Comparison of Preprocessing Method Impact on the Detection of Soldering Splashes Using Different YOLOv8 Versions
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. YOLOv8
3.2. Image Preprocessing Methods
3.2.1. Modification 1: Images Without Preprocessing
3.2.2. Modification 2: Color Channel Manipulation
3.2.3. Modification 3: Contrast Limited Adaptive Histogram Equalization
3.3. Statistical Methods
4. Results
- Raw method (reference method with no additional preprocessing)
- MaxGGsc method
- CLAHE method
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parakontan, T.; Sawangsri, W. Development of the Machine Vision System for Automated Inspection of Printed Circuit Board Assembl. In Proceedings of the 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 1–3 June 2019; pp. 244–248. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Hung, C.-W.; Yu, W.-B. The development of automated solder bump inspection using machine vision techniques. Int. J. Adv. Manuf. Technol. 2013, 69, 509–523. [Google Scholar] [CrossRef]
- Wang, L.; Hou, C.; Zheng, J.; Cao, P.; Wang, J. Automated coplanarity inspection of BGA solder balls by structured light. Microelectron. J. 2023, 137, 105802. [Google Scholar] [CrossRef]
- Sha, J.; Wang, J.; Hu, H.; Ye, Y.; Xu, G. Development of an accurate and automated quality inspection system for solder joints on aviation plugs using fine-tuned YOLOv5 models. Appl. Sci. 2023, 13, 5290. [Google Scholar] [CrossRef]
- Chen, I.C.; Hwang, R.C.; Huang, H.C. PCB defect detection based on deep learning algorithm. Processes 2023, 11, 775. [Google Scholar] [CrossRef]
- Ling, Q.; Isa, N.A.M. Printed circuit board defect detection methods based on image processing machine learning and deep learning: A survey. IEEE Access 2023, 11, 15921–15944. [Google Scholar] [CrossRef]
- Liao, S.; Huang, C.; Liang, Y.; Zhang, H.; Liu, S. Solder joint defect inspection method based on ConvNeXt-YOLOX. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 1890–1898. [Google Scholar] [CrossRef]
- Klco, P.; Koniar, D.; Hargas, L.; Dimova, K.P.; Chnapko, M. Quality inspection of specific electronic boards by deep neural networks. Sci. Rep. 2023, 13, 20657. [Google Scholar] [CrossRef] [PubMed]
- Guilhaumon, C.; Hascoët, N.; Chinesta, F.; Lavarde, M.; Daim, F. Data Augmentation for Regression Machine Learning Problems in High Dimensions. Computation 2024, 12, 24. [Google Scholar] [CrossRef]
- Lian, J.; Wang, L.; Liu, T.; Ding, X.; Yu, Z. Automatic visual inspection for printed circuit board via novel Mask R-CNN in smart city applications. Sustain. Energy Technol. Assessments 2021, 44, 101032. [Google Scholar] [CrossRef]
- Akhtar, M.B. The Use of a Convolutional Neural Network in Detecting Soldering Faults from a Printed Circuit Board Assembly. HighTech Innov. J. 2022, 3, 1–14. [Google Scholar] [CrossRef]
- Niu, J.; Huang, J.; Cui, L.; Zhang, B.; Zhu, A. A PCB Defect Detection Algorithm with Improved Faster R-CNN. In Proceedings of the ICBASE2022, 3rd International Conference on Big Data & Artificial Intelligence & Software Engineering, Guangzhou, China, 21–23 October 2022. [Google Scholar]
- Ancha, V.K.; Sibai, F.N.; Gonuguntla, V.; Vaddi, R. Utilizing YOLO Models for Real-World Scenarios: Assessing Novel Mixed Defect Detection Dataset in PCBs. IEEE Access 2024, 12, 100983–100990. [Google Scholar] [CrossRef]
- Supong, T.; Kangkachit, T.; Jitkongchuen, D. PCB Surface Defect Detection Using Defect-Centered Image Generation and Optimized YOLOv8 Architecture. In Proceedings of the 2024 5th International Conference on Big Data Analytics and Practices (IBDAP), Bangkok, Thailand, 23–25 August 2024; pp. 44–49. [Google Scholar] [CrossRef]
- Yi, X.; Song, X. CC-YOLO: An Improved PCB Surface Defect Detection Model for YOLOv7. In Proceedings of the 2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL), Zhuhai, China, 19–21 April 2024; pp. 1311–1315. [Google Scholar] [CrossRef]
- Mamidi, J.S.S.V.; Sameer, S.; Bayana, J. A Light Weight Version of PCB Defect Detection system using YOLO V4 Tiny. In Proceedings of the 2022 International Mobile and Embedded Technology Conference (MECON), Noida, India, 10–11 March 2022. [Google Scholar] [CrossRef]
- Monika, C.S. YOLO V7: Advancing Printed Circuit Board Defect Detection and the Quality Assurance. In Proceedings of the 2023 Global Conference on Information Technologies and Communications (GCITC), Bangalore, India, 1–3 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Yuan, M.; Zhou, Y.; Ren, X.; Zhi, H.; Zhang, J.; Chen, H. YOLO-HMC: An Improved Method for PCB Surface Defect Detection. IEEE Trans. Instrum. Meas. 2024, 73, 2001611. [Google Scholar] [CrossRef]
- Chen, R.-C.; Dewi, C.; Zhuang, Y.-C.; Chen, J.-K. Contrast Limited Adaptive Histogram Equalization for Recognizing Road Marking at Night Based on Yolo Models. IEEE Access 2023, 11, 92926–92942. [Google Scholar] [CrossRef]
- Hendrawan, A.; Gernowo, R.; Nurhayati, O.D. Contrast Stretching and Contrast Limited Adaptive Histogram Equalization for Recognizing Vehicles Based on Yolo Models. In Proceedings of the 2023 International Conference on Technology, Engineering, and Computing Applications (ICTECA), Semarang, Indonesia, 20–22 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Lou, H.; Duan, X.; Guo, J.; Liu, H.; Gu, J.; Bi, L.; Chen, H. DC-YOLOv8: Small-size object detection algorithm based on camera sensor. Electronics 2023, 12, 2323. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Jocher, G.; Changyu, L.; Hogan, A.; Yu, L.; Rai, P.; Sullivan, T. Ultralytics/YOLOv5: Initial Release. Zenodo. 2020. Available online: https://zenodo.org/records/3908560 (accessed on 6 November 2024).
- Karpathy, A. A Peek at Trends in Machine Learning. 2017. Available online: https://karpathy.medium.com/a-peek-at-trends-in-machine-learning-ab8a1085a106 (accessed on 6 November 2024).
- Hinton, G. Neural networks for machine learning online course. Retrieved Sept. 2018, 16, 2021. [Google Scholar]
- Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of adaptive gradient methods in machine learning. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Pao, S.-I.; Lin, H.-Z.; Chien, K.-H.; Tai, M.-C.; Chen, J.-T.; Lin, G.-M. Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network. J. Ophthalmol. 2020, 2020, 9139713. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Mansoor, A.B.; Mumtaz, R.; Khan, M.; Mirza, S.H. Image processing and classification in diabetic retinopathy: A review. In Proceedings of the 2014 5th European Workshop on Visual Information Processing (EUVIP), Paris, France, 10–12 December 2014. [Google Scholar]
- Kusunose, S.; Shinomiya, Y.; Hoshino, Y. Exploring Effective Channels in Fundus Images for Convolutional Neural Networks. In Proceedings of the 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021), Beijing, China, 31 October–3 November 2021. [Google Scholar]
- Macsik, P.; Pavlovicova, J.; Kajan, S.; Goga, J.; Kurilova, V. Image preprocessing-based ensemble deep learning classification of diabetic retinopathy. IET Image Process. 2023, 18, 807–828. [Google Scholar] [CrossRef]
- Shih, F.Y. Image Enhancement. In Image Processing and Pattern Recognition: Fundamentals and Techniques; IEEE: Piscataway, NJ, USA, 2010; pp. 40–62. [Google Scholar] [CrossRef]
- MathWorks, Contrast Limited Adaptive Histogram Equalization. 2024. Available online: https://www.mathworks.com/help/visionhdl/ug/contrast-adaptive-histogram-equalization.html (accessed on 6 November 2024).
- Ebayyeh, A.A.R.M.A.; Mousavi, A. A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry. IEEE Access 2020, 8, 183192–183271. [Google Scholar] [CrossRef]
- Huang, L.; Yao, C.; Zhang, L.; Luo, S.; Ying, F.; Ying, W. Enhancing computer image recognition with improved image algorithms. Sci. Rep. 2024, 14, 13709. [Google Scholar] [CrossRef] [PubMed]
Model | Number of Parameters | FLOPs | Detection Latency [ms] |
---|---|---|---|
YOLOv8s | 11.2 × 106 | 28.6 × 109 | 128.4 |
YOLOv8m | 25.9 × 106 | 78.9 × 109 | 234.7 |
YOLOv8l | 43.7 × 106 | 165.2 × 109 | 375.2 |
Metrics Score/Group | Mean | Median | Min | Max | Lower Quartile | Upper Quartile | Std. Dev. | Std. Error |
---|---|---|---|---|---|---|---|---|
Recall RAW group [%] | 0.723 | 0.728 | 0.69 | 0.746 | 0.715 | 0.732 | 0.018 | 0.006 |
Recall MaxGGsc group [%] | 0.765 | 0.763 | 0.709 | 0.805 | 0.743 | 0.793 | 0.032 | 0.01 |
Recall CLAHE group [%] | 0.862 | 0.859 | 0.83 | 0.9 | 0.845 | 0.88 | 0.025 | 0.008 |
Precision RAW group [%] | 0.946 | 0.951 | 0.885 | 0.981 | 0.933 | 0.962 | 0.03 | 0.01 |
Precision MaxGGsc group [%] | 0.943 | 0.95 | 0.873 | 1.0 | 0.927 | 0.969 | 0.039 | 0.012 |
Precision CLAHE group [%] | 0.933 | 0.925 | 0.89 | 0.981 | 0.919 | 0.951 | 0.027 | 0.008 |
Test | Wilk’s Lambda Value | F | Effect df | Error df | p-Value | |
---|---|---|---|---|---|---|
Intercept | Wilks | 0.000501 | 79,772.39 | 2 | 80 | p < 1 × 10−7 |
YOLOv8 model | Wilks | 0.469243 | 18.39 | 4 | 160 | p < 1 × 10−7 |
Preprocessing method | Wilks | 0.242299 | 41.26 | 4 | 160 | p < 1 × 10−7 |
Model * method | Wilks | 0.722168 | 3.53 | 8 | 160 | 0.000856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klco, P.; Koniar, D.; Hargas, L.; Paskala, M. Comparison of Preprocessing Method Impact on the Detection of Soldering Splashes Using Different YOLOv8 Versions. Computation 2024, 12, 225. https://doi.org/10.3390/computation12110225
Klco P, Koniar D, Hargas L, Paskala M. Comparison of Preprocessing Method Impact on the Detection of Soldering Splashes Using Different YOLOv8 Versions. Computation. 2024; 12(11):225. https://doi.org/10.3390/computation12110225
Chicago/Turabian StyleKlco, Peter, Dusan Koniar, Libor Hargas, and Marek Paskala. 2024. "Comparison of Preprocessing Method Impact on the Detection of Soldering Splashes Using Different YOLOv8 Versions" Computation 12, no. 11: 225. https://doi.org/10.3390/computation12110225
APA StyleKlco, P., Koniar, D., Hargas, L., & Paskala, M. (2024). Comparison of Preprocessing Method Impact on the Detection of Soldering Splashes Using Different YOLOv8 Versions. Computation, 12(11), 225. https://doi.org/10.3390/computation12110225