Artificial Neural Network Model to Predict the Exportation of Traditional Products of Colombia
Abstract
:1. Introduction
1.1. Related Works
1.2. Approach and Paper Organization
2. Artificial Neural Network
3. Dataset Employed
- : coffee.
- : coal.
- : petroleum and its derivatives.
- : ferronickel.
4. Model Design and Implementation Process
- M1: integrated neural network model.
- M2: integrated neural network model with weighed output.
- Delays: 1, 2, 3, and 4.
- Layers: 1, 2, 3, and 4.
- Neurons: 2, 4, 8, and 16.
4.1. Integrated Neural Network Model
4.2. Integrated Neural Network Model with Weighed Output
5. Results
5.1. Integrated Neural Network Model
5.2. Integrated Neural Network Model with Weighed Output
5.3. Analysis Using Mean Absolute Percentage Error
5.4. Models Comparison
M1 (Training) | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Delays: 1 | 0.31664 | 0.30914 | 0.32916 | 0.31420 | 0.32950 | 0.34454 | 0.29429 | 0.32632 | 0.32910 | 0.34439 | 0.31815 | 0.32813 | 0.36728 | 0.36543 | 0.30594 | 0.30896 |
Delays: 2 | 0.31122 | 0.31422 | 0.31251 | 0.30503 | 0.32590 | 0.30820 | 0.30799 | 0.35621 | 0.32343 | 0.32526 | 0.30376 | 0.35768 | 0.28289 | 0.50904 | 0.30169 | 0.28721 |
Delays: 3 | 0.35477 | 0.27751 | 0.41871 | 0.28120 | 0.29933 | 0.35310 | 0.30940 | 0.33640 | 0.29573 | 0.29773 | 0.30747 | 0.30745 | 0.32330 | 0.27671 | 0.28797 | 0.30201 |
Delays: 4 | 0.30355 | 0.29543 | 0.40505 | 0.31798 | 0.30554 | 0.31887 | 0.30849 | 0.31268 | 0.30290 | 0.29311 | 0.33400 | 0.37110 | 0.27330 | 0.30464 | 0.30031 | 0.36009 |
M1 (Validation) | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Delays: 1 | 0.51619 | 0.44421 | 0.54915 | 0.52864 | 0.53254 | 0.45432 | 0.41064 | 0.52930 | 0.54939 | 0.47122 | 0.46710 | 0.52196 | 0.65552 | 0.52821 | 0.46807 | 0.47726 |
Delays: 2 | 0.42997 | 0.55175 | 0.44986 | 0.51645 | 0.60594 | 0.45101 | 0.48225 | 0.53330 | 0.38629 | 0.40748 | 0.50012 | 0.41901 | 0.42525 | 0.84657 | 0.39060 | 0.39642 |
Delays: 3 | 0.68328 | 0.39533 | 0.67721 | 0.49638 | 0.40169 | 0.37003 | 0.54286 | 0.48642 | 0.42869 | 0.48812 | 0.46464 | 0.52291 | 0.39795 | 0.44874 | 0.45356 | 0.44330 |
Delays: 4 | 0.41728 | 0.49857 | 0.61201 | 0.55836 | 0.39965 | 0.38083 | 0.49138 | 0.46023 | 0.40087 | 0.44877 | 0.47095 | 0.48359 | 0.42639 | 0.43007 | 0.50441 | 0.55690 |
M2 (Training) | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Delays: 1 | 0.31838 | 0.30123 | 0.29898 | 0.30298 | 0.31169 | 0.30483 | 0.29777 | 0.30116 | 0.30734 | 0.30557 | 0.29696 | 0.30162 | 0.31824 | 0.30179 | 0.30561 | 0.28360 |
Delays: 2 | 0.28482 | 0.27117 | 0.26547 | 0.26425 | 0.26881 | 0.26531 | 0.25320 | 0.26306 | 0.28219 | 0.26380 | 0.26048 | 0.25881 | 0.28319 | 0.25806 | 0.25782 | 0.25727 |
Delays: 3 | 0.27627 | 0.25604 | 0.25633 | 0.25030 | 0.26881 | 0.25271 | 0.24126 | 0.24349 | 0.26739 | 0.25243 | 0.24849 | 0.24585 | 0.26334 | 0.24832 | 0.25255 | 0.23739 |
Delays: 4 | 0.26731 | 0.25020 | 0.24625 | 0.23545 | 0.26633 | 0.24953 | 0.22722 | 0.22781 | 0.26765 | 0.25391 | 0.24460 | 0.22129 | 0.25937 | 0.24775 | 0.24125 | 0.22690 |
M2 (Validation) | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Delays: 1 | 0.53736 | 0.50514 | 0.49837 | 0.49682 | 0.51832 | 0.52299 | 0.50262 | 0.49829 | 0.51493 | 0.49883 | 0.50150 | 0.49339 | 0.49732 | 0.50109 | 0.50068 | 0.47131 |
Delays: 2 | 0.48084 | 0.46829 | 0.47515 | 0.47781 | 0.45877 | 0.43565 | 0.43455 | 0.45423 | 0.47565 | 0.44999 | 0.41985 | 0.46515 | 0.48024 | 0.44118 | 0.44434 | 0.43806 |
Delays: 3 | 0.48353 | 0.48023 | 0.45331 | 0.45007 | 0.47650 | 0.45466 | 0.45988 | 0.40989 | 0.47841 | 0.45372 | 0.44688 | 0.46155 | 0.48270 | 0.40617 | 0.44054 | 0.41886 |
Delays: 4 | 0.48645 | 0.47781 | 0.46406 | 0.44567 | 0.48269 | 0.48045 | 0.44530 | 0.42773 | 0.47753 | 0.47511 | 0.47781 | 0.48739 | 0.48832 | 0.45251 | 0.46360 | 0.44019 |
Model | Coffee | Coal | Petroleum | Ferronickel | Total |
---|---|---|---|---|---|
M1 | |||||
M2 |
Model | Coffee | Coal | Petroleum | Ferronickel | Total |
---|---|---|---|---|---|
M1 | 0.2172 | 0.2606 | 0.0946 | 4.4081 | 0.3700 |
M2 | 0.1589 | 0.2634 | 0.0941 | 0.3700 | 0.4062 |
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chabani, Z.; Chabani, W.; Shamout, M.D.; Hamouche, S. Exploring Global Innovation Networks’ Impact on UAE Manufacturing: Insights from Medium-Scale Multinationals in the Global Value Chain. In Proceedings of the 2024 2nd International Conference on Cyber Resilience (ICCR), Dubai, United Arab Emirates, 26–28 February 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Zhan, S.; Tang, F.; Li, Y.; Mei, Q.; Lu, Z.; Li, X.-S.; Zhang, B. Construction of Index System of International Economic Cooperation Innovation Model in Digital Era-based on TIF Theory and DIKWP Model. In Proceedings of the 2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Melbourne, Australia, 17–21 December 2023; pp. 809–812. [Google Scholar] [CrossRef]
- Wang, T.; Wu, J.; Liu, J. Regional Differences, Dynamic Evolution, and Convergence of Global Agricultural Energy Efficiency. Agriculture 2024, 14, 1429. [Google Scholar] [CrossRef]
- Azam, M.; Uddin, I.; Khan, S.; Tariq, M. Are Globalization, Urbanization, and Energy Consumption Cause Carbon Emissions in SAARC Region? New Evidence from CS-ARDL Approach. Environ. Sci. Pollut. Res. 2022, 29, 87746–87763. [Google Scholar] [CrossRef] [PubMed]
- Mauro, F.; Dees, S.; Lombardi, M.J. Catching the Flu from the United States: Synchronisation and Transmission Mechanisms to the Euro Area; Palgrave Macmillan London: London, UK, 2010. [Google Scholar] [CrossRef]
- Dreher, A. Does Globalization Affect Growth? Evidence from a new Index of Globalization. TWI Res. Pap. Ser. 2005, 6, 1–32. [Google Scholar] [CrossRef]
- Ajeigbe, K.B.; Ganda, F. Leveraging Food Security and Environmental Sustainability in Achieving Sustainable Development Goals: Evidence from a Global Perspective. Sustainability 2024, 16, 7969. [Google Scholar] [CrossRef]
- Vijayagopal, P.; Jain, B.; Ayinippully Viswanathan, S. Regulations and Fintech: A Comparative Study of the Developed and Developing Countries. J. Risk Financ. Manag. 2024, 17, 324. [Google Scholar] [CrossRef]
- Sarin, V.; Mahapatra, S.K.; Sood, N. Export diversification and economic growth: A review and future research agenda. J. Public Aff. 2022, 22, e2524. [Google Scholar] [CrossRef]
- Mooney, A.; Evans, B. Globalization: The Key Concepts; Routledge: London, UK, 2007. [Google Scholar] [CrossRef]
- Palavicini-Corona, E. Globalisation and local economic development: Place-based and bottom-up public policies in Switzerland and Mexico. Local Econ. 2021, 36, 98–114. [Google Scholar] [CrossRef]
- Hausmann, R.; Hidalgo, C.A.; Bustos, S.; Coscia, M.; Simoes, A.; Yıldırım, M.A. The Atlas of Economic Complexity: Mapping Paths to Prosperity; The MIT Press: Cambridge, MA, USA, 2013. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, M.-N.; Nguyen, T.-D.; Hsu, H.-P.; Nguyen, T.-H.-Y. Effective Decision Making: Data Envelopment Analysis for Efficiency Evaluation in the Cloud Computing Marketplaces. Axioms 2021, 10, 309. [Google Scholar] [CrossRef]
- Haghshenas, E.; Gholamalifard, M.; Mahmoudi, N.; Kutser, T. Developing a GIS-Based Decision Rule for Sustainable Marine Aquaculture Site Selection: An Application of the Ordered Weighted Average Procedure. Sustainability 2021, 13, 2672. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.N.; Wei, J. Growing in the changing global landscape: The intangible resources and performance of high-tech corporates. Asia Pac. J. Manag. 2022, 39, 999–1022. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning—From Theory to Algorithms; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Aftab, U.; Jaleel, F.; Aslam, M.; Haroon, M.; Mansoor, R. Building Information Modeling (BIM) Application in Construction Waste Quantification-A Review. Eng. Proc. 2024, 75, 8. [Google Scholar] [CrossRef]
- Piras, G.; Muzi, F.; Tiburcio, V.A. Digital Management Methodology for Building Production Optimization through Digital Twin and Artificial Intelligence Integration. Buildings 2024, 14, 2110. [Google Scholar] [CrossRef]
- Li, K.; Zhou, Y. Improved Financial Predicting Method Based on Time Series Long Short-Term Memory Algorithm. Mathematics 2024, 12, 1074. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Mroziński, A.; Macko, M. Green Energy Management in Manufacturing Based on Demand Prediction by Artificial Intelligence—A Review. Electronics 2024, 13, 3338. [Google Scholar] [CrossRef]
- Athey, S.; Imbens, G.W. Machine Learning Methods That Economists Should Know About. Annu. Rev. Econ. 2019, 11, 685–725. [Google Scholar] [CrossRef]
- Çağlayan-Akay, E.; Yılmaz Soydan, N.T.; Kocarık Gacar, B. Bibliometric analysis of the published literature on machine learning in economics and econometrics. Soc. Netw. Anal. Min. 2022, 12, 109. [Google Scholar] [CrossRef]
- Kim, D.; Cho, W.; Na, I.; Na, M.H. Prediction of Live Bulb Weight for Field Vegetables Using Functional Regression Models and Machine Learning Methods. Agriculture 2024, 14, 754. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, S.; Hong, S.J.; Kim, E.; Nurhisna, N.I.; Park, J.; Kim, G. Time-series prediction of onion quality changes in cold storage based on long short-term memory networks. Postharvest Biol. Technol. 2024, 213, 112927. [Google Scholar] [CrossRef]
- Zhu, H. Oil Demand Forecasting in Importing and Exporting Countries: AI-Based Analysis of Endogenous and Exogenous Factors. Sustainability 2023, 15, 13592. [Google Scholar] [CrossRef]
- Frison, L.; Gölzhäuser, S.; Bitterling, M.; Kramer, W. Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation. Energy 2024, 307, 132745. [Google Scholar] [CrossRef]
- Das, P.K.; Das, P.K. Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach. J. Quant. Econ. 2024, 22, 493–517. [Google Scholar] [CrossRef]
- Kayacı Çodur, M. Ensemble Machine Learning Approaches for Prediction of Türkiye’s Energy Demand. Energies 2024, 17, 74. [Google Scholar] [CrossRef]
- Panahi, F.; Najah, A.; Singh, V.P.; Ehtearm, M.; Elshafie, A.; Torabi, A. Predicting Freshwater Production in Seawater Greenhouses Using Hubrid Artificial Neural Network Models. J. Clean. Prod. 2021, 329, 129721. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.K.; Kumari, P. A Machine Learning Approach to Forecast the Food Prices for Food Security Issues. In Proceedings of the 11th International Conference on Intelligent Systems and Embedded Design (ISED) 2023, Dehradun, India, 15–17 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Chin, M.Y.; Qin, Y.; Hoy, Z.X.; Farooque, A.A.; Wong, K.Y.; Mong, G.R.; Tan, J.P.; Woon, K.S. Assessing carbon budgets and reduction pathways in different income levels with neural network forecasting. Energy 2024, 305, 132331. [Google Scholar] [CrossRef]
- Wang, D.; Cao, J.; Zhang, B.; Zhang, Y.; Xie, L. A Novel Flexible Geographically Weighted Neural Network for High-Precision PM2.5 Mapping across the Contiguous United States. ISPRS Int. J. Geo-Inf. 2024, 13, 217. [Google Scholar] [CrossRef]
- Alhussaini, A.J.; Steele, J.D.; Jawli, A.; Nabi, G. Radiomics Machine Learning Analysis of Clear Cell Renal Cell Carcinoma for Tumour Grade Prediction Based on Intra-Tumoural Sub-Region Heterogeneity. Cancers 2024, 16, 1454. [Google Scholar] [CrossRef]
- Barbieri, F.; Pfeifer, B.E.; Senoner, T.; Dobner, S.; Spitaler, P.; Semsroth, S.; Lambert, T.; Zweiker, D.; Neururer, S.B.; Scherr, D.; et al. A Neuronal Network-Based Score Predicting Survival in Patients Undergoing Aortic Valve Intervention: The ABC-AS Score. J. Clin. Med. 2024, 13, 3691. [Google Scholar] [CrossRef]
- Aldabagh, H.; Zheng, X.; Mukkamala, R. A Hybrid Deep Learning Approach for Crude Oil Price Prediction. J. Risk Financ. Manag. 2023, 16, 503. [Google Scholar] [CrossRef]
- Bao, W.; Cao, Y.; Yang, Y.; Che, H.; Huang, J.; Wen, S. Data-driven stock forecasting models based on neural networks: A review. Inf. Fusion 2024, 113, 102616. [Google Scholar] [CrossRef]
- Wang, W.; Xu, W.; Yao, X.; Wang, H. Application of Data-driven Method for Automatic Machine Learning in Economic Research. In Proceedings of the 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Anhui, China, 14–18 October 2022; pp. 42–45. [Google Scholar] [CrossRef]
- Tiits, M.; Kalvet, T.; Ounoughi, C.; Ben Yahia, S. Relatedness and product complexity meet gravity models of international trade. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100288. [Google Scholar] [CrossRef]
- Kummaraka, U.; Srisuradetchai, P. Time-Series Interval Forecasting with Dual-Output Monte Carlo Dropout: A Case Study on Durian Exports. Forecasting 2024, 6, 616–636. [Google Scholar] [CrossRef]
- Bin, J.; Tianli, X. Forecast of Export Demand Based on Artificial Neural Network and Fuzzy System Theory. J. Intell. Fuzzy Syst. 2020, 39, 1701–1709. [Google Scholar] [CrossRef]
- Sellami, B.; Ounoughi, C.; Kalvet, T.; Tiits, M.; Rincon-Yanez, D. Harnessing Graph Neural Networks to Predict International Trade Flows. Big Data Cogn. Comput. 2024, 8, 65. [Google Scholar] [CrossRef]
- Gulzar, Y.; Oral, C.; Kayakus, M.; Erdogan, D.; Unal, Z.; Eksili, N.; Caylak, P.C. Predicting High Technology Exports of Countries for Sustainable Economic Growth by Using Machine Learning Techniques: The Case of Turkey. Sustainability 2024, 16, 5601. [Google Scholar] [CrossRef]
- Suler, P.; Rowland, Z.; Krulicky, T. Evaluation of the Accuracy of Machine Learning Predictions of the Czech Republic’s Exports to the China. J. Risk Financ. Manag. 2021, 14, 76. [Google Scholar] [CrossRef]
- Dai, C. A method of forecasting trade export volume based on back-propagation neural network. Neural Comput. Appl. 2023, 35, 8775–8784. [Google Scholar] [CrossRef]
- Tufail, S.; Riggs, H.; Tariq, M.; Sarwat, A.I. Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics 2023, 12, 1789. [Google Scholar] [CrossRef]
- Ebiaredoh-Mienye, S.A.; Esenogho, E.; Swart, T.G. Integrating Enhanced Sparse Autoencoder-Based Artificial Neural Network Technique and Softmax Regression for Medical Diagnosis. Electronics 2020, 9, 1963. [Google Scholar] [CrossRef]
- Kaya, E. A Comprehensive Comparison of the Performance of Metaheuristic Algorithms in Neural Network Training for Nonlinear System Identification. Mathematics 2022, 10, 1611. [Google Scholar] [CrossRef]
- Avuglah, R.K. Some Steps Towards Experimental Design for Neural Network Regression. Ph.D. Thesis, Technischen Universität Kaiserslautern, Kaiserslautern, Germany, 2011. Available online: https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-23493 (accessed on 22 September 2024).
- Chiu, A.K. Exploring the Use of Experimental Design Techniques forHyperparameter Optimization in Convolutional Neural Networks. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2021. [Google Scholar]
Delays: 1 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00425 | 0.00445 | 0.00488 | 0.00432 | 0.00528 | 0.00435 | 0.00417 | 0.00466 | 0.00758 | 0.00670 | 0.00433 | 0.00529 | 0.02597 | 0.00502 | 0.00469 | 0.00575 |
Min | 0.00400 | 0.00397 | 0.00391 | 0.00368 | 0.00401 | 0.00391 | 0.00390 | 0.00390 | 0.00401 | 0.00394 | 0.00391 | 0.00393 | 0.00397 | 0.00392 | 0.00390 | 0.00391 |
Mean | 0.00407 | 0.00406 | 0.00413 | 0.00403 | 0.00418 | 0.00407 | 0.00404 | 0.00407 | 0.00433 | 0.00416 | 0.00407 | 0.00413 | 0.00536 | 0.00407 | 0.00410 | 0.00411 |
STD | 0.00005 | 0.00011 | 0.00023 | 0.00014 | 0.00036 | 0.00011 | 0.00007 | 0.00016 | 0.00080 | 0.00060 | 0.00010 | 0.00031 | 0.00491 | 0.00023 | 0.00020 | 0.00039 |
Delays: 2 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00389 | 0.00382 | 0.00383 | 0.00440 | 0.00479 | 0.00459 | 0.00530 | 0.00385 | 0.00482 | 0.00384 | 0.00411 | 0.00419 | 0.02594 | 0.00481 | 0.00380 | 0.00401 |
Min | 0.00371 | 0.00367 | 0.00362 | 0.00363 | 0.00368 | 0.00361 | 0.00367 | 0.00355 | 0.00373 | 0.00357 | 0.00363 | 0.00362 | 0.00372 | 0.00363 | 0.00356 | 0.00335 |
Mean | 0.00376 | 0.00373 | 0.00373 | 0.00382 | 0.00383 | 0.00378 | 0.00384 | 0.00372 | 0.00388 | 0.00373 | 0.00375 | 0.00377 | 0.00495 | 0.00386 | 0.00369 | 0.00367 |
STD | 0.00004 | 0.00004 | 0.00006 | 0.00016 | 0.00024 | 0.00020 | 0.00038 | 0.00008 | 0.00030 | 0.00006 | 0.00010 | 0.00013 | 0.00495 | 0.00026 | 0.00006 | 0.00015 |
Delays: 3 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00871 | 0.00351 | 0.00352 | 0.00427 | 0.00449 | 0.00380 | 0.00498 | 0.00402 | 0.00393 | 0.00359 | 0.00369 | 0.00402 | 0.02633 | 0.00457 | 0.00405 | 0.00390 |
Min | 0.00329 | 0.00308 | 0.00312 | 0.00299 | 0.00336 | 0.00294 | 0.00287 | 0.00301 | 0.00333 | 0.00297 | 0.00310 | 0.00279 | 0.00334 | 0.00315 | 0.00302 | 0.00287 |
Mean | 0.00370 | 0.00338 | 0.00336 | 0.00339 | 0.00350 | 0.00340 | 0.00341 | 0.00338 | 0.00346 | 0.00336 | 0.00336 | 0.00328 | 0.00728 | 0.00344 | 0.00337 | 0.00336 |
STD | 0.00119 | 0.00012 | 0.00011 | 0.00024 | 0.00025 | 0.00016 | 0.00042 | 0.00023 | 0.00015 | 0.00013 | 0.00015 | 0.00028 | 0.00831 | 0.00030 | 0.00021 | 0.00023 |
Delays: 4 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00335 | 0.00334 | 0.00347 | 0.00330 | 0.02415 | 0.00337 | 0.00330 | 0.00348 | 0.00426 | 0.00368 | 0.00320 | 0.00422 | 0.00753 | 0.00337 | 0.00328 | 0.00386 |
Min | 0.00311 | 0.00296 | 0.00280 | 0.00287 | 0.00309 | 0.00298 | 0.00290 | 0.00252 | 0.00311 | 0.00269 | 0.00230 | 0.00242 | 0.00304 | 0.00293 | 0.00265 | 0.00256 |
Mean | 0.00323 | 0.00314 | 0.00313 | 0.00308 | 0.00455 | 0.00316 | 0.00309 | 0.00307 | 0.00330 | 0.00315 | 0.00302 | 0.00311 | 0.00342 | 0.00317 | 0.00302 | 0.00303 |
STD | 0.00006 | 0.00010 | 0.00015 | 0.00013 | 0.00482 | 0.00009 | 0.00009 | 0.00031 | 0.00029 | 0.00021 | 0.00022 | 0.00040 | 0.00097 | 0.00013 | 0.00016 | 0.00032 |
Delays: 1 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00359 | 0.00355 | 0.00402 | 0.00411 | 0.00442 | 0.00349 | 0.00400 | 0.00381 | 0.00609 | 0.00497 | 0.00385 | 0.00454 | 0.02278 | 0.00430 | 0.00373 | 0.00529 |
Min | 0.00334 | 0.00331 | 0.00330 | 0.00327 | 0.00331 | 0.00327 | 0.00330 | 0.00323 | 0.00333 | 0.00329 | 0.00330 | 0.00327 | 0.00330 | 0.00330 | 0.00326 | 0.00329 |
Mean | 0.00342 | 0.00341 | 0.00352 | 0.00345 | 0.00352 | 0.00338 | 0.00347 | 0.00345 | 0.00365 | 0.00350 | 0.00345 | 0.00353 | 0.00454 | 0.00349 | 0.00340 | 0.00353 |
STD | 0.00007 | 0.00007 | 0.00020 | 0.00019 | 0.00031 | 0.00007 | 0.00016 | 0.00016 | 0.00062 | 0.00035 | 0.00014 | 0.00035 | 0.00434 | 0.00021 | 0.00013 | 0.00043 |
Delays: 2 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00326 | 0.00329 | 0.00324 | 0.00374 | 0.00386 | 0.00354 | 0.00458 | 0.00382 | 0.00395 | 0.00394 | 0.00396 | 0.00376 | 0.02272 | 0.00388 | 0.00354 | 0.00578 |
Min | 0.00290 | 0.00294 | 0.00288 | 0.00297 | 0.00289 | 0.00288 | 0.00295 | 0.00291 | 0.00294 | 0.00290 | 0.00286 | 0.00287 | 0.00291 | 0.00288 | 0.00286 | 0.00296 |
Mean | 0.00304 | 0.00305 | 0.00304 | 0.00325 | 0.00306 | 0.00310 | 0.00319 | 0.00318 | 0.00314 | 0.00307 | 0.00318 | 0.00314 | 0.00411 | 0.00316 | 0.00320 | 0.00349 |
STD | 0.00008 | 0.00008 | 0.00010 | 0.00023 | 0.00021 | 0.00016 | 0.00038 | 0.00019 | 0.00023 | 0.00022 | 0.00028 | 0.00024 | 0.00439 | 0.00025 | 0.00017 | 0.00061 |
Delays: 3 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00780 | 0.00295 | 0.00316 | 0.00332 | 0.00363 | 0.00299 | 0.00317 | 0.00366 | 0.00293 | 0.00337 | 0.00326 | 0.00391 | 0.02326 | 0.00399 | 0.00366 | 0.00424 |
Min | 0.00239 | 0.00242 | 0.00232 | 0.00243 | 0.00235 | 0.00247 | 0.00248 | 0.00248 | 0.00241 | 0.00239 | 0.00236 | 0.00246 | 0.00232 | 0.00233 | 0.00247 | 0.00242 |
Mean | 0.00283 | 0.00261 | 0.00267 | 0.00272 | 0.00262 | 0.00264 | 0.00275 | 0.00282 | 0.00260 | 0.00268 | 0.00272 | 0.00290 | 0.00600 | 0.00273 | 0.00279 | 0.00299 |
STD | 0.00119 | 0.00014 | 0.00017 | 0.00026 | 0.00029 | 0.00016 | 0.00017 | 0.00035 | 0.00015 | 0.00025 | 0.00022 | 0.00038 | 0.00743 | 0.00036 | 0.00033 | 0.00058 |
Delays: 4 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.00269 | 0.00413 | 0.00324 | 0.00401 | 0.02182 | 0.00303 | 0.00340 | 0.00435 | 0.00344 | 0.00301 | 0.00453 | 0.00400 | 0.00606 | 0.00326 | 0.00324 | 0.00448 |
Min | 0.00242 | 0.00236 | 0.00247 | 0.00245 | 0.00241 | 0.00245 | 0.00248 | 0.00261 | 0.00244 | 0.00247 | 0.00265 | 0.00234 | 0.00243 | 0.00257 | 0.00231 | 0.00250 |
Mean | 0.00255 | 0.00274 | 0.00279 | 0.00305 | 0.00382 | 0.00272 | 0.00282 | 0.00327 | 0.00262 | 0.00271 | 0.00304 | 0.00299 | 0.00281 | 0.00284 | 0.00278 | 0.00327 |
STD | 0.00008 | 0.00035 | 0.00021 | 0.00042 | 0.00443 | 0.00016 | 0.00024 | 0.00044 | 0.00024 | 0.00016 | 0.00046 | 0.00045 | 0.00078 | 0.00021 | 0.00019 | 0.00061 |
Delays: 1 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01641 | 0.01457 | 0.01460 | 0.01497 | 0.01783 | 0.01601 | 0.01412 | 0.01454 | 0.02174 | 0.01485 | 0.01432 | 0.01466 | 0.02272 | 0.02437 | 0.01430 | 0.01720 |
Min | 0.01409 | 0.01370 | 0.01358 | 0.01356 | 0.01373 | 0.01362 | 0.01356 | 0.01363 | 0.01369 | 0.01362 | 0.01343 | 0.01358 | 0.01414 | 0.01357 | 0.01354 | 0.01358 |
Mean | 0.01477 | 0.01405 | 0.01395 | 0.01390 | 0.01484 | 0.01420 | 0.01378 | 0.01389 | 0.01493 | 0.01393 | 0.01378 | 0.01385 | 0.01605 | 0.01447 | 0.01386 | 0.01402 |
STD | 0.00062 | 0.00027 | 0.00029 | 0.00032 | 0.00100 | 0.00068 | 0.00017 | 0.00024 | 0.00168 | 0.00030 | 0.00021 | 0.00030 | 0.00254 | 0.00234 | 0.00021 | 0.00078 |
Delays: 2 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01359 | 0.01301 | 0.01301 | 0.01470 | 0.01407 | 0.01312 | 0.01237 | 0.01272 | 0.01704 | 0.02092 | 0.01337 | 0.01279 | 0.02321 | 0.01338 | 0.01389 | 0.01407 |
Min | 0.01250 | 0.01190 | 0.01172 | 0.01173 | 0.01234 | 0.01180 | 0.01148 | 0.01167 | 0.01245 | 0.01180 | 0.01172 | 0.01160 | 0.01241 | 0.01164 | 0.01108 | 0.01148 |
Mean | 0.01282 | 0.01232 | 0.01221 | 0.01229 | 0.01276 | 0.01228 | 0.01198 | 0.01208 | 0.01315 | 0.01263 | 0.01238 | 0.01214 | 0.01383 | 0.01231 | 0.01207 | 0.01213 |
STD | 0.00029 | 0.00027 | 0.00029 | 0.00064 | 0.00047 | 0.00038 | 0.00025 | 0.00033 | 0.00102 | 0.00196 | 0.00050 | 0.00034 | 0.00244 | 0.00041 | 0.00062 | 0.00060 |
Delays: 3 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01424 | 0.01294 | 0.01355 | 0.01356 | 0.02298 | 0.01320 | 0.01234 | 0.01224 | 0.03619 | 0.02263 | 0.01311 | 0.01258 | 0.01644 | 0.01243 | 0.01190 | 0.01270 |
Min | 0.01214 | 0.01158 | 0.01141 | 0.01133 | 0.01211 | 0.01130 | 0.01022 | 0.01093 | 0.01213 | 0.01142 | 0.01069 | 0.01068 | 0.01197 | 0.01127 | 0.01097 | 0.01006 |
Mean | 0.01262 | 0.01222 | 0.01193 | 0.01196 | 0.01333 | 0.01201 | 0.01162 | 0.01156 | 0.01383 | 0.01248 | 0.01185 | 0.01141 | 0.01294 | 0.01193 | 0.01142 | 0.01157 |
STD | 0.00050 | 0.00037 | 0.00046 | 0.00057 | 0.00284 | 0.00044 | 0.00048 | 0.00035 | 0.00528 | 0.00242 | 0.00056 | 0.00039 | 0.00123 | 0.00030 | 0.00025 | 0.00061 |
Delays: 4 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01383 | 0.01216 | 0.01198 | 0.01308 | 0.01465 | 0.01200 | 0.01218 | 0.01145 | 0.02054 | 0.01345 | 0.01181 | 0.01465 | 0.01667 | 0.01308 | 0.01252 | 0.01245 |
Min | 0.01184 | 0.01110 | 0.01082 | 0.01031 | 0.01163 | 0.01108 | 0.01009 | 0.01014 | 0.01170 | 0.01114 | 0.01090 | 0.00940 | 0.01179 | 0.01075 | 0.01045 | 0.00931 |
Mean | 0.01231 | 0.01153 | 0.01142 | 0.01129 | 0.01219 | 0.01155 | 0.01127 | 0.01066 | 0.01282 | 0.01167 | 0.01126 | 0.01098 | 0.01253 | 0.01162 | 0.01120 | 0.01105 |
STD | 0.00050 | 0.00027 | 0.00034 | 0.00066 | 0.00068 | 0.00027 | 0.00053 | 0.00039 | 0.00213 | 0.00060 | 0.00028 | 0.00097 | 0.00134 | 0.00057 | 0.00051 | 0.00066 |
Delays: 1 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01723 | 0.01482 | 0.01500 | 0.01545 | 0.01739 | 0.01506 | 0.01446 | 0.01445 | 0.01982 | 0.01598 | 0.01464 | 0.01528 | 0.02143 | 0.02347 | 0.01468 | 0.01730 |
Min | 0.01403 | 0.01335 | 0.01331 | 0.01307 | 0.01327 | 0.01351 | 0.01329 | 0.01293 | 0.01344 | 0.01301 | 0.01291 | 0.01302 | 0.01344 | 0.01319 | 0.01277 | 0.01316 |
Mean | 0.01477 | 0.01391 | 0.01394 | 0.01380 | 0.01461 | 0.01410 | 0.01370 | 0.01361 | 0.01471 | 0.01378 | 0.01353 | 0.01379 | 0.01559 | 0.01430 | 0.01369 | 0.01389 |
STD | 0.00069 | 0.00034 | 0.00044 | 0.00050 | 0.00091 | 0.00048 | 0.00029 | 0.00047 | 0.00141 | 0.00066 | 0.00038 | 0.00056 | 0.00236 | 0.00219 | 0.00051 | 0.00089 |
Delays: 2 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01330 | 0.01345 | 0.01351 | 0.01525 | 0.01299 | 0.01287 | 0.01396 | 0.01363 | 0.01769 | 0.02068 | 0.01466 | 0.01422 | 0.02207 | 0.01360 | 0.01406 | 0.01438 |
Min | 0.01208 | 0.01203 | 0.01192 | 0.01217 | 0.01200 | 0.01180 | 0.01216 | 0.01188 | 0.01220 | 0.01170 | 0.01172 | 0.01186 | 0.01214 | 0.01228 | 0.01190 | 0.01183 |
Mean | 0.01252 | 0.01258 | 0.01259 | 0.01289 | 0.01249 | 0.01240 | 0.01278 | 0.01280 | 0.01301 | 0.01288 | 0.01274 | 0.01286 | 0.01347 | 0.01267 | 0.01277 | 0.01270 |
STD | 0.00029 | 0.00033 | 0.00038 | 0.00065 | 0.00028 | 0.00033 | 0.00046 | 0.00047 | 0.00119 | 0.00188 | 0.00067 | 0.00067 | 0.00222 | 0.00035 | 0.00069 | 0.00065 |
Delays: 3 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01301 | 0.01243 | 0.01452 | 0.01345 | 0.02117 | 0.01211 | 0.01400 | 0.01481 | 0.03576 | 0.02088 | 0.01347 | 0.01582 | 0.01618 | 0.01470 | 0.01286 | 0.01495 |
Min | 0.01124 | 0.01114 | 0.01075 | 0.01077 | 0.01096 | 0.01059 | 0.01074 | 0.00996 | 0.01100 | 0.01073 | 0.01086 | 0.01050 | 0.01119 | 0.01063 | 0.01060 | 0.01075 |
Mean | 0.01173 | 0.01163 | 0.01190 | 0.01230 | 0.01241 | 0.01149 | 0.01184 | 0.01206 | 0.01278 | 0.01195 | 0.01203 | 0.01211 | 0.01202 | 0.01160 | 0.01144 | 0.01252 |
STD | 0.00044 | 0.00036 | 0.00079 | 0.00079 | 0.00270 | 0.00034 | 0.00070 | 0.00114 | 0.00542 | 0.00218 | 0.00068 | 0.00128 | 0.00140 | 0.00087 | 0.00066 | 0.00105 |
Delays: 4 | ||||||||||||||||
Layers | 1 | 2 | 3 | 4 | ||||||||||||
Neurons | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 | 2 | 4 | 8 | 16 |
Max | 0.01262 | 0.01256 | 0.01351 | 0.01479 | 0.01484 | 0.01283 | 0.01333 | 0.01718 | 0.02074 | 0.01310 | 0.01343 | 0.01654 | 0.01650 | 0.01427 | 0.01275 | 0.01727 |
Min | 0.01114 | 0.01131 | 0.01158 | 0.01100 | 0.01143 | 0.01139 | 0.01106 | 0.01059 | 0.01127 | 0.01075 | 0.01128 | 0.01110 | 0.01126 | 0.01112 | 0.01095 | 0.01096 |
Mean | 0.01192 | 0.01193 | 0.01205 | 0.01234 | 0.01202 | 0.01200 | 0.01218 | 0.01303 | 0.01271 | 0.01210 | 0.01211 | 0.01286 | 0.01248 | 0.01224 | 0.01196 | 0.01319 |
STD | 0.00037 | 0.00035 | 0.00044 | 0.00088 | 0.00072 | 0.00042 | 0.00065 | 0.00155 | 0.00216 | 0.00060 | 0.00061 | 0.00144 | 0.00154 | 0.00065 | 0.00058 | 0.00168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, A.C.; Bejarano, L.A.; Espitia, H.E. Artificial Neural Network Model to Predict the Exportation of Traditional Products of Colombia. Computation 2024, 12, 221. https://doi.org/10.3390/computation12110221
Gómez AC, Bejarano LA, Espitia HE. Artificial Neural Network Model to Predict the Exportation of Traditional Products of Colombia. Computation. 2024; 12(11):221. https://doi.org/10.3390/computation12110221
Chicago/Turabian StyleGómez, Andrea C., Lilian A. Bejarano, and Helbert E. Espitia. 2024. "Artificial Neural Network Model to Predict the Exportation of Traditional Products of Colombia" Computation 12, no. 11: 221. https://doi.org/10.3390/computation12110221
APA StyleGómez, A. C., Bejarano, L. A., & Espitia, H. E. (2024). Artificial Neural Network Model to Predict the Exportation of Traditional Products of Colombia. Computation, 12(11), 221. https://doi.org/10.3390/computation12110221