 123.9381 | 127.4240 | −0.0234 | C6 | 132.5749 | 132.8525 | −0.0102 |
N7 | −39.3745 | 222.1133 | −0.247 | S7 | 615.2211 | 352.1280 | 0.4900 |
N8 | 13.1291 | 127.7184 | −0.0999 | C8 | 66.1362 | 138.3513 | −0.2058 |
N9 | 44.6789 | 320.9807 | −0.1693 | N9 | 39.3993 | 400.5662 | −0.284 |
Al10 | 527.3315 | 712.2620 | 0.0942 | S10 | 354.0150 | 388.3150 | 0.1054 |
Mg11 | 769.6581 | 592.7806 | 0.4635 | Al11 | 228.9590 | 2775.1147 | 0.0704 |
Si12 | −608.0968 | 2457.1321 | −0.4390 | Mg12 | 834.6620 | 650.3278 | 0.4803 |
Mg13 | 666.7797 | 717.9599 | 0.7295 | Si13 | −457.2518 | 1719.0572 | −0.4733 |
Al14 | 768.3930 | 461.6928 | 0.1156 | Mg14 | 626.0499 | 1179.7632 | 0.6134 |
Mg15 | 816.8921 | 478.5109 | 0.4296 | Al15 | 488.4102 | 1924.5029 | 0.1084 |
Al16 | 1067.9909 | 975.1162 | −0.3120 | Mg16 | 756.9811 | 356.8803 | 0.4321 |
Si17 | −488.2296 | 3646.7563 | −1.1411 | Al17 | 1074.2272 | 1028.1791 | −0.5734 |
Al18 | 1098.0553 | 2400.1735 | 0.2054 | Si18 | −335.5606 | 2228.3322 | −1.1356 |
Si19 | −518.5837 | 2423.5913 | −0.4705 | Al19 | 1000.8690 | 1408.4209 | 0.1846 |
Mg20 | 519.2923 | 858.5605 | 0.6638 | Si20 | −302.5180 | 1660.6930 | −0.4673 |
Al21 | 1167.0007 | 1138.1298 | 0.2251 | Mg21 | 391.2234 | 404.0777 | 0.6367 |
Al22 | 838.8937 | 1929.8643 | 0.1949 | ||||
8-Hydroxyquinoline → Al-Mg-Si | 3-Amino-1,2,4-triazole-5-thiol → Al-Mg-Si | ||||||
Atom Number | σCSI | σCSA | Q | Atom Number | σCSI | σCSA | Q |
C1 | 98.2089 | 109.2773 | 0.0939 | N1 | 77.0484 | 227.5978 | −0.3065 |
C2 | 126.2638 | 128.7805 | −0.0305 | C2 | 109.2738 | 97.4358 | 0.2157 |
C3 | 119.4349 | 124.5888 | 0.0367 | C3 | 117.4891 | 102.6288 | 0.0089 |
C4 | 126.8781 | 157.6865 | −0.0100 | N4 | 128.5710 | 161.4324 | −0.0206 |
C5 | 129.3314 | 119.3934 | −0.0304 | N5 | 44.8980 | 178.5759 | −0.2241 |
C6 | 121.8894 | 140.4467 | −0.0034 | N6 | 277.7289 | 33.8810 | 0.0444 |
N7 | −1.6112 | 512.5816 | −0.2439 | S7 | 416.9395 | 177.8080 | 0.2172 |
C8 | 115.2833 | 117.7650 | 0.0802 | Al8 | 347.9027 | 1045.3311 | 0.0620 |
C9 | 127.4460 | 138.5220 | −0.0137 | Mg9 | 764.3023 | 425.9930 | 0.4335 |
C10 | 121.2916 | 130.8941 | 0.0016 | Si10 | 300.1406 | 902.6077 | −0.4546 |
O11 | 108.4330 | 157.2175 | −0.2988 | Mg11 | 267.3292 | 311.3249 | 0.6178 |
Al12 | 249.7855 | 1244.5228 | 0.0838 | Al12 | 316.7179 | 1168.7261 | 0.0707 |
Mg13 | 805.0097 | 564.9219 | 0.4314 | Mg13 | 775.5928 | 350.3979 | 0.3697 |
Si14 | −76.8544 | 1207.2367 | −0.4547 | Al14 | 1024.7125 | 697.9996 | −0.4594 |
Mg15 | 380.5230 | 507.1433 | 0.6633 | Si15 | 570.2486 | 760.7295 | −1.2003 |
Al16 | 260.0607 | 1196.8740 | 0.0732 | Al16 | 814.3200 | 922.1621 | 0.2166 |
Mg17 | 802.8973 | 597.2516 | 0.457 | Si17 | 125.9742 | 1050.2575 | −0.4388 |
Al18 | 915.6991 | 955.5742 | −0.1330 | Mg18 | 316.7269 | 394.5525 | 0.6466 |
Si19 | 375.3585 | 1390.2566 | −1.2295 | Al19 | 737.7535 | 1175.3999 | 0.2012 |
Al20 | 691.5878 | 1429.5138 | 0.2056 | ||||
Si21 | −8.4049 | 1172.9932 | −0.5003 | ||||
Mg22 | 395.8393 | 532.3253 | 0.6220 | ||||
Al23 | 729.9004 | 1438.6777 | 0.1992 |
Heterocycles → Metal Alloy Surface | Bond Orbital | Occupancy | Hybrids |
---|---|---|---|
Benzotriazole → Al-Mg-Si | BD (1) N7—Al16 | 1.59462 | 0.9033 (π) N + 0.4289 (sp2.20) Al |
2-Mercaptobenzothiazole → Al-Mg-Si | BD (1) S10—Al17 | 1.75737 | 0.7996 (π) S + 0.6006 (sp2.24) Al |
8-Hydroxyquinoline → Al-Mg-Si | BD (1) O11—Al18 | 1.62010 | 0.6467 (π) O + 0.7628 (sp2.07) Al |
3-Amino-1,2,4-triazole-5-thiol → Al-Mg-Si | BD (1) S7—Al14 | 1.77439 | 0.7708 (π) S + 0.6371 (sp2.56) Al |
Atom Type | Benzotriazole | Atom Type | 2-Mercaptobenzothiazole | Atom Type | 8-Hydroxyquinoline | Atom Type | 3-Amino-1,2,4-triazole-5-thiol |
---|---|---|---|---|---|---|---|
C1 | −14.6152 | C1 | −14.5599 | C1 | −14.506 | N1 | −18.1871 |
C2 | −14.5807 | C2 | −14.5697 | C2 | −14.5761 | C2 | −14.4916 |
C3 | −14.5397 | C3 | −14.5643 | C3 | −14.5404 | C3 | −14.5524 |
C4 | −14.5511 | C4 | −14.5341 | C4 | −14.557 | N4 | −18.0542 |
C5 | −14.571 | C5 | −14.5706 | C5 | −14.5865 | N5 | −18.1750 |
C6 | −14.5828 | C6 | −14.5707 | C6 | −14.5682 | N6 | −18.0540 |
N7 | −18.1148 | S7 | −58.2774 | N7 | −18.1317 | S7 | −58.3546 |
N8 | −18.0989 | C8 | −14.5665 | C8 | −14.5394 | Al8 | −43.7470 |
N9 | −18.1089 | N9 | −18.1352 | C9 | −14.5679 | Mg9 | −38.70415 |
Al10 | −43.7244 | S10 | −58.445 | C10 | −14.5631 | Si10 | −48.3056 |
Mg11 | −38.7017 | Al11 | −43.7471 | O11 | −22.0527 | Mg11 | −38.9665 |
Si12 | −48.2798 | Mg12 | −38.6987 | Al12 | −43.7399 | Al12 | −43.7520 |
Mg13 | −38.9456 | Si13 | −48.3095 | Mg13 | −38.716 | Mg13 | −38.6765 |
Al14 | −43.7191 | Mg14 | −38.9819 | Si14 | −48.3057 | Al14 | −43.2490 |
Mg15 | −38.7164 | Al15 | −43.7426 | Mg15 | −38.9685 | Si15 | −48.0739 |
Al16 | −43.26 | Mg16 | −38.7278 | Al16 | −43.7423 | Al16 | −43.5918 |
Si17 | −48.0142 | Al17 | −43.2854 | Mg17 | −38.7179 | Si17 | −48.3095 |
Al18 | −43.595 | Si18 | −48.0619 | Al18 | −43.2654 | Mg18 | −38.975 |
Si19 | −48.2863 | Al19 | −43.6228 | Si19 | −48.0458 | Al19 | −43.6124 |
Mg20 | −38.9298 | Si20 | −48.3171 | Al20 | −43.602 | ||
Al21 | −43.6121 | Mg21 | −38.9744 | Si21 | −48.3141 | ||
Al22 | −43.623 | Mg22 | −38.9765 | ||||
Al23 | −43.6074 |
Compound | Potential Energy × 10−4 (kcal/mol) | Distance | (Å) |
---|---|---|---|
Al-Mg-Si | −177.5928 | - | - |
Benzotriazole | −24.5172 | - | - |
Benzotriazole → Al-Mg-Si | −202.0580 | N adsorbate → Al surface | 1.9518 |
2-Mercaptobenzothiazole | −69.5235 | - | - |
2-Mercaptobenzothiazole → Al-Mg-Si | −247.0476 | S adsorbate → Al surface | 2.1998 |
8-Hydroxyquinoline | −29.5527 | - | - |
8-Hydroxyquinoline → Al-Mg-Si | −207.1047 | O adsorbate → Al surface | 1.9098 |
3-Amino-1,2,4-triazole-5-thiol | −43.1337 | - | - |
3-Amino-1,2,4-triazole-5-thiol → Al-Mg-Si | −220.6679 | S adsorbate → Al surface | 2.1998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollaamin, F.; Monajjemi, M. Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon. Computation 2023, 11, 108. https://doi.org/10.3390/computation11060108
Mollaamin F, Monajjemi M. Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon. Computation. 2023; 11(6):108. https://doi.org/10.3390/computation11060108
Chicago/Turabian StyleMollaamin, Fatemeh, and Majid Monajjemi. 2023. "Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon" Computation 11, no. 6: 108. https://doi.org/10.3390/computation11060108
APA StyleMollaamin, F., & Monajjemi, M. (2023). Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon. Computation, 11(6), 108. https://doi.org/10.3390/computation11060108