Fast Operation of Determining the Sign of a Number in RNS Using the Akushsky Core Function
Abstract
:1. Introduction
2. Residue Number System
3. Methods for Determining the Sign of a Number Based on the Core Function
3.1. Core Function Method
3.2. Core Function Method Based on the Rank of a Number
3.3. The Core Function Method Based on the Rank of Number by Chervyakov
3.4. The Core Function Method Based on the Approximate Rank of a Number
4. Results
- CPU: Frequency: 2.90 GHz, Core—6, Process technology 14 nm
- GPU: Video memory 6144 MB, Memory frequency 14,000 MHz, GPU frequency 1680 MHz, TDP 500 W
- RAM: 16 GB, Frequency 3200 MHz
- OS: Windows 10
- Stage A—performance study of 9 sets, 21 modules, dimension from 8 to 1024 bits;
- Stage B—performance study of 20 sets, from 3 to 21 modules, dimension of 32 bits.
- Core Method with the accuracy of the approximation ;
- Rank Core Method with the accuracy of the approximation
- Rank Chervyakov Core Method with the accuracy of the approximation
- Approximate Rank Core Method with the accuracy of the approximation
- Core Method with the accuracy of the approximation
- Rank Core Method with the accuracy of the approximation
- Rank Chervyakov Core Method with the accuracy of the approximation
- Approximate Rank Core Method with the accuracy of the approximation
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, S.; Li, C.; Li, Q. A Survey of Fog Computing: Concepts, Applications and Issues. In Proceedings of the 2015 Workshop on Mobile Big Data, Hangzhou, China, 21 June 2015; pp. 37–42. [Google Scholar]
- Priyadarshini, R.; Barik, R.K.; Dubey, H. Deepfog: Fog Computing-Based Deep Neural Architecture for Prediction of Stress Types, Diabetes and Hypertension Attacks. Computation 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Al-Turjman, F.; Abujubbeh, M. IoT-Enabled Smart Grid via SM: An Overview. Future Gener. Comput. Syst. 2019, 96, 579–590. [Google Scholar] [CrossRef]
- Su, K.; Li, J.; Fu, H. Smart City and the Applications. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1028–1031. [Google Scholar]
- Hua, H.; Li, Y.; Wang, T.; Dong, N.; Li, W.; Cao, J. Edge Computing with Artificial Intelligence: A Machine Learning Perspective. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Ren, C.; Lyu, X.; Ni, W.; Tian, H.; Song, W.; Liu, R.P. Distributed Online Optimization of Fog Computing for Internet of Things under Finite Device Buffers. IEEE Internet Things J. 2020, 7, 5434–5448. [Google Scholar] [CrossRef]
- Chang, Z.; Liu, L.; Guo, X.; Sheng, Q. Dynamic Resource Allocation and Computation Offloading for Iot Fog Computing System. IEEE Trans. Ind. Inform. 2020, 17, 3348–3357. [Google Scholar] [CrossRef]
- Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Dambri, O.A. A Resources Representation for Resource Allocation in Fog Computing Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa Village, HI, USA, 9–13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Huang, C.; Wang, H.; Zeng, L.; Li, T. Resource Scheduling and Energy Consumption Optimization Based on Lyapunov Optimization in Fog Computing. Sensors 2022, 22, 3527. [Google Scholar] [CrossRef] [PubMed]
- Isupov, K. High-Performance Computation in Residue Number System Using Floating-Point Arithmetic. Computation 2021, 9, 9. [Google Scholar] [CrossRef]
- Chang, C.-H.; Molahosseini, A.S.; Zarandi, A.A.E.; Tay, T.F. Residue Number Systems: A New Paradigm to Datapath Optimization for Low-Power and High-Performance Digital Signal Processing Applications. IEEE Circuits Syst. Mag. 2015, 15, 26–44. [Google Scholar] [CrossRef]
- Cluzeau, M. Block Code Reconstruction Using Iterative Decoding Techniques. In Proceedings of the 2006 IEEE International Symposium on Information Theory, Washington, DC, USA, 9–14 July 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2269–2273. [Google Scholar]
- Jafarkhani, H. A Quasi-Orthogonal Space-Time Block Code. IEEE Trans. Commun. 2001, 49, 1–4. [Google Scholar] [CrossRef]
- Muder, D.J. Minimal Trellises for Block Codes. IEEE Trans. Inf. Theory 1988, 34, 1049–1053. [Google Scholar] [CrossRef]
- Solomon, G.; Tilborg, H.C.A. A Connection between Block and Convolutional Codes. SIAM J. Appl. Math. 1979, 37, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Tarokh, V.; Jafarkhani, H.; Calderbank, A.R. Space-Time Block Codes from Orthogonal Designs. IEEE Trans. Inf. Theory 1999, 45, 1456–1467. [Google Scholar] [CrossRef]
- Chen, C.-L.; Hsiao, M.Y. Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review. IBM J. Res. Dev. 1984, 28, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Choukroun, Y.; Wolf, L. Error Correction Code Transformer. arXiv 2022, arXiv:2203.14966. [Google Scholar]
- Knill, E.; Laflamme, R. Theory of Quantum Error-Correcting Codes. Phys. Rev. A 1997, 55, 900. [Google Scholar] [CrossRef] [Green Version]
- Peterson, W.W.; Peterson, W.; Weldon, E.J.; Weldon, E.J. Error-Correcting Codes; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Sellers, F. Bit Loss and Gain Correction Code. IRE Trans. Inf. Theory 1962, 8, 35–38. [Google Scholar] [CrossRef]
- Lamehamedi, H.; Szymanski, B.; Shentu, Z.; Deelman, E. Data Replication Strategies in Grid Environments. In Proceedings of the Fifth International Conference on Algorithms and Architectures for Parallel Processing, Beijing, China, 23–25 October 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 378–383. [Google Scholar]
- Babenko, M.; Tchernykh, A.; Pulido-Gaytan, B.; Cortés-Mendoza, J.M.; Shiryaev, E.; Golimblevskaia, E.; Avetisyan, A.; Nesmachnow, S. RRNS Base Extension Error-Correcting Code for Performance Optimization of Scalable Reliable Distributed Cloud Data Storage. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Portland, OR, USA, 17–21 June 2021; pp. 548–553. [Google Scholar]
- Babenko, M.; Nazarov, A.; Tchernykh, A.; Pulido-Gaytan, B.; Cortés-Mendoza, J.M.; Vashchenko, I. Algorithm for Constructing Modular Projections for Correcting Multiple Errors Based on a Redundant Residue Number System Using Maximum Likelihood Decoding. Program Comput. Soft 2021, 47, 839–848. [Google Scholar] [CrossRef]
- Di Claudio, E.D.; Orlandi, G.; Piazza, F. Parallel Error Correction Algorithm in RNS VLSI Digital Circuits. In Proceedings of the ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA, 11–14 April 1988; IEEE: Piscataway, NJ, USA, 1988; pp. 1738–1741. [Google Scholar]
- Gladkov, A.; Gladkova, N.; Kucherov, N. Analytical Review of Methods for Detection, Localization and Error Correction in the Residue Number System. In Proceedings of the International Conference on Mathematics and its Applications in New Computer Systems, Munich, Germany, 25–28 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 507–514. [Google Scholar]
- Shiryaev, E.; Bezuglova, E.; Babenko, M.; Tchernykh, A.; Pulido-Gaytan, B.; Cortés-Mendoza, J.M. Performance Impact of Error Correction Codes in RNS with Returning Methods and Base Extension. In Proceedings of the 2021 International Conference Engineering and Telecommunication (En&T), Online, 24–25 November 2021; pp. 1–5. [Google Scholar]
- Tay, T.F.; Chang, C.-H. A New Algorithm for Single Residue Digit Error Correction in Redundant Residue Number System. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014; pp. 1748–1751. [Google Scholar]
- Pontarelli, S.; Cardarilli, G.C.; Re, M.; Salsano, A. A Novel Error Detection and Correction Technique for RNS Based FIR Filters. In Proceedings of the 2008 IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems, Boston, MA, USA, 1–3 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 436–444. [Google Scholar]
- Mohan, P.A.; Ananda Mohan, P.V. Error Detection, Correction and Fault Tolerance in RNS-Based Designs. In Residue Number Systems: Theory and Applications; Birkhäuser: Cham, Switzerland, 2016; pp. 163–175. [Google Scholar]
- Jenkins, W.K. Residue Number System Error Checking Using Expanded Projection. Electron. Lett. 1982, 18, 927–928. [Google Scholar] [CrossRef]
- Tay, T.F.; Chang, C.-H. Fault-Tolerant Computing in Redundant Residue Number System. In Embedded Systems Design with Special Arithmetic and Number Systems; Springer: Cham, Switzerland, 2017; pp. 65–88. [Google Scholar]
- Garg, N.; Yadav, P. Comparison of Asymmetric Algorithms in Cryptography. J. Comput. Sci. Mob. Comput. 2014, 3, 1190–1196. [Google Scholar]
- Milanov, E. The RSA Algorithm. RSA Lab. 2009, 1–11. Available online: https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf (accessed on 27 June 2023).
- Boneh, D.; Franklin, M. Efficient Generation of Shared RSA Keys. In Proceedings of the Advances in Cryptology—CRYPTO’97: 17th Annual International Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 1997; Proceedings 17. Springer: Berlin/Heidelberg, Germany, 1997; pp. 425–439. [Google Scholar]
- da Silva, J.C.L. Factoring Semiprimes and Possible Implications for RSA. In Proceedings of the 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 17–20 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 182–183. [Google Scholar]
- Park, J.M.; Chong, E.K.; Siegel, H.J. Constructing Fair-Exchange Protocols for E-Commerce via Distributed Computation of RSA Signatures. In Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, Boston, MA, USA, 13–16 July 2003; pp. 172–181. [Google Scholar]
- Jamaludin, J.; Romindo, R. Implementation of Combination Vigenere Cipher and RSA in Hybrid Cryptosystem for Text Security. Int. J. Inf. Syst. Technol. 2020, 4, 471–481. [Google Scholar]
- Ren, W.; Miao, Z. A Hybrid Encryption Algorithm Based on DES and RSA in Bluetooth Communication. In Proceedings of the 2010 Second International Conference on Modeling, Simulation and Visualization Methods, Las Vegas, NV, USA, 12–15 July 2010; pp. 221–225. [Google Scholar]
- Kuppuswamy, P.; Al-Khalidi, S.Q.Y. Hybrid Encryption/Decryption Technique Using New Public Key and Symmetric Key Algorithm. Int. J. Inf. Comput. Secur. 2014, 6, 372–382. [Google Scholar] [CrossRef]
- Ramaraj, E.; Karthikeyan, S.; Hemalatha, M. A Design of Security Protocol Using Hybrid Encryption Technique (AES-Rijndael and RSA). Int. J. Comput. Internet Manag. 2009, 17, 34–43. [Google Scholar]
- Jintcharadze, E.; Iavich, M. Hybrid Implementation of Twofish, AES, ElGamal and RSA Cryptosystems. In Proceedings of the 2020 IEEE East-West Design & Test Symposium (EWDTS), Varna, Bulgaria, 4–7 September 2020; pp. 1–5. [Google Scholar]
- Alkady, Y.; Habib, M.I.; Rizk, R.Y. A New Security Protocol Using Hybrid Cryptography Algorithms. In Proceedings of the 2013 9th International Computer Engineering Conference (ICENCO), Giza, Egypt, 28–29 December 2013; pp. 109–115. [Google Scholar]
- Beimel, A. Secret-Sharing Schemes: A Survey. In Proceedings of the Coding and Cryptology, Qingdao, China, 30 May–3 June 2011; Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 11–46. [Google Scholar]
- Dong, X. A Multi-Secret Sharing Scheme Based on the CRT and RSA. Int. J. Electron. Inf. Eng. 2015, 2, 47–51. [Google Scholar]
- Mignotte, M. How to Share a Secret. In Proceedings of the Workshop on Cryptography, Burg Feuerstein, Germany, 29 March–2 April 1982; Springer: Berlin/Heidelberg, Germany, 1982; pp. 371–375. [Google Scholar]
- Asmuth, C.; Bloom, J. A Modular Approach to Key Safeguarding. IEEE Trans. Inf. Theory 1983, 29, 208–210. [Google Scholar] [CrossRef]
- Gomathisankaran, M.; Tyagi, A.; Namuduri, K. HORNS: A Homomorphic Encryption Scheme for Cloud Computing Using Residue Number System. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 23–25 March 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–5. [Google Scholar]
- Muhammed, K.J.; Isiaka, R.M.; Asaju-Gbolagade, A.W.; Adewole, K.S.; Gbolagade, K.A. Improved Cloud-Based N-Primes Model for Symmetric-Based Fully Homomorphic Encryption Using Residue Number System. In Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics: Theories and Applications; Chiroma, H., Abdulhamid, S.M., Fournier-Viger, P., Garcia, N.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 197–216. ISBN 978-3-030-66288-2. [Google Scholar]
- Al Badawi, A.; Polyakov, Y.; Aung, K.M.M.; Veeravalli, B.; Rohloff, K. Implementation and Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme. IEEE Trans. Emerg. Top. Comput. 2021, 9, 941–956. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Lee, E.; Lee, Y.; Kim, Y.-S.; No, J.-S. High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption Using Optimal Minimax Polynomial Approximation and Inverse Sine Function. In Proceedings of the Advances in Cryptology—EUROCRYPT 2021, Zagreb, Croatia, 17–21 October 2021; Canteaut, A., Standaert, F.-X., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 618–647. [Google Scholar]
- Kim, A.; Papadimitriou, A.; Polyakov, Y. Approximate Homomorphic Encryption with Reduced Approximation Error. In Proceedings of the Topics in Cryptology–CT-RSA 2022: Cryptographers’ Track at the RSA Conference 2022, Virtual Event, 1–2 March 2022; Proceedings. Springer: Berlin/Heidelberg, Germany, 2022; pp. 120–144. [Google Scholar]
- Nykolaychuk, Y.M.; Yakymenko, I.Z.; Vozna, N.Y.; Kasianchuk, M.M. Residue Number System Asymmetric Cryptoalgorithms. Cybern. Syst. Anal. 2022, 58, 611–618. [Google Scholar] [CrossRef]
- Kalmykov, I.A.; Pashintsev, V.P.; Tyncherov, K.T.; Olenev, A.A.; Chistousov, N.K. Error-Correction Coding Using Polynomial Residue Number System. Appl. Sci. 2022, 12, 3365. [Google Scholar] [CrossRef]
- Givaki, K.; Khonsari, A.; Gholamrezaei, M.H.; Gorgin, S.; Najafi, M.H. A Generalized Residue Number System Design Approach for Ultra-Low Power Arithmetic Circuits Based on Deterministic Bit-Streams. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2023, 1, 14. [Google Scholar] [CrossRef]
- Garner, H.L. The Residue Number System. In Proceedings of the Western Joint Computer Conference, San Francisco, CA, USA, 3–5 March 1959; pp. 146–153. [Google Scholar]
- Pei, D.; Salomaa, A.; Ding, C. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography; World Scientific: Singapore, 1996. [Google Scholar]
- Brown, W.S.; Traub, J.F. On Euclid’s Algorithm and the Theory of Subresultants. J. ACM 1971, 18, 505–514. [Google Scholar] [CrossRef]
- Kocherov, Y.N.; Samoylenko, D.V.; Koldaev, A.I. Development of an Antinoise Method of Data Sharing Based on the Application of a Two-Step-Up System of Residual Classes. In Proceedings of the 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russian, 2–4 October 2018; pp. 1–5. [Google Scholar]
- Gbolagade, K.A.; Cotofana, S.D. An O(n) Residue Number System to Mixed Radix Conversion Technique. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 521–524. [Google Scholar]
- Akushsky, I.Y.; Akushsky, V.M.; Pak, I.T. About the New Positional Characteristic of the Non-Positional Code and Its Application. In Theory of Coding and Optimization of Complex Systems; Nauka: Alma-Ata, Kazakhstan, 1977; pp. 8–16. [Google Scholar]
- Akushsky, I.Y.; Burtsev, V.M.; Pak, N.T. Calculation of the Positional Characteristic (Core) of the Non-Positional Code. In Theory of Coding and Optimization of Complex Systems; Nauka: Alma-Ata, Kazakhstan, 1977; pp. 17–25. [Google Scholar]
- Chervyakov, N.I.; Averbukh, V.M.; Babenko, M.G.; Lyakhov, P.A.; Gladkov, A.V.; Gapochkin, A.V. An Approximate Method for Performing Non-Modular Operations in a System of Residual Classes. Fundam. Res. 2012, 6, 189–193. [Google Scholar]
- Babenko, M.; Golimblevskaia, E. About One Property of Number Rank in RNS. In Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, FL, USA, 26–29 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 212–216. [Google Scholar]
- NTL: A Library for Doing Number Theory. Available online: https://libntl.org/ (accessed on 23 May 2023).
Bit | Core Method | Rank Core Method | Rank Chervyakov Core Method | Approximate Rank Core Method |
---|---|---|---|---|
8 | 0.00003753 | 0.00004114 | 0.00004959 | 0.00003219 |
16 | 0.00003776 | 0.00003826 | 0.00004781 | 0.00003226 |
32 | 0.00005424 | 0.00004512 | 0.00005613 | 0.00003582 |
64 | 0.00009028 | 0.00006913 | 0.00007189 | 0.00004645 |
128 | 0.00017094 | 0.00013323 | 0.00010866 | 0.00007626 |
256 | 0.00035464 | 0.00015862 | 0.00012334 | 0.00008889 |
512 | 0.00097338 | 0.00018338 | 0.00013638 | 0.00010082 |
1024 | 0.00332057 | 0.00022026 | 0.00015774 | 0.00012020 |
p[n] | Core Method | Rank Core Method | Rank Chervyakov Core Method | Approximate Rank Core Method |
---|---|---|---|---|
3 | 0.00001990 | 0.00001951 | 0.00002319 | 0.00001634 |
4 | 0.00002614 | 0.00002465 | 0.00002959 | 0.00002045 |
5 | 0.00003163 | 0.00002893 | 0.00003493 | 0.00002365 |
6 | 0.00003847 | 0.00003473 | 0.00004164 | 0.00002776 |
7 | 0.00004784 | 0.00004030 | 0.00004936 | 0.00003214 |
8 | 0.00005414 | 0.00004488 | 0.00005407 | 0.00003505 |
9 | 0.00006395 | 0.00005184 | 0.00006285 | 0.00004180 |
10 | 0.00007199 | 0.00005894 | 0.00007015 | 0.00004647 |
11 | 0.00008225 | 0.00006477 | 0.00007784 | 0.00005093 |
12 | 0.00009216 | 0.00007083 | 0.00008187 | 0.00005461 |
13 | 0.00010498 | 0.00007804 | 0.00009002 | 0.00005895 |
14 | 0.00011476 | 0.00008619 | 0.00009779 | 0.00006389 |
15 | 0.00012540 | 0.00009271 | 0.00010423 | 0.00006829 |
16 | 0.00014282 | 0.00010458 | 0.00011384 | 0.00007590 |
17 | 0.00015564 | 0.00011428 | 0.00012296 | 0.00008210 |
18 | 0.00017346 | 0.00012126 | 0.00013020 | 0.00008711 |
19 | 0.00018540 | 0.00013041 | 0.00013854 | 0.00009289 |
20 | 0.00020574 | 0.00014039 | 0.00014750 | 0.00009914 |
21 | 0.00021779 | 0.00014707 | 0.00015429 | 0.00010362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiriaev, E.; Kucherov, N.; Babenko, M.; Nazarov, A. Fast Operation of Determining the Sign of a Number in RNS Using the Akushsky Core Function. Computation 2023, 11, 124. https://doi.org/10.3390/computation11070124
Shiriaev E, Kucherov N, Babenko M, Nazarov A. Fast Operation of Determining the Sign of a Number in RNS Using the Akushsky Core Function. Computation. 2023; 11(7):124. https://doi.org/10.3390/computation11070124
Chicago/Turabian StyleShiriaev, Egor, Nikolay Kucherov, Mikhail Babenko, and Anton Nazarov. 2023. "Fast Operation of Determining the Sign of a Number in RNS Using the Akushsky Core Function" Computation 11, no. 7: 124. https://doi.org/10.3390/computation11070124
APA StyleShiriaev, E., Kucherov, N., Babenko, M., & Nazarov, A. (2023). Fast Operation of Determining the Sign of a Number in RNS Using the Akushsky Core Function. Computation, 11(7), 124. https://doi.org/10.3390/computation11070124