Experimental and Theoretical Investigation of Supercritical Processes: Kinetics of Phase Transitions in Binary “2-Propanol—CO2” System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Alginate Gels
2.3. Experimental Study of the Kinetics of Phase Transitions
2.4. Image Analysis
2.5. Estimation of Mass Transfer Coefficients
3. Results and Discussion
3.1. Experimental Curves of Phase Transition Kinetics
3.2. Calculated Curves of the Phase Transition Kinetics
- dVexp—a list consisting of all experimental data about changes in the liquid phase volume (see Section 2.4);
- texp—a list consisting of the times at which the experimental data of the liquid phase volume change were determined;
- Tcr,i/j, Pcr,i/j—critical temperature and pressure of substances, i—CO2, j—2-propanol;
- T, P—experimental process temperature and pressure;
- D, L—geometric dimensions of the apparatus, diameter and length, respectively;
- V0—the liquid phase volume at the initial time is equal to the volume of pure 2-propanol;
- x—the mole fraction of CO2, at the initial time is zero;
- F—phase contact surface area;
- mi/j—mass of the substance, i—CO2, j—2-propanol (const);
- t—process time;
- dt—time step; and
- tend—the time of the end of the process, which is equal to the time of the experimental study of the kinetics of phase transitions.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Data (Liquid Phase Height and Measurement Error)
Vertical Line №, i | A0Ai | AiBi | hi |
---|---|---|---|
1 | 4.15 | 3.31 | 4.66 |
2 | 2.28 | 4.23 | 4.61 |
3 | 1.59 | 4.37 | 4.55 |
4 | 3.49 | 3.60 | 4.52 |
5 | 5.19 | 2.12 | 4.40 |
References
- Hegel, P.; Martín, L.; Popovich, C.; Damiani, C.; Pancaldi, S.; Pereda, S.; Leonardi, P. Biodiesel Production from Neochloris Oleoabundans by Supercritical Technology. Chem. Eng. Process. Process Intensif. 2017, 121, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Gracia, E.; García, M.T.; Rodríguez, J.F.; de Lucas, A.; Gracia, I. Improvement of PLGA Loading and Release of Curcumin by Supercritical Technology. J. Supercrit. Fluids 2018, 141, 60–67. [Google Scholar] [CrossRef]
- Arango-Ruiz, Á.; Martin, Á.; Cosero, M.J.; Jiménez, C.; Londoño, J. Encapsulation of Curcumin Using Supercritical Antisolvent (SAS) Technology to Improve Its Stability and Solubility in Water. Food Chem. 2018, 258, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Johner, J.C.F.; Hatami, T.; Meireles, M.A.A. Developing a Supercritical Fluid Extraction Method Assisted by Cold Pressing for Extraction of Pequi (Caryocar Brasiliense). J. Supercrit. Fluids 2018, 137, 34–39. [Google Scholar] [CrossRef]
- Kohli, R. Applications of Supercritical Carbon Dioxide for Removal of Surface Contaminants. In Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques; Elsevier: Amsterdam, The Netherlands, 2018; Volume 11, pp. 209–249. ISBN 9780128155776. [Google Scholar]
- Nikolai, P.; Rabiyat, B.; Aliev, A.; Abdulagatov, I. Supercritical CO2: Properties and Technological Applications—A Review. J. Therm. Sci. 2019, 28, 394–430. [Google Scholar] [CrossRef]
- De Souza, A.T.; Benazzi, T.L.; Grings, M.B.; Cabral, V.; Antônio da Silva, E.; Cardozo-Filho, L.; Ceva Antunes, O.A. Supercritical Extraction Process and Phase Equilibrium of Candeia (Eremanthus Erythropappus) Oil Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2008, 47, 182–187. [Google Scholar] [CrossRef]
- Scopel, R.; Falcão, M.A.; Lucas, A.M.; Almeida, R.N.; Gandolfi, P.H.K.; Cassel, E.; Vargas, R.M.F. Supercritical Fluid Extraction from Syzygium aromaticum Buds: Phase Equilibrium, Mathematical Modeling and Antimicrobial Activity. J. Supercrit. Fluids 2014, 92, 223–230. [Google Scholar] [CrossRef]
- Sierra-Pallares, J.; del Valle, J.G.; Bueno, C.M.; García, J.; Castro, F. High-Pressure Fluid Flow in Carbon Dioxide—Organic Solvent Mixing Layers. Equilibrium Models and the Prediction of Phase Transitions. J. Supercrit. Fluids 2020, 169, 105024. [Google Scholar] [CrossRef]
- De Marco, I.; Knauer, O.; Cice, F.; Braeuer, A.; Reverchon, E. Interactions of Phase Equilibria, Jet Fluid Dynamics and Mass Transfer during Supercritical Antisolvent Micronization: The Influence of Solvents. Chem. Eng. J. 2012, 203, 71–80. [Google Scholar] [CrossRef]
- Smirnova, I.; Gurikov, P. Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids 2018, 134, 228–233. [Google Scholar] [CrossRef]
- Lazrag, M.; Lemaitre, C.; Castel, C.; Hannachi, A.; Barth, D. Aerogel Production by Supercritical Drying of Organogels: Experimental Study and Modelling Investigation of Drying Kinetics. J. Supercrit. Fluids 2018, 140, 394–405. [Google Scholar] [CrossRef]
- Chen, D.; Gao, H.; Liu, P.; Huang, P.; Huang, X. Directly Ambient Pressure Dried Robust Bridged Silsesquioxane and Methylsiloxane Aerogels: Effects of Precursors and Solvents. RSC Adv. 2019, 9, 8664–8671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.P.; Rao, A.V.; Gurav, J.L. Effect of Protic Solvents on the Physical Properties of the Ambient Pressure Dried Hydrophobic Silica Aerogels Using Sodium Silicate Precursor. J. Porous Mater. 2008, 15, 507–512. [Google Scholar] [CrossRef]
- Tripathi, A.; Parsons, G.N.; Khan, S.A.; Rojas, O.J. Synthesis of Organic Aerogels with Tailorable Morphology and Strength by Controlled Solvent Swelling Following Hansen Solubility. Sci. Rep. 2018, 8, 2106. [Google Scholar] [CrossRef] [Green Version]
- Omranpour, H.; Motahari, S. Effects of Processing Conditions on Silica Aerogel during Aging: Role of Solvent, Time and Temperature. J. Non-Cryst. Solids 2013, 379, 7–11. [Google Scholar] [CrossRef]
- Bueno, A.; Selmer, I.; SP, R.; Gurikov, P.; Lölsberg, W.; Weinrich, D.; Fricke, M.; Smirnova, I. First Evidence of Solvent Spillage under Subcritical Conditions in Aerogel Production. Ind. Eng. Chem. Res. 2018, 57, 8698–8707. [Google Scholar] [CrossRef]
- Gui, X.; Tang, Z.; Fei, W. Solubility of CO2 in Alcohols, Glycols, Ethers, and Ketones at High Pressures from (288.15 to 318.15) K. J. Chem. Eng. Data 2011, 56, 2420–2429. [Google Scholar] [CrossRef]
- Décultot, M.; Ledoux, A.; Fournier-Salaün, M.C.; Estel, L. Solubility of CO2 in Methanol, Ethanol, 1,2-Propanediol and Glycerol from 283.15 K to 373.15 K and up to 6.0 MPa. J. Chem. Thermodyn. 2019, 138, 67–77. [Google Scholar] [CrossRef]
- Liu, H.; Gao, H.; Idem, R.; Tontiwachwuthikul, P.; Liang, Z. Analysis of CO2 Solubility and Absorption Heat into 1-Dimethylamino-2-Propanol Solution. Chem. Eng. Sci. 2017, 170, 3–15. [Google Scholar] [CrossRef]
- Lazzaroni, M.J.; Bush, D.; Brown, J.S.; Eckert, C.A. High-Pressure Vapor−Liquid Equilbria of Some Carbon Dioxide + Organic Binary Systems. J. Chem. Eng. Data 2005, 50, 60–65. [Google Scholar] [CrossRef]
- Bamberger, A.; Maurer, G. High-Pressure (Vapour + Liquid) Equilibria in (Carbon Dioxide + Acetone or 2-Propanol) at Temperatures from 293 K to 333 K. J. Chem. Thermodyn. 2000, 32, 685–700. [Google Scholar] [CrossRef]
- Radosz, M. Vapor-Liquid Equilibrium for 2-Propanol and Carbon Dioxide. J. Chem. Eng. Data 1986, 31, 43–45. [Google Scholar] [CrossRef]
- Ziegler, J.W.; Chester, T.L.; Innis, D.P.; Page, S.H.; Dorsey, J.G. Supercritical Fluid Flow Injection Method for Mapping Liquid—Vapor Critical Loci of Binary Mixtures Containing CO2. In Innovations in Supercritical Fluids; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1995; Volume 608, pp. 93–110. ISBN 978-0-8412-3324-9. [Google Scholar]
- Elizalde-Solis, O.; Galicia-Luna, L.A.; Camacho-Camacho, L.E. High-Pressure Vapor–Liquid Equilibria for CO2+alkanol Systems and Densities of n-Dodecane and n-Tridecane. Fluid Phase Equilibria 2007, 259, 23–32. [Google Scholar] [CrossRef]
- Tachiwaki, T. Supercritical Fluid Drying of Aqueous 2-Propanol Suspension. Dry. Technol. 2004, 22, 325–334. [Google Scholar] [CrossRef]
- Egerer, K.; Brandl, F.; Golzari, N.; Beuermann, S. Recycling of Printed Circuit Boards Employing Supercritical Carbon Dioxide. Mater. Sci. Forum 2019, 959, 100–106. [Google Scholar] [CrossRef]
- Fateen, S.E.K.; Khalil, M.M.; Elnabawy, A.O. Semi-Empirical Correlation for Binary Interaction Parameters of the Peng-Robinson Equation of State with the van Der Waals Mixing Rules for the Prediction of High-Pressure Vapor-Liquid Equilibrium. J. Adv. Res. 2013, 4, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhr, A.H.; Blanshard, J.M.V. Diffusion in Gels. Polymer 1982, 23, 1012–1026. [Google Scholar] [CrossRef]
- Masmoudi, Y.; Rigacci, A.; Ilbizian, P.; Cauneau, F.; Achard, P. Diffusion During the Supercritical Drying of Silica Gels. Dry. Technol. 2006, 24, 1121–1125. [Google Scholar] [CrossRef]
- Lebedev, A.; Suslova, E.; Troyankin, A.; Lovskaya, D. Investigation of Aerogel Production Processes: Solvent Exchange under High Pressure Combined with Supercritical Drying in One Apparatus. Gels 2021, 7, 4. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Markočič, E.; Knez, Ž. Redlich-Kwong Equation of State for Modelling the Solubility of Methane in Water over a Wide Range of Pressures and Temperatures. Fluid Phase Equilibria 2016, 408, 108–114. [Google Scholar] [CrossRef]
- Su, C.S. Prediction of Volumetric Properties of Carbon Dioxide-Expanded Organic Solvents Using the Predictive Soave-Redlich-Kwong (PSRK) Equation of State. J. Supercrit. Fluids 2012, 72, 223–231. [Google Scholar] [CrossRef]
- Gregorowicz, J.; De Loos, T.W. Modelling of the Three Phase LLV Region for Ternary Hydrocarbon Mixtures with the Soave-Redlich-Kwong Equation of State. Fluid Phase Equilibria 1996, 118, 121–132. [Google Scholar] [CrossRef]
- Forero, G.L.A.; Velásquez, J.J. The Patel-Teja and the Peng-Robinson EoSs Performance When Soave Alpha Function Is Replaced by an Exponential Function. Fluid Phase Equilibria 2012, 332, 55–76. [Google Scholar] [CrossRef]
- Valderrama, J.O.; Cardona, L.F.; Rojas, R.E. Correlation of Ionic Liquid Viscosity Using Valderrama-Patel-Teja Cubic Equation of State and the Geometric Similitude Concept. Part II: Binary Mixtures of Ionic Liquids. Fluid Phase Equilibria 2019, 497, 178–194. [Google Scholar] [CrossRef]
- Barragán-Aroche, J.F.; Bazúa-Rueda, E.R. A Local Composition Extension of the van Der Waals Mixing Rule for PR Cubic Equation of State. Fluid Phase Equilibria 2005, 227, 97–112. [Google Scholar] [CrossRef]
- Grgurić, I.R.; Šerbanović, S.P.; Kijevčanin, M.L.; Tasić, A.Ž.; Djordjević, B.D. Volumetric Properties of the Ternary System Ethanol + 2-Butanone + Benzene by the van Der Waals and Twu-Coon-Bluck-Tilton Mixing Rules: Experimental Data, Correlation and Prediction. Thermochim. Acta 2004, 412, 25–31. [Google Scholar] [CrossRef]
- Forero, G.; Luis, A.; Velasquez, J.; Jorge, A. Modeling the Liquid-Liquid Equilibria of Polar Aprotic Solvents/Alkanes Type Mixtures Using a Modified PR EoS and the Huron-Vidal Mixing Rules. J. Mol. Liq. 2019, 292, 111380. [Google Scholar] [CrossRef]
- Velásquez, J.; Jorge, A.; Forero, G.; Luis, A. Calculation of Complex Phase Equilibria of DMF/Alkane and Acetonitrile/Alkane Systems Using a Modified Peng-Robinson EoS and the Huron-Vidal Mixing Rules. J. Mol. Liq. 2017, 243, 600–610. [Google Scholar] [CrossRef]
- López, J.A.; Cardona, C.A. Phase Equilibrium Calculations for Carbon Dioxide + N-Alkanes Binary Mixtures with the Wong-Sandler Mixing Rules. Fluid Phase Equilibria 2006, 239, 206–212. [Google Scholar] [CrossRef]
- Espanani, R.; Miller, A.; Jacoby, W. Prediction of Vapor-Liquid Equilibria for Mixtures of Low Boiling Point Compounds Using Wong-Sandler Mixing Rule and EOS/GE Model. Chem. Eng. Sci. 2016, 152, 343–350. [Google Scholar] [CrossRef]
- Menshutina, N.V.; Lovskaya, D.D.; Lebedev, A.E.; Lebedev, E.A. Production of Sodium Alginate-Based Aerogel Particles Using Supercritical Drying in Units with Different Volumes. Russ. J. Phys. Chem. B 2017, 11, 1296–1305. [Google Scholar] [CrossRef]
- Bolten, D.; Johannsen, M. Influence of 2-Propanol on Adsorption Equilibria of α- and δ-Tocopherol from Supercritical Carbon Dioxide on Silica Gel. J. Chem. Eng. Data 2006, 51, 2132–2137. [Google Scholar] [CrossRef]
- Lovskaya, D.; Menshutina, N. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Materials 2020, 13, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudio, P.D.; Auriemma, G.; Mencherini, T.; Porta, G.D.; Reverchon, E.; Aquino, R.P. Design of Alginate-Based Aerogel for Nonsteroidal Anti-Inflammatory Drugs Controlled Delivery Systems Using Prilling and Supercritical-Assisted Drying. J. Pharm. Sci. 2013, 102, 185–194. [Google Scholar] [CrossRef]
- Lebedev, A.E.; Katalevich, A.M.; Menshutina, N.V. Modeling and Scale-up of Supercritical Fluid Processes. Part I: Supercritical Drying. J. Supercrit. Fluids 2015, 106, 122–132. [Google Scholar] [CrossRef]
- Lipschutz, S.; Liu, J.; Spiegel, T. Schaum’s Outline: Mathematical Handbook of Formulas and Tables, 4th ed.; McGraw-Hill Education: Sydney, Australia, 2018; ISBN 978-1-260-01053-4. [Google Scholar]
- Zevnik, L.; Levec, J. Hydrogen Solubility in CO2-Expanded 2-Propanol and in Propane-Expanded 2-Propanol Determined by an Acoustic Sensor. J. Supercrit. Fluids 2007, 41, 335–342. [Google Scholar] [CrossRef]
- Lim, J.S.; Jung, Y.G.; Yoo, K.-P. High-Pressure Vapor−Liquid Equilibria for the Binary Mixtures of Carbon Dioxide + Isopropanol (IPA). J. Chem. Eng. Data 2007, 52, 2405–2408. [Google Scholar] [CrossRef]
- Secuianu, C.; Feroiu, V.; Geanǎ, D. High-Pressure Vapor-Liquid Equilibria in the System Carbon Dioxide and 2-Propanol at Temperatures from 293.25 K to 323.15 K. J. Chem. Eng. Data 2003, 48, 1384–1386. [Google Scholar] [CrossRef]
- Khalil, W.; Coquelet, C.; Richon, D. High-Pressure Vapor−Liquid Equilibria, Liquid Densities, and Excess Molar Volumes for the Carbon Dioxide + 2-Propanol System from (308.10 to 348.00) K. J. Chem. Eng. Data 2007, 52, 2032–2040. [Google Scholar] [CrossRef]
- Sima, S.; Racovita, R.; Dinca, C.; Feroiu, V.; Secuianu, C. Phase Equilibria Calculations for Carbon Dioxide + 2-Propanol System. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2017, 79, 11–24. [Google Scholar]
- Yaginuma, R.; Nakajima, T.; Tanaka, H.; Kato, M. Densities of Carbon Dioxide + 2-Propanol at 313.15 K and Pressures to 9.8 MPa. Available online: https://pubs.acs.org/doi/pdf/10.1021/je9700028 (accessed on 2 June 2021).
- Hsieh, C.-M.; Windmann, T.; Vrabec, J. Vapor-Liquid Equilibria of CO2 + C1-C5 Alcohols from the Experiment and the COSMO-SAC Model. J. Chem. Eng. Data 2013, 58, 3420–3429. [Google Scholar] [CrossRef]
Experiment | External Target Parameters | Measured External Parameters | ||
---|---|---|---|---|
Temperature, [K] | Pressure, [MPa] | Temperature, [K] | Pressure, [MPa] | |
1–1 | 313 | 6.30 | 313.83 | 6.13 |
1–2 | 312.99 | 6.34 | ||
1–3 | 314.35 | 6.48 | ||
2–1 | 313 | 7.80 | 312.66 | 7.76 |
2–2 | 312.68 | 7.98 | ||
2–3 | 314.98 | 7.98 | ||
3–1 | 333 | 6.30 | 332.95 | 6.50 |
3–2 | 333.38 | 6.34 | ||
3–3 | 325.28 | 6.67 | ||
4–1 | 333 | 7.80 | 333.05 | 7.66 |
4–2 | 333.83 | 7.96 | ||
4–3 | 333.25 | 7.64 |
Experiment | External Target Parameters | Measured External Parameters | ||
---|---|---|---|---|
Temperature, [K] | Pressure, [MPa] | Temperature, [K] | Pressure, [MPa] | |
1–1 | 313 | 6.30 | 313.93 | 6.36 |
1–2 | 314.03 | 6.29 | ||
1–3 | 312.80 | 6.29 | ||
2–1 | 313 | 7.80 | 314.48 | 7.75 |
2–2 | 313.19 | 7.86 | ||
2–3 | 314.01 | 7.78 | ||
3–1 | 333 | 6.30 | 333.34 | 6.32 |
3–2 | 333.79 | 6.28 | ||
3–3 | 333.52 | 6.28 | ||
4–1 | 333 | 7.80 | 333.72 | 7.80 |
4–3 | 332.26 | 7.79 |
CO2 Density, kg/m3 | Experiment | Average Error of the Calculated Data of Kinetic Curves (Error), % | Calculated Mass Transfer Coefficient, kg/(m2·s) | Average Value of the Mass Transfer Coefficient, kg/(m2·s) | Calculated Equilibrium Mole Fraction of CO2 in the Liquid Phase, mol/mol | Equilibrium Mole Fraction of CO2 in the Liquid Phase from [22,23,24,50,51,52,53,54,55,56], mol/mol | |
---|---|---|---|---|---|---|---|
Without gel T = 313 K, P = 6.3 MPa | 164 | 1–1 | 1.00 | 0.0577 | 0.0655 | 0.44 | 0.47 |
1–2 | 1.92 | 0.0446 | 0.56 | 0.52 | |||
1–3 | 1.02 | 0.0864 | 0.59 | 0.52 | |||
With gel T = 313 K, P = 6.3 MPa | 164 | 1–1 | 1.20 | 0.0500 | 0.0396 | 0.59 | 0.51 |
1–2 | 1.40 | 0.0227 | 0.56 | 0.50 | |||
1–3 | 1.65 | 0.0460 | 0.62 | 0.52 | |||
Without gel T = 313 K, P = 7.8 MPa | 267 | 2–1 | 0.92 | 0.1032 | 0.2361 | 0.73 | 0.88 |
2–2 | 3.46 | 0.2814 | 0.79 | 0.95 | |||
2–3 | 2.77 | 0.3237 | 0.81 | 0.86 | |||
With gel T = 313 K, P = 7.8 MPa | 267 | 2–1 | 1.27 | 0.0673 | 0.0469 | 0.65 | 0.83 |
2–2 | 3.23 | 0.0395 | 0.64 | 0.91 | |||
2–3 | 1.94 | 0.0338 | 0.64 | 0.85 | |||
Without gel T = 333 K, P = 6.3 MPa | 134 | 3–1 | 3.19 | 0.0390 | 0.0484 | 0.36 | 0.38 |
3–2 | 3.72 | 0.0386 | 0.40 | 0.37 | |||
3–3 | 0.79 | 0.0676 | 0.40 | 0.41 | |||
With gel T = 333 K, P = 6.3 MPa | 134 | 3–1 | 1.47 | 0.0224 | 0.0182 | 0.41 | 0.37 |
3–2 | 0.92 | 0.0164 | 0.39 | 0.37 | |||
3–3 | 2.03 | 0.0157 | 0.44 | 0.37 | |||
Without gel T = 333 K, P = 7.8 MPa | 184 | 4–1 | 1.56 | 0.0742 | 0.0773 | 0.45 | 0.48 |
4–2 | 1.18 | 0.0861 | 0.55 | 0.52 | |||
4–3 | 1.76 | 0.0716 | 0.52 | 0.48 | |||
With gel T = 333 K, P = 7.8 MPa | 184 | 4–1 | 2.38 | 0.0318 | 0.0288 | 0.42 | 0.51 |
4–3 | 2.70 | 0.0257 | 0.48 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suslova, E.; Mochalova, M.; Lebedev, A. Experimental and Theoretical Investigation of Supercritical Processes: Kinetics of Phase Transitions in Binary “2-Propanol—CO2” System. Computation 2023, 11, 122. https://doi.org/10.3390/computation11070122
Suslova E, Mochalova M, Lebedev A. Experimental and Theoretical Investigation of Supercritical Processes: Kinetics of Phase Transitions in Binary “2-Propanol—CO2” System. Computation. 2023; 11(7):122. https://doi.org/10.3390/computation11070122
Chicago/Turabian StyleSuslova, Ekaterina, Maria Mochalova, and Artem Lebedev. 2023. "Experimental and Theoretical Investigation of Supercritical Processes: Kinetics of Phase Transitions in Binary “2-Propanol—CO2” System" Computation 11, no. 7: 122. https://doi.org/10.3390/computation11070122
APA StyleSuslova, E., Mochalova, M., & Lebedev, A. (2023). Experimental and Theoretical Investigation of Supercritical Processes: Kinetics of Phase Transitions in Binary “2-Propanol—CO2” System. Computation, 11(7), 122. https://doi.org/10.3390/computation11070122