Accurate Height Determination in Uneven Terrains with Integration of Global Navigation Satellite System Technology and Geometric Levelling: A Case Study in Lebanon
Abstract
:1. Introduction
2. Materials and Methods
- Collimation error:
- Non-standard temperature error:
- Earth curvature and atmospheric refraction:
- Disclosure error:
3. Results
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Sjöberg, L.E. On the geoid and orthometric height vs. quasigeoid and normal height. J. Geod. Sci. 2018, 8, 115–120. [Google Scholar] [CrossRef]
- Novak, P.; Fernando, S. On correct definition and use of normal heights in geodesy. Stud. Geophys. Geod. 2024, 68, 1–24. [Google Scholar] [CrossRef]
- Szelachowska, M.; Godah, W.; Krynski, J. Contribution of GRACE Satellite Mission to the Determination of Orthometric/Normal Heights Corrected for Their Dynamics—A Case Study of Poland. Remote Sens. 2022, 14, 4271. [Google Scholar] [CrossRef]
- Li, J.; Shen, W.; Zhou, X. Direct regional quasi-geoid determination using EGM2008 and DEM: A case study for Mainland China and its vicinity areas. Geod. Geodyn. 2015, 6, 437–443. [Google Scholar] [CrossRef]
- Morozova, K.; Jäger, R.; Zarins, A.; Balodis, J.; Varna, I.; Silabriedis, G. Evaluation of quasi-geoid model based on astrogeodetic measurements: Case of Latvia. J. Appl. Geod. 2021, 15, 319–327. [Google Scholar] [CrossRef]
- Foroughi, I.; Tenzer, R. Comparison of different methods for estimating the geoid-to-quasi-geoid separation. Geophys. J. Int. 2017, 210, 1001–1020. [Google Scholar] [CrossRef]
- Odera, P.A. Evaluation of the recent high-degree combined global gravity-field models for geoid modelling over Kenya. Geod. Cartogr. 2020, 46, 48–54. [Google Scholar] [CrossRef]
- Pavlov, N.S.; Sannikova, A.P. Prerequisites of geodetic surveying of technical status of trunk gas pipeline’s underwater crossings. Marks. I Nedropol’zovaniye 2016, 2, 61–63. (In Russian) [Google Scholar]
- Abeho, D.R.; Hipkin, R.; Tulu, B.B. Evaluation of EGM2008 by means of GPS Levelling Uganda. S. Afr. J. Geomat. 2014, 3, 272–284. [Google Scholar] [CrossRef]
- Yahaya, S.I.; El Azzab, D. Assessment of recent GOCE-based global geopotential models and EGM2008 in Niger Republic. Geod. Cartogr. 2019, 45, 116–125. [Google Scholar] [CrossRef]
- Izvoltova, J.; Dasa, B.; Jakub, C.; Stanislav, H. Preprocessing of Gravity Data. Computation 2022, 10, 82. [Google Scholar] [CrossRef]
- Isik, M.S.; Çevikalp, M.R.; Erol, B.; Erol, S. Improvement of GOCE-Based Global Geopotential Models for Gravimetric Geoid Modeling in Turkey. Geosciences 2022, 12, 432. [Google Scholar] [CrossRef]
- Menegbo, E. Determination of orthometric elevations using GNSS-derived height with the EGM2008 geoid height model. Int. J. Adv. Geosci. 2017, 5, 13–18. [Google Scholar] [CrossRef]
- Khudyakov, G.I. Development of methods of analytical geometry of a sphere for solving geodesy and navigation tasks. J. Min. Inst. 2017, 223, 70–81. [Google Scholar]
- Liang, W.; Pail, R.; Xu, X.; Li, J. A new method of improving global geopotential models regionally using GNSS/levelling data. Geophys. J. Int. 2020, 221, 542–549. [Google Scholar] [CrossRef]
- Erol, S.; Erol, B.; Ayan, T. A general review of the deformation monitoring techniques and a case study: Analyzing deformations using GPS/levelling. In Geo-Imagery Bridging Continents, Proceedings of the XXth ISPRS Congress: Istanbul, Turkey, 12–23 July 2004; Altan, O., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 7, p. 12. [Google Scholar]
- Gusev, N.; Blishchenko, A.A.; Sannikova, A.P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. J. Min. Inst. 2022, 254, 173–179. [Google Scholar] [CrossRef]
- Albayrak, M.; Ozludemir, M.T.; Aref, M.M.; Halicioglu, K. Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geod. Geodyn. 2020, 11, 163–173. [Google Scholar] [CrossRef]
- Svitlana, N.; Roman, M.; Grygoriy, S.; Vira, S. Use of Different Geodesic Methods for Determining Heights. In Proceedings of the 4th International Conference on Building Innovations, Switzerland, 19–20 May 2022; Lecture Notes in Civil Engineering; Onyshchenko, V., Mammadova, G., Sivitska, S., Gasimov, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 473–487. [Google Scholar]
- Vystrchil, M.G.; Gusev, V.N.; Sukhov, A.K. A method of determining the errors of segmented grid models of open-pit mines constructed with the results of unmanned aerial photogrammetric survey. J. Min. Inst. 2023, 262, 562–570. (In Russian) [Google Scholar]
- Petrov, S. Compatible processing of results of high precision geometric levelling and inclination measurements. Mod. Achiev. Geod. Sci. Ind. 2015, 1, 29. [Google Scholar]
- Eliseeva, N.N.; Zubov, A.V.; Gusev, V.N. The application of search optimization methods in solving geodetic problems. Geod. Aerophotosurv. 2020, 64, 491–498. (In Russian) [Google Scholar]
- Soycan, M. Improving EGM2008 by GPS and leveling data at local scale. Bol. Ciências Geod. 2014, 20, 3–18. (In Portuguese) [Google Scholar] [CrossRef]
- Herbert, T.; Olatunji, R.I. Comparative Analysis of Change between Ellipsoidal Height Differences and Equivalent Orthometric Height Difference. Ghana J. Geogr. 2020, 12, 132–144. [Google Scholar] [CrossRef]
- Yilmaz, N. Assessment of latest global gravity field models by GNSS/Levelling Geoid. Int. J. Eng. Geosci. 2023, 8, 111–118. [Google Scholar] [CrossRef]
- Ziggah, Y.Y.; Yakubu, I.; Kumi-Boateng, B. Analysis of methods for ellipsoidal height estimation–the case of a local geodetic reference network. Ghana Min. J. 2016, 16, 1–9. [Google Scholar] [CrossRef]
- Kuzin, A.A.; Palkin, P.O. Coordinate method for determining position in geodetic monitoring of cracks. J. Phys. Conf. Ser. 2021, 1728, 012010. [Google Scholar] [CrossRef]
- Eshagh, M.; Zoghi, S. Local error calibration of EGM08 geoid using GNSS/levelling data. J. Appl. Geophys. 2016, 130, 209–217. [Google Scholar] [CrossRef]
- Filmer, M.S.; Featherstone, W.E.; Kuhn, M. The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network. J. Geod. 2010, 84, 501–513. [Google Scholar] [CrossRef]
- Koks, D. A study of the EGM2008 model of Earth’s gravitational field. J. Navig. 2022, 75, 1017–1034. [Google Scholar] [CrossRef]
- Bouman, J.; Rispens, S.; Gruber, T.; Koop, R.; Schrama, E.; Visser, P.; Tscherning, C.C.; Veicherts, M. Preprocessing of gravity gradients at the GOCE high-level processing facility. J. Geod. 2009, 83, 659–678. [Google Scholar] [CrossRef]
- Kim, S.K.; Park, J.; Gillins, D.; Dennis, M. On determining orthometric heights from a corrector surface model based on leveling observations, GNSS, and a geoid model. J. Appl. Geod. 2018, 12, 323–333. [Google Scholar] [CrossRef]
- Hosseini-Asl, M.; Amiri-Simkooei, A.R.; Safari, A. Establishment of a corrective geoid surface by spline approximation of Iranian GNSS/levelling network. Measurement 2022, 197, 111341. [Google Scholar] [CrossRef]
- Nie, J.; Tian, J.; Guo, X.; Wang, B.; Liu, X.; Cheng, Y.; Jiao, P. Vertical deformation analysis based on combined adjustment for GNSS and leveling data. Geod. Geodyn. 2023, 14, 477–484. [Google Scholar] [CrossRef]
- Guo, D.; Xue, Z. Geoid determination through the combined least-squares adjustment of GNSS/levelling/gravity networks–a case study in Linyi, China. Surv. Rev. 2021, 53, 504–512. [Google Scholar] [CrossRef]
Point | φ | λ | h (m) |
---|---|---|---|
Zone (A) | |||
A1 | N 33°31′04.23088″ | E 35°40′19.02209″ | 879.954 |
A2 | N 33°31′01.24131″ | E 35°40′19.23139″ | 881.054 |
A3 | N 33°31′00.71578″ | E 35°40′05.80162″ | 885.348 |
A4 | N 33°31′05.25177″ | E 35°40′08.02764″ | 885.476 |
CP | N 33°31′01.69385″ | E 35°40′13.54181″ | 882.446 |
Zone (B) | |||
A1 | N 33°43′39.48678″ | E 35°28′28.34842″ | 276.318 |
A2 | N 33°43′10.03531″ | E 35°28′17.11964″ | 242.384 |
A3 | N 33°43′04.36187″ | E 35°27′42.56322″ | 152.402 |
A4 | N 33°43′37.40257″ | E 35°27′53.33982″ | 193.289 |
CP | N 33°43′22.26857″ | E 35°28′00.94609″ | 192.591 |
Zone (C) | |||
A1 | N 34°36′52.51739″ | E 36°07′53.08944″ | 212.957 |
A2 | N 34°36′39.53158″ | E 36°08′13.63695″ | 193.228 |
A3 | N 34°36′12.38280″ | E 36°08′00.49453″ | 236.286 |
A4 | N 34°36′34.61689″ | E 36°07′08.98025″ | 163.769 |
CP | N 34°36′34.27561″ | E 36°07′55.86680″ | 164.500 |
Section | Route | Correction of Systematic Errors (mm) | Disclosure (m) | ΔHN (m) | LSM (m) | ||
---|---|---|---|---|---|---|---|
Collimation | Earth Curvature and Atmospheric Refraction | Non-Standard Temperature | |||||
CP-A1 | 1 | −0.268 | 0.312 | −0.010 | −0.001 | −48.557 | −48.549 |
2 | 0.175 | 1.137 | −0.009 | −0.001 | |||
3 | −0.238 | 1.170 | −0.007 | 0.000 | |||
CP-A2 | 1 | −0.280 | 0.358 | −0.004 | −0.001 | −28.732 | −28.737 |
2 | 0.243 | 1.190 | −0.005 | −0.001 | |||
3 | 0.331 | 1.575 | −0.007 | 0.000 | |||
CP-A3 | 1 | 0.050 | 0.315 | −0.025 | −0.002 | −71.820 | −71.816 |
2 | 0.231 | 1.349 | −0.019 | 0.005 | |||
3 | 0.140 | 1.049 | 0.009 | 0.005 | |||
CP-A4 | 1 | −0.686 | 0.517 | 0.000 | 0.001 | 0.576 | 0.573 |
2 | 0.173 | 1.148 | 0.001 | −0.004 | |||
3 | 0.289 | 1.385 | 0.001 | 0.001 |
Point | ζ (m) | N (EGM2008, m) | ||||
---|---|---|---|---|---|---|
Zone A | Zone B | Zone C | Zone A | Zone B | Zone C | |
CP | 24.827 | 23.136 | 25.861 | 25.245 | 23.189 | 25.248 |
A1 | 24.836 | 23.529 | 25.769 | 25.254 | 23.260 | 25.271 |
A2 | 24.836 | 23.174 | 25.852 | 25.253 | 23.256 | 25.319 |
A3 | 24.816 | 23.092 | 25.831 | 25.234 | 23.142 | 25.341 |
A4 | 24.819 | 23.079 | 25.703 | 25.239 | 23.140 | 25.231 |
Zone (A) | Zone (B) | Zone (C) | |
---|---|---|---|
Coefficient | −0.418 | −0.103 | 0.521 |
Checkpoint | φ | λ | h (m) | HN (m) | N (m) | H (m) |
---|---|---|---|---|---|---|
1 | 35.66919 | 33.51608 | 883.009 | 857.965 | 25.66 | 857.34 |
2 | 35.66930 | 33.51757 | 884.935 | 859.637 | 25.66 | 859.27 |
3 | 35.67127 | 33.51815 | 879.181 | 853.828 | 25.65 | 853.53 |
4 | 35.67133 | 33.51651 | 879.411 | 854.252 | 25.66 | 853.76 |
5 | 35.47342 | 33.72284 | 265.147 | 238.731 | 26.68 | 238.47 |
6 | 35.46775 | 33.71645 | 201.866 | 175.286 | 26.73 | 175.14 |
7 | 35.45836 | 33.72328 | 80.887 | 54.162 | 26.81 | 54.08 |
8 | 35.47109 | 33.72965 | 222.225 | 195.670 | 26.69 | 195.53 |
9 | 36.13131 | 34.6029 | 236.914 | 213.032 | 23.44 | 213.48 |
10 | 36.12046 | 34.607 | 141.587 | 117.808 | 23.42 | 118.17 |
11 | 36.12918 | 34.61443 | 208.496 | 184.433 | 23.42 | 185.08 |
12 | 36.14072 | 34.61285 | 206.589 | 182.840 | 23.44 | 183.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafin, M.; Moussa, H. Accurate Height Determination in Uneven Terrains with Integration of Global Navigation Satellite System Technology and Geometric Levelling: A Case Study in Lebanon. Computation 2024, 12, 58. https://doi.org/10.3390/computation12030058
Mustafin M, Moussa H. Accurate Height Determination in Uneven Terrains with Integration of Global Navigation Satellite System Technology and Geometric Levelling: A Case Study in Lebanon. Computation. 2024; 12(3):58. https://doi.org/10.3390/computation12030058
Chicago/Turabian StyleMustafin, Murat, and Hiba Moussa. 2024. "Accurate Height Determination in Uneven Terrains with Integration of Global Navigation Satellite System Technology and Geometric Levelling: A Case Study in Lebanon" Computation 12, no. 3: 58. https://doi.org/10.3390/computation12030058
APA StyleMustafin, M., & Moussa, H. (2024). Accurate Height Determination in Uneven Terrains with Integration of Global Navigation Satellite System Technology and Geometric Levelling: A Case Study in Lebanon. Computation, 12(3), 58. https://doi.org/10.3390/computation12030058