Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers
Abstract
:1. Introduction
2. Review of Mathematical Modeling
2.1. Analytical Approaches
2.2. Models Based on Circuit Theory
- Accounting for the main flow paths in the transformer core using detailed magnetic field equivalent circuit;
- Modeling the hysteresis of a transformer core using Preisach theory;
- Modeling eddy currents with the use of a frequency-dependent equivalent circuit;
- Reduced model latency through the use of full hardware parallelism and pipelining on the FPGA, and thus, smaller temporary steps can be used to capture high-frequency transients.
2.3. Numerical Models
2.3.1. Finite Element Method
2.3.2. Finite Volume Method
- The accuracy of the gradient reconstruction deteriorates on meshes with high ratio parties;
- The lack of mesh regularity significantly affects the approximation error;
- The discretization error is almost insensitive to the regularity of the mesh on triangular elements, but the sensitivity is greater when using quadrilateral elements;
- The dependence of the solution accuracy on the characteristics of the mesh has a complex dependence.
2.3.3. Comparison of Considered Methods
3. Modern Approaches to Simulation of Electromagnetic Processes in a Transformer
3.1. Features of Calculation of the Transformer Coils
3.2. Approaches to the Calculation of Transformer Steel
3.3. Selection of Equivalent Parameters Based on Numerical Simulation
4. Auxiliary Part Simulation
5. Conjugate Heat Transfer Simulation Review
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Shonin, J.; Putilov, V. Montazh, Tehnicheskoe Obsluzhivanie I Remont Silovyh Masljanyh Transformatorov. Prakticheskoe Posobie; Moscow Energy Institute: Moscow, Russia, 2013. (In Russian) [Google Scholar]
- Ribeiro, C.d.J.; Marques, A.P.; Azevedo, C.H.B.; Souza, D.C.P.; Alvarenga, B.P.; Nogueira, R.G. Faults and defects in power transformers—A case study. In Proceedings of the 2009 IEEE Electrical Insulation Conference, Montreal, QC, Canada, 31 May–3 June 2009; pp. 142–145. [Google Scholar] [CrossRef]
- Laayati, O.; Bouzi, M.; Chebak, A. Design of an oil immersed power transformer monitoring and self diagnostic system integrated in Smart Energy Management System. In Proceedings of the 2021 3rd Global Power, Energy and Communication Conference (GPECOM), Antalya, Turkey, 5–8 October 2021; pp. 240–245. [Google Scholar] [CrossRef]
- Kherif, O.; Benmahamed, Y.; Teguar, M.; Boubakeur, A.; Ghoneim, S.S.M. Accuracy Improvement of Power Transformer Faults Diagnostic Using KNN Classifier with Decision Tree Principle. IEEE Access 2021, 9, 81693–81701. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, T. Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey. Energies 2018, 11, 913. [Google Scholar] [CrossRef]
- Khalyasmaa, A.I.; Stepanova, A.I.; Eroshenko, S.A.; Matrenin, P.V. Review of the Digital Twin Technology Applications for Electrical Equipment Lifecycle Management. Mathematics 2023, 11, 1315. [Google Scholar] [CrossRef]
- Khalyasmaa, A.I.; Matrenin, P.V.; Eroshenko, S.A.; Manusov, V.Z.; Bramm, A.M.; Romanov, A.M. Data Mining Applied to Decision Support Systems for Power Transformers Health Diagnostics. Mathematics 2022, 10, 2486. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, L.; Yang, L.; Zhao, X.; Liao, R.; Zhang, Y. A novel approach to building digital twin transformers by combining virtual-real sensing: An example of degree of polymerization distribution. Measurement 2023, 222, 113714. [Google Scholar] [CrossRef]
- Li, P.; Zhang, S.; Zhu, M.; Li, Y. Hot spot prediction based on SVM and multi-physical field coupling. In Proceedings of the 4th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2022), Hangzhou, China, 25–27 March 2022; Wang, L., Cen, M.M., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2022; Volume 12257, p. 1225714. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Wang, X.; Li, Y. Research and Analysis of Power Transformer Remaining Life Prediction Based on Digital Twin Technology. In Proceedings of the 2021 3rd International Conference on Smart Power & Internet Energy Systems (SPIES), Shanghai, China, 25–28 September 2021; pp. 65–71. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X.; Jing, L.; Li, T.; Zhao, H.; Zhang, B. Research on digital twin modeling method of transformer temperature field based on POD. Energy Rep. 2023, 9, 299–307. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, X.; Yu, Z.; Wang, C.; Liu, Z.; Li, Y. Diagnostic Research for the Failure of Electrical Transformer Winding Based on Digital Twin Technology. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 1629–1636. [Google Scholar] [CrossRef]
- Moutis, P.; Alizadeh-Mousavi, O. Digital Twin of Distribution Power Transformer for Real-Time Monitoring of Medium Voltage From Low Voltage Measurements. IEEE Trans. Power Deliv. 2021, 36, 1952–1963. [Google Scholar] [CrossRef]
- Hamidi, R.J. Digital Twins for Power Transformers. In Proceedings of the 2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 16–20 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Gorgan, B.; Notingher, P.V.; Wetzer, J.M.; Verhaart, H.F.; Wouters, P.A.; Van Schijndel, A.; Tanasescu, G. Calculation of the remaining lifetime of power transformers paper insulation. In Proceedings of the International Conference on Optimisation of Electrical and Electronic Equipment, OPTIM, Brasov, Romania, 24–26 May 2012; pp. 293–300. [Google Scholar] [CrossRef]
- Gao, S.; Yang, L.; Ke, T. Ageing characteristics and lifetime model of oil–paper insulation for oil-immersed paper condenser bushing. High Volt. 2021, 6, 278–290. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, K.; Wang, Q.; Zhang, H.; Zhang, E.; Fan, X.; Zhang, Y. An improved second-order kinetic model for degradation analysis of transformer paper insulation under non-uniform thermal field. High Volt. 2022. [Google Scholar] [CrossRef]
- Sun, W.; Yang, L.; Zare, F.; Lin, Y.; Cheng, Z. Improved method for aging assessment of winding hot-spot insulation of transformer based on the 2-FAL concentration in oil. Int. J. Electr. Power Energy Syst. 2019, 112, 191–198. [Google Scholar] [CrossRef]
- Liu, J.; Geng, C.; Fan, X.; Zhang, Y.; Zhang, H. Modified furfural-DP equation with different oil-paper-pressboard mass ratios under oil replacement condition. Int. J. Electr. Power Energy Syst. 2021, 131, 106924. [Google Scholar] [CrossRef]
- Ansari, H.T.; Vahedi, A. Insulation Condition Prediction of Oil-Impregnated Paper Bushings Using a Novel Hybrid Geometric Approach. IEEE Trans. Dielectr. Electr. Insul. 2023, 31, 542–549. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, J.; Fan, X.; Wang, Q.; Zhang, Y.; Wu, T. Reinforcement Learning-Based Genetic Algorithm for Aging State Analysis of Insulating Paper at Transformer Hotspot. IEEE Trans. Instrum. Meas. 2023, 72, 3530010. [Google Scholar] [CrossRef]
- Mishra, S.; Baral, A.; Chakravorti, S. Health Assessment of Oil-Paper Insulation Using Short Duration Frequency Domain Response. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 2370–2378. [Google Scholar] [CrossRef]
- Gengadevi, K.; Madavan, R. Aging analysis of non-edible natural ester oil–paper insulation under various conditions. Ind. Crop. Prod. 2023, 205, 117528. [Google Scholar] [CrossRef]
- Islam, M.M.; Musil, M.; Shohan, J.; Faruque, M.; Lauss, G.; Dehkordi, A.; Forsyth, P.; Kotsampopoulos, P.; Strunz, K.; Li, Z.; et al. A review of modelling techniques of power transformers for digital real-time simulation. J. Eng. 2022, 2023, e12221. [Google Scholar] [CrossRef]
- Orosz, T. Evolution and Modern Approaches of the Power Transformer Cost Optimization Methods. Period. Polytech. Electr. Eng. Comput. Sci. 2019, 63, 37–50. [Google Scholar] [CrossRef]
- Georgilakis, P.S. Spotlight on Modern Transformer Design; Power Systems; Springer: London, UK, 2009. [Google Scholar] [CrossRef]
- Orosz, T.; Sleisz, A.; Tamus, Z.A. Metaheuristic Optimization Preliminary Design Process of Core-Form Autotransformers. IEEE Trans. Magn. 2016, 52, 8400310. [Google Scholar] [CrossRef]
- Eslamian, M.; Kharezy, M.; Thiringer, T. An Accurate Analytical Method for Leakage Inductance Calculation of Shell-Type Transformers With Rectangular Windings. IEEE Access 2021, 9, 72647–72660. [Google Scholar] [CrossRef]
- Bodger, P.S.; Bell, S.C. Power Transformer Analytical Design Approaches. In Proceedings of the Power Transformer Conference & Workshop, Christchurch, New Zealand, 2–3 July 2007; Available online: https://ir.canterbury.ac.nz/items/f35f900b-2a38-431f-b80a-79121e73539f (accessed on 20 February 2024).
- Diaz, G.; Arboleya, P.; Gomez-Aleixandre, J. Analytical approach to internal fault simulation in power transformers based on fault-related incremental currents. IEEE Trans. Power Deliv. 2006, 21, 142–149. [Google Scholar] [CrossRef]
- Barrios, E.L.; Ursúa, A.; Marroyo, L.; Sanchis, P. Analytical Design Methodology for Litz-Wired High-Frequency Power Transformers. IEEE Trans. Ind. Electron. 2015, 62, 2103–2113. [Google Scholar] [CrossRef]
- Barrios, E.L.; Urtasun, A.; Ursua, A.; Marroyo, L.; Sanchis, P. High-Frequency Power Transformers With Foil Windings: Maximum Interleaving and Optimal Design. IEEE Trans. Power Electron. 2015, 30, 5712–5723. [Google Scholar] [CrossRef]
- Smolyanov, I.; Sarapulov, F.; Tarasov, F. Calculation of linear induction motor features by detailed equivalent circuit method taking into account non-linear electromagnetic and thermal properties. Comput. Math. Appl. 2019, 78, 3187–3199. [Google Scholar] [CrossRef]
- Liu, J.; Dinavahi, V. Detailed Magnetic Equivalent Circuit Based Real-Time Nonlinear Power Transformer Model on FPGA for Electromagnetic Transient Studies. IEEE Trans. Ind. Electron. 2016, 63, 1191–1202. [Google Scholar] [CrossRef]
- Kotb, M.; El-Fergany, A.; Gouda, E. Estimation of electrical transformer parameters with reference to saturation behavior using artificial hummingbird optimizer. Sci. Rep. 2022, 12, 19623. [Google Scholar] [CrossRef] [PubMed]
- Leon, F.; Farazmand, A.; Joseph, P. Comparing the T and Equivalent Circuits for the Calculation of Transformer Inrush Currents. IEEE Trans. Power Deliv. 2012, 27, 2390–2398. [Google Scholar] [CrossRef]
- Rezaei Baravati, P.; Moazzami, M.; Mohammad Hassan Hosseini, S.; Reza Mirzaei, H.; Fani, B. Achieving the exact equivalent circuit of a large-scale transformer winding using an improved detailed model for partial discharge study. Int. J. Electr. Power Energy Syst. 2022, 134, 107451. [Google Scholar] [CrossRef]
- Gholami, M.; Hajipour, E.; Vakilian, M. A single phase transformer equivalent circuit for accurate turn to turn fault modeling. In Proceedings of the 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran, 10–12 May 2016; pp. 592–597. [Google Scholar] [CrossRef]
- Swift, G.; Molinski, T.S.; Bray, R.; Menzies, R. A fundamental approach to transformer thermal modeling—Part II: Field verification. IEEE Trans. Power Deliv. 2001, 16, 176–180. [Google Scholar] [CrossRef]
- Swift, G.; Molinski, T.S.; Lehn, W. A fundamental approach to transformer thermal modeling—Part I: Theory and equivalent circuit. IEEE Trans. Power Deliv. 2001, 16, 171–175. [Google Scholar] [CrossRef]
- Tang, W.H.; Wu, Q.H.; Richardson, Z.J. A simplified transformer thermal model based on thermal-electric analogy. IEEE Trans. Power Deliv. 2004, 19, 1112–1119. [Google Scholar] [CrossRef]
- Susa, D.; Lehtonen, M.; Nordman, H. Dynamic thermal modelling of power transformers. IEEE Power Eng. Soc. Gen. Meet. 2004, 2, 1421. [Google Scholar] [CrossRef]
- Mattiussi, C. The finite volume, finite element, and finite difference methods as numerical methods for physical field problems. In Advances in Imaging and Electron Physics; Elsevier: Amsterdam, The Netherlands, 2000; Volume 113, pp. 1–146. [Google Scholar] [CrossRef]
- Lecuna, R.; Delgado, F.; Ortiz, A.; Castro, P.B.; Fernandez, I.; Renedo, C.J. Thermal-fluid characterization of alternative liquids of power transformers: A numerical approach. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2522–2529. [Google Scholar] [CrossRef]
- Daghrah, M.; Zhang, X.; Wang, Z.; Liu, Q.; Jarman, P.; Walker, D. Flow and temperature distributions in a disc type winding-part I: Forced and directed cooling modes. Appl. Therm. Eng. 2020, 165, 114653. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, S.; Sun, F.; Wang, Z.; Zhang, N. Transient Electromagnetic Field Analysis for the Single-Stage Fast Linear Transformer Driver With Two Different Configurations Using the Finite-Element Method and Finite Integration Technique. IEEE Trans. Magn. 2020, 56, 7515805. [Google Scholar] [CrossRef]
- Ilka, R.; He, J.; Yin, W.; Contreras, J.E.; Cavazos, C.G. Multi-Physics Modeling and Simulation of Oil-Immersed Power Transformers Based on 3D Finite Element Analysis and Finite Volume Method. In Proceedings of the 2022 IEEE Industry Applications Society Annual Meeting (IAS), Detroit, MI, USA, 9–14 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Diskin, B.; Thomas, J. Effects of mesh regularity on accuracy of finite-volume schemes. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar] [CrossRef]
- Jeong, W.; Seong, J. Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods. Int. J. Mech. Sci. 2014, 78, 19–26. [Google Scholar] [CrossRef]
- Ruan, J.; Deng, Y.; Huang, D.; Duan, C.; Gong, R.; Quan, Y.; Hu, Y.; Rong, Q. HST calculation of a 10’.kV oil-immersed transformer with 3D coupled-field method. IET Electr. Power Appl. 2020, 14, 921–928. [Google Scholar] [CrossRef]
- Stebel, M.; Kubiczek, K.; Rios Rodriguez, G.; Palacz, M.; Garelli, L.; Melka, B.; Haida, M.; Bodys, J.; Nowak, A.J.; Lasek, P.; et al. Thermal analysis of 8.5 MVA disk-type power transformer cooled by biodegradable ester oil working in ONAN mode by using advanced EMAG–CFD–CFD coupling. Int. J. Electr. Power Energy Syst. 2022, 136, 107737. [Google Scholar] [CrossRef]
- Maximov, S.; Olivares-Galvan, J.C.; Magdaleno-Adame, S.; Escarela-Perez, R.; Campero-Littlewood, E. New Analytical Formulas for Electromagnetic Field and Eddy Current Losses in Bushing Regions of Transformers. IEEE Trans. Magn. 2015, 51, 1–10. [Google Scholar] [CrossRef]
- Ho, S.L.; Li, Y.; Wong, H.C.; Wang, S.H.; Tang, R.Y. Numerical simulation of transient force and eddy current loss in a 720-MVA power transformer. IEEE Trans. Magn. 2004, 40, 687–690. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, S.; Lin, D.; Wang, S.; Wang, S.; Yuan, D.; Li, H. Analysis of mechanical characteristics of transformer windings under short circuit fault. In Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Xi’an, China, 20–24 May 2018; pp. 752–755. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Zhang, N.; Yuan, D.; Qiu, H. Calculation and Analysis of Mechanical Characteristics of Transformer Windings Under Short-Circuit Condition. IEEE Trans. Magn. 2019, 55, 1–4. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Wang, S.; Li, H.; Yuan, D. Cumulative Deformation Analysis for Transformer Winding Under Short-Circuit Fault Using Magnetic–Structural Coupling Model. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, B.; Xu, W.; Wang, S.; Wang, G.; Huangfu, Y.; Zhang, J. Dynamic Deformation Analysis of Power Transformer Windings in Short-Circuit Fault by FEM. IEEE Trans. Appl. Supercond. 2014, 24, 1–4. [Google Scholar] [CrossRef]
- Geißler, D.; Leibfried, T. Short-Circuit Strength of Power Transformer Windings-Verification of Tests by a Finite Element Analysis-Based Model. IEEE Trans. Power Deliv. 2017, 32, 1705–1712. [Google Scholar] [CrossRef]
- Zhou, D.; Li, Z.; Ke, C.; Yang, X.; Hao, Z. Simulation of transformer windings mechanical characteristics during the external short-circuit fault. In Proceedings of the 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, 26–29 November 2015; pp. 1068–1073. [Google Scholar] [CrossRef]
- Gao, Y.; Takeda, N.; Dozono, H.; Guan, W.; Muramatsu, K.; Konishi, K.; Kanazawa, K. Design of a Three-Phase Reactor Composed of Grain-Oriented Steel Plates for Iron Loss Reduction. IEEE Trans. Appl. Supercond. 2019, 29, 1–4. [Google Scholar] [CrossRef]
- Ahn, H.M.; Lee, J.Y.; Kim, J.K.; Oh, Y.H.; Jung, S.Y.; Hahn, S.C. Finite-Element Analysis of Short-Circuit Electromagnetic Force in Power Transformer. IEEE Trans. Ind. Appl. 2011, 47, 1267–1272. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, X.; Zhao, Y. Research on the Effect of Core Joints on Transformer Noise. IEEE Trans. Magn. 2021, 57, 1–6. [Google Scholar] [CrossRef]
- Moghaddami, M.; Sarwat, A.I.; de Leon, F. Reduction of Stray Loss in Power Transformers Using Horizontal Magnetic Wall Shunts. IEEE Trans. Magn. 2017, 53, 8100607. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Zhu, G.; Chen, H.; Gao, S. Research of Short-Circuit Performance of a Split-Winding Transformer with Stabilizing Windings. IEEE Trans. Appl. Supercond. 2019, 29, 0601106. [Google Scholar] [CrossRef]
- Lefevre, A.; Miegeville, L.; Fouladgar, J.; Olivier, G. 3-D computation of transformers overheating under nonlinear loads. IEEE Trans. Magn. 2005, 41, 1564–1567. [Google Scholar] [CrossRef]
- Sakellaris, J.; Marechal, Y.; Meunier, G. Techniques for computing the sheet winding transformers ohmic losses using numerical and analytical methods. IEEE Trans. Magn. 1991, 27, 3943–3946. [Google Scholar] [CrossRef]
- Dawood, K.; Komurgoz, G.; Isik, F. Comparison of Analytical Method and Different Finite Element Models for the Calculation of Leakage Inductance in Zigzag Transformers. Elektron. Ir Elektrotechnika 2022, 28, 16–22. [Google Scholar] [CrossRef]
- Guangzheng, N.; Xiaoming, X.; Weiying, C.; Gangru, L.; Baidun, J.; Zhenghu, F.; Xianghua, L.; Jitai, X. FEM analysis of 3-D transformer leakage field and eddy current loss in the windings. IEEE Trans. Magn. 1992, 28, 1382–1385. [Google Scholar] [CrossRef]
- den Bossche, A.; Valchev, V.C.; Barudov, S.T. Practical Wide Frequency Approach for Calculating Eddy Current Losses in Transformer Windings. In Proceedings of the 2006 IEEE International Symposium on Industrial Electronics, Montréal, QC, Canada, 9–13 July 2006; Volume 2, pp. 1070–1074. [Google Scholar] [CrossRef]
- Computation of Losses in a Three-Phase Power Transformer. Available online: https://www.comsol.com/model/computation-of-losses-in-a-three-phase-power-transformer-54471 (accessed on 20 February 2024).
- Larin, V.; Lokhanin, A.; Matveev, D. The calculation of insulation of UHV power transformers. In Proceedings of the International Conference on UHV Transmission “UHV-2009”, Beijing, China, 21–22 May 2009; Available online: https://www.researchgate.net/publication/280576483_The_calculation_of_insulation_of_UHV_power_transformers (accessed on 20 February 2024).
- Rudranna, N.; Rajan, J.S. Modeling of copper sulphide migration in paper oil insulation of transformers. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1642–1649. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Li, H.; Lin, F. Diagnosis of transformer winding faults based on FEM simulation and on-site experiments. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3752–3760. [Google Scholar] [CrossRef]
- Betancourt, L.; Martinez, G.; Álvarez, D.; Rosero, J. Losses characterization on distribution transformer windings in frequency domain by mean of finite element method (FEM): Part II. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 109–114. [Google Scholar] [CrossRef]
- Betancourt, L.; Martinez, G.; Álvarez, D.; Rosero, J. Losses characterization on distribution transformer windings in frequency domain by means of finite element method (FEM): Part I. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 103–108. [Google Scholar] [CrossRef]
- Alvarez, D.L.; Rosero, J.A.; Mombello, E.E. Circuit model of transformers windings using vector fitting, for frequency response analysis (FRA). In Proceedings of the 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 6–7 July 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Shintemirov, A.; Tang, W.H.; Wu, Q.H. Transformer Core Parameter Identification Using Frequency Response Analysis. IEEE Trans. Magn. 2010, 46, 141–149. [Google Scholar] [CrossRef]
- Alvarez, D.L.; Rosero, J.A.; Mombello, E.E. Circuit model of transformers windings using vector fitting, for frequency response analysis (FRA) PART II: Core influence. In Proceedings of the 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 6–7 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Li, L.; Sun, Y. Analysis of the Influence of Turn-to-Turn Insulation on the Simulation of Magnetic Field and Fluid-Temperature Field in Transformer. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020. [Google Scholar] [CrossRef]
- Gunawardana, M.; Fattal, F.; Kordi, B. Very Fast Transient Analysis of Transformer Winding Using Axial Multiconductor Transmission Line Theory and Finite Element Method. IEEE Trans. Power Deliv. 2019, 34, 1948–1956. [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Li, X.; Li, D. Calculation of capacitance and inductance parameters based on FEM in high-voltage transformer winding. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Srikanta Murthy, A.; Azis, N.; Jasni, J.; Othman, M.L.; Mohd Yousof, M.F.; Talib, M.A. Extraction of winding parameters for 33/11 kV, 30 MVA transformer based on finite element method for frequency response modelling. PLoS ONE 2020, 15, e0236409. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.H.; Baravati, P.R. New high frequency multi-conductor transmission line detailed model of transformer winding for PD study. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 316–323. [Google Scholar] [CrossRef]
- Toman, M.; Stumberger, G.; Dolinar, D. Parameter Identification of the Jiles–Atherton Hysteresis Model Using Differential Evolution. IEEE Trans. Magn. 2008, 44, 1098–1101. [Google Scholar] [CrossRef]
- Krings, A.; Nategh, S.; Stening, A.; Grop, H.; Wallmark, O.; Soulard, J. Measurement and Modeling of Iron Losses in Electrical Machines. In Proceedings of the 5th International Conference Magnetism and Metallurgy WMM’12, Gent, Belgium, 20–22 June 2012; pp. 101–119. Available online: https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A540069&dswid=1285 (accessed on 20 February 2024).
- Krings, A.; Soulard, J. Overview and Comparison of Iron Loss Models for Electrical Machines. J. Electr. Eng. 2010, 10, 162–169. [Google Scholar]
- Bertotti, G. General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Badgujar, K.P.; Baghel, A.P.S.; Kulkarni, S.V. A coupled field-circuit formulation and a duality based approach for analysis of low-frequency response of transformers. In Proceedings of the 2013 Annual IEEE India Conference (INDICON), Mumbai, India, 13–15 December 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Kowal, D.; Sergeant, P.; Dupré, L.; Vandenbossche, L. Comparison of Iron Loss Models for Electrical Machines With Different Frequency Domain and Time Domain Methods for Excess Loss Prediction. IEEE Trans. Magn. 2015, 51, 1–10. [Google Scholar] [CrossRef]
- Paoli, G.; Biro, O.; Buchgraber, G. Complex representation in nonlinear time harmonic eddy current problems. IEEE Trans. Magn. 1998, 34, 2625–2628. [Google Scholar] [CrossRef]
- Mikhak-Beyranvand, M.; Faiz, J.; Rezaeealam, B. Thermal analysis and derating of a power transformer with harmonic loads. IET Gener. Transm. Distrib. 2020, 14, 1233–1241. [Google Scholar] [CrossRef]
- Ke, X.; Ionutiu, R. Modeling three-phase saturable transformers for real-time simulation. In Proceedings of the IECON 2014—40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 3783–3789. [Google Scholar] [CrossRef]
- Marti, J.; Linares, L.; Dommel, H. Current transformers and coupling-capacitor voltage transformers in real-time simulations. IEEE Trans. Power Deliv. 1997, 12, 164–168. [Google Scholar] [CrossRef]
- Wang, F.; Geng, C.; Su, L. Parameter identification and prediction of Jiles–Atherton model for DC-biased transformer using improved shuffled frog leaping algorithm and least square support vector machine. IET Electr. Power Appl. 2015, 9, 660–669. [Google Scholar] [CrossRef]
- Hodgdon, M.L. Mathematical theory and calculations of magnetic hysteresis curves. IEEE Trans. Magn. 1988, 24, 3120–3122. [Google Scholar] [CrossRef]
- Vasquez, C.; Fazzito, S. Simple hysteresis loop model for rock magnetic analysis. Stud. Geophys. Geod. 2020, 64. [Google Scholar] [CrossRef]
- Wilson, P.R.; Ross, J.N.; Brown, A.D. Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm. IEEE Trans. Magn. 2001, 37, 989–993. [Google Scholar] [CrossRef]
- Lederer, D.; Igarashi, H.; Kost, A.; Honma, T. On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics. IEEE Trans. Magn. 1999, 35, 1211–1214. [Google Scholar] [CrossRef]
- Fulginei, F.R.; Salvini, A. Softcomputing for the identification of the Jiles-Atherton model parameters. IEEE Trans. Magn. 2005, 41, 1100–1108. [Google Scholar] [CrossRef]
- Mörée, G.; Leijon, M. Review of Play and Preisach Models for Hysteresis in Magnetic Materials. Materials 2023, 16, 2422. [Google Scholar] [CrossRef] [PubMed]
- Dlala, E.; Saitz, J.; Arkkio, A. Inverted and forward preisach models for numerical analysis of electromagnetic field problems. IEEE Trans. Magn. 2006, 42, 1963–1973. [Google Scholar] [CrossRef]
- Bernard, Y.; Mendes, E.; Bouillault, F. Dynamic hysteresis modeling based on Preisach model. IEEE Trans. Magn. 2002, 38, 885–888. [Google Scholar] [CrossRef]
- Mordjaoui, M.; Boudjema, B. Dynamic Hysteresis Model Based on Fuzzy Clustering Approach. J. Electr. Eng. Technol. 2012, 7, 884–890. [Google Scholar] [CrossRef]
- Zurek, S. Qualitative Analysis of Px and Py Components of Rotational Power Loss. IEEE Trans. Magn. 2014, 50, 6300914. [Google Scholar] [CrossRef]
- Bali, M.; Muetze, A. Modeling the Effect of Cutting on the Magnetic Properties of Electrical Steel Sheets. IEEE Trans. Ind. Electron. 2017, 64, 2547–2556. [Google Scholar] [CrossRef]
- Bali, M.; Muetze, A. Influences of CO2 Laser, FKL Laser, and Mechanical Cutting on the Magnetic Properties of Electrical Steel Sheets. IEEE Trans. Ind. Appl. 2015, 51, 4446–4454. [Google Scholar] [CrossRef]
- Alvarez A., D.; Rosero Garcia, J.; Mombello, E. Core influence on the frequency response analysis (FRA) of power transformers through the finite element method. Ing. Investig. 2015, 35, 110–117. [Google Scholar] [CrossRef]
- Alvarez, D.L.; Rosero, J.A.; Mombello, E.E. Analysis of impedance matrix in transformer windings through the Finite Element Method (FEM). In Proceedings of the 2014 IEEE PES Transmission & Distribution Conference and Exposition—Latin America (PES T&D-LA), Medellin, Colombia, 10–13 September 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Shintemirov, A.; Tang, W.H.; Wu, Q.H. Construction of transformer core model for frequency response analysis with genetic Algorithm. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Shintemirov, A.; Tang, W.; Tang, W.; Wu, Q. Improved modelling of power transformer winding using bacterial swarming algorithm and frequency response analysis. Electr. Power Syst. Res. 2010, 80, 1111–1120. [Google Scholar] [CrossRef]
- Dasara, S.; Mishra, V.P. Shielding measures of power transformer to mitigate stray loss and hot spot through coupled 3D FEA. High Volt. 2017, 2, 267–273. [Google Scholar] [CrossRef]
- Li, L.; Niu, S.; Ho, S.L.; Fu, W.N.; Li, Y. A Novel Approach to Investigate the Hot-Spot Temperature Rise in Power Transformers. IEEE Trans. Magn. 2015, 51, 3–6. [Google Scholar]
- Luo, L. Electromagnetic field and thermal distribution optimisation in shell-type traction transformers. IET Electr. Power Appl. 2013, 7, 627–632. [Google Scholar]
- Tran, Q.T.; Roose, L.; Doan Van, B.; Nguyen, Q.N. A Low-Cost Online Health Assessment System for Oil-Immersed Service Transformers Using Real-Time Grid Energy Monitoring. Energies 2022, 15, 5932. [Google Scholar] [CrossRef]
- Jahromi, A.N.; Piercy, R.; Cress, S.; Service, J.R.; Fan, W. An approach to power transformer asset management using health index. IEEE Electr. Insul. Mag. 2009, 25, 20–34. [Google Scholar] [CrossRef]
- Dorella, J.J.; Storti, B.A.; Ríos Rodriguez, G.A.; Storti, M.A. Enhancing heat transfer in power transformer radiators via thermo-fluid dynamic analysis with periodic thermal boundary conditions. Int. J. Heat Mass Transf. 2024, 222, 125142. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, K.; Liu, H.; Li, C.; Cai, Y.; Zhang, R. Finite Element Analysis for Temperature Field of Oil-Immersed Transformer Winding. In Proceedings of the iSPEC 2019—2019 IEEE Sustainable Power and Energy Conference: Grid Modernization for Energy Revolution, Proceedings, Beijing, China, 21–23 November 2019; pp. 1129–1134. [Google Scholar] [CrossRef]
- Yuan, F.T.; Wang, Y.; Tang, B.; Yang, W.T.; Jiang, F.; Han, Y.L.; Han, S.S.; Ding, C. Heat Dissipation Performance Analysis and Structural Parameter Optimization of Oil-Immersed Transformer Based on Flow-Thermal Coupling Finite Element Method. Therm. Sci. 2022, 26, 3241–3253. [Google Scholar] [CrossRef]
- Cano-Pleite, E.; Barrado, A.; Garcia-Hernando, N.; Olías, E.; Soria-Verdugo, A. Numerical and Experimental Evaluation and Heat Transfer Characteristics of a Soft Magnetic Transformer Built from Laminated Steel Plates. Sensors 2021, 21, 7939. [Google Scholar] [CrossRef]
- Das, A.K.; Chatterjee, S. Finite element method-based modelling of flow rate and temperature distribution in an oil-filled disc-type winding transformer using COMSOL multiphysics. IET Electr. Power Appl. 2017, 11, 664–673. [Google Scholar] [CrossRef]
- Torriano, F.; Picher, P.; Chaaban, M. Numerical investigation of 3D flow and thermal effects in a disc-type transformer winding. Appl. Therm. Eng. 2012, 40, 121–131. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Li, H.; Yin, J.; Wang, J.; Fan, X. Spatially continuous transformer online temperature monitoring based on distributed optical fibre sensing technology. High Volt. 2022, 7, 336–345. [Google Scholar] [CrossRef]
- Kebriti, R.; Hosseini, S. 3D modeling of winding hot spot temperature in oil-immersed transformers. Electr. Eng. 2022, 104, 3325–3338. [Google Scholar] [CrossRef]
- Alegi, G.L.; Black, W.Z. Real-time thermal model for an oil-immersed, forced-air cooled transformer. IEEE Trans. Power Deliv. 1990, 5, 991–999. [Google Scholar] [CrossRef]
- Susa, D.; Nordman, H. IEC 60076–7 loading guide thermal model constants estimation. Int. Trans. Electr. Energy Syst. 2013, 23, 946–960. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/etep.1631 (accessed on 20 February 2024). [CrossRef]
- Santisteban, A.; Delgado, F.; Ortiz, A.; Renedo, C.J.; Ortiz, F. Thermal Modelling of Electrical Insulation System in Power Transformers. In Simulation and Modelling of Electrical Insulation Weaknesses in Electrical Equipment; Sánchez, R.A., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 2. [Google Scholar] [CrossRef]
- Blomgren, E.; D’Ettorre, F.; Samuelsson, O.; Banaei, M.; Ebrahimy, R.; Rasmussen, M.; Nielsen, N.; Larsen, A.; Madsen, H. Grey-box modeling for hot-spot temperature prediction of oil-immersed transformers in power distribution networks. Sustain. Energy Grids Netw. 2023, 34, 101048. [Google Scholar] [CrossRef]
- Roslan, M.H.; Azis, N.; Kadir, M.Z.A.A.; Jasni, J.; Ibrahim, Z.; Ahmad, A. A Simplified Top-Oil Temperature Model for Transformers Based on the Pathway of Energy Transfer Concept and the Thermal-Electrical Analogy. Energies 2017, 10, 1843. [Google Scholar] [CrossRef]
- IEEE Std C57.91-2011; IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators. IEEE: Piscataway, NJ, USA, 2012.
- Cui, Y.; Ma, H.; Saha, T.; Ekanayake, C.; Martin, D. Moisture-Dependent Thermal Modelling of Power Transformer. IEEE Trans. Power Deliv. 2016, 31, 2140–2150. [Google Scholar] [CrossRef]
- Doolgindachbaporn, A.; Callender, G.; Lewin, P.L.; Simonson, E.; Wilson, G. A Top-Oil Thermal Model for Power Transformers That Considers Weather Factors. IEEE Trans. Power Deliv. 2022, 37, 2163–2171. [Google Scholar] [CrossRef]
- Novkovic, M.; Radakovic, Z.; Torriano, F.; Picher, P. Proof of the Concept of Detailed Dynamic Thermal-Hydraulic Network Model of Liquid Immersed Power Transformers. Energies 2023, 16, 3808. [Google Scholar] [CrossRef]
- Santisteban, A.; Piquero, A.; Ortiz, F.; Delgado, F.; Ortiz, A. Thermal Modelling of a Power Transformer Disc Type Winding Immersed in Mineral and Ester-Based Oils Using Network Models and CFD. IEEE Access 2019, 7, 174651–174661. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Gao, M.; Xu, Y.; Fu, M.; Zhuo, R. Improved thermal hydraulic network modelling and error analysis in disc-type transformer windings. IET Gener. Transm. Distrib. 2024, 18, 202–213. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, L.; Zhu, Q.; Hu, X.; Wang, D.; Yang, H. Dynamic Thermal Network Modeling for Disk-Type Winding Domain of On-Board Traction Transformer. IEEE Trans. Transp. Electrif. 2023, 9, 2659–2668. [Google Scholar] [CrossRef]
- Rodriguez, G.R.; Garelli, L.; Storti, M.; Granata, D.; Amadei, M.; Rossetti, M. Numerical and experimental thermo-fluid dynamic analysis of a power transformer working in ONAN mode. Appl. Therm. Eng. 2017, 112, 1271–1280. [Google Scholar] [CrossRef]
- Garelli, L.; Ríos Rodriguez, G.; Storti, M.; Granata, D.; Amadei, M.; Rossetti, M. Reduced model for the thermo-fluid dynamic analysis of a power transformer radiator working in ONAF mode. Appl. Therm. Eng. 2017, 124, 855–864. [Google Scholar] [CrossRef]
- Blanco Alonso, P.E.; Meana-Fernández, A.; Fernández Oro, J.M. Thermal response and failure mode evaluation of a dry-type transformer. Appl. Therm. Eng. 2017, 120, 763–771. [Google Scholar] [CrossRef]
- Garelli, L.; Ríos Rodriguez, G.; Kubiczek, K.; Lasek, P.; Stepien, M.; Smolka, J.; Storti, M.; Pessolani, F.; Amadei, M. Thermo-magnetic-fluid dynamics analysis of an ONAN distribution transformer cooled with mineral oil and biodegradable esters. Therm. Sci. Eng. Prog. 2021, 23, 100861. [Google Scholar] [CrossRef]
- Zhang, X.; Daghrah, M.; Wang, Z.; Liu, Q. Flow and temperature distributions in a disc type winding-Part II: Natural cooling modes. Appl. Therm. Eng. 2020, 165, 114616. [Google Scholar] [CrossRef]
- Goscinski, P.; Nadolny, Z.; Nawrowski, R.; Boczar, T. The Tools and Parameters to Consider in the Design of Power Transformer Cooling Systems. Energies 2023, 16, 8000. [Google Scholar] [CrossRef]
- Susa, D.; Nordman, H. A Simple Model for Calculating Transformer Hot-Spot Temperature. IEEE Trans. Power Deliv. 2009, 24, 1257–1265. [Google Scholar] [CrossRef]
- Susa, D.; Lehtonen, M. Dynamic thermal modeling of power transformers: Further Development-part II. IEEE Trans. Power Deliv. 2006, 21, 1971–1980. [Google Scholar] [CrossRef]
- Taghikhani, M.A.; Gholami., A. Heat transfer in power transformer windings with oil-forced cooling. IET Electr. Power Appl. 2009, 3, 59–66. [Google Scholar] [CrossRef]
- Eckholz, K.; Knorr, W.; Schäfer, M.; Ag, S.; Feser, G.; Cardillo, E. New Developments in Transformer Cooling Calculations. 2004. Available online: https://www.e-cigre.org/publications/detail/a2-107-2004-new-developments-in-transformer-cooling-calculations.html (accessed on 20 February 2024).
- Goscinski, P.; Nadolny, Z.; Tomczewski, A.; Nawrowski, R.; Boczar, T. The Influence of Heat Transfer Coefficient alpha; of Insulating Liquids on Power Transformer Cooling Systems. Energies 2023, 16, 2627. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, Q.; Wilkinson, M.; Wilson, G.; Wang, Z. A Reduced Radiator Model for Simplification of ONAN Transformer CFD Simulation. IEEE Trans. Power Deliv. 2022, 37, 4007–4018. [Google Scholar] [CrossRef]
- Yang, F.; Wu, T.; Jiang, H.; Jiang, J.; Hao, H.; Zhang, L. A new method for transformer hot-spot temperature prediction based on dynamic mode decomposition. Case Stud. Therm. Eng. 2022, 37, 102268. [Google Scholar] [CrossRef]
FEM | FVM | Equivalent Circuit | Analytical | |
---|---|---|---|---|
Application | Calculation of the magnetic field, mechanics, heat transfer tasks | Hydrodynamics, convection | Digital twins, control systems, diagnostics, preliminary and auxiliary calculations | Transformer design, preliminary calculations, auxiliary calculations |
Programs | Comsol Multiphysics, ANSYS Maxwell, Elmer, Quick Field, Agros2D, CalculiX, FEniCS, Hermes, GetFEM++, GetDP, JMAG, ADINA, EMWorks, SIMULIA, NX Nastran, Altair Flux, INTEGRATED Engineering Software, TRAFALO, Code_Saturne | OpenFOAM, ANSYS Fluent, OpenFVM, Clawpack, Gambit | Simulink, MatLab, SciLab, EMTP, PSCAD/EMTDC, Python libraries, almost any environment that allows to implement mathematical calculations | Proprietary code, MathCad, in commercial programs to accelerate a number of procedures |
Calculation time | Long (strongly depends on the PC performance) | Long (strongly depends on the PC performance) | Fast | Extremely fast |
Embeddability in software | Medium | Medium | High | High |
Accuracy | High | High | Medium, requires clarification | Depends on the object |
PC Requirement | High | High | Below medium | Low |
Works in which this method is used | [45,46] | [47,50,51] | [33,34,35,36,37,38,39,40,41,42] | [52] |
Loss Model | Complex Field Shape | Prior Knowledge of Material Properties | Accuracy |
---|---|---|---|
The Steinmetz equation | − | Low | Low |
Modified Steinmetz equation | + | Low | Low-Medium |
Improved generalized Steinmetz equation | + | Low | Low-Medium |
Bertotti losses | + | Medium | Medium |
Dynamic hysteresis model | + | High | Good |
Surface loss model | + | High | Good |
A model based on magnetodynamic viscosity | + | High | Good |
Friction as a hysteresis model | + | High | Good |
Hysteresis model based on energy | + | High | Good |
Separation of losses after magnetization processes | + | Depends on the model | Depends on the model |
Location | Percentage of Total Losses, % |
---|---|
Oil tank | 1.22 |
Internal metal structural parts | 2.27 |
High voltage winding | 54.61 |
Low voltage winding | 42.39 |
Measure Applied | Losses, kW | Tank Temperature, °C | End-Frame Temperature, °C | Flitch Plate Temperature, °C |
---|---|---|---|---|
Without screens | 13.18 | 85.18 | 87.17 | 160.98 |
With wall shunts | 6.07 | 71.91 | 82.21 | 156.23 |
With copper screens | 11.51 | 74.88 | 89.43 | 160.26 |
Combined use of wall shunt and copper screen | 5.71 | 72.01 | 75.88 | 155.67 |
Combined use of wall shunt and shunt in magnetic circuit | 6.09 | 71.11 | 75.81 | 155.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolyanov, I.; Shmakov, E.; Butusov, D.; Khalyasmaa, A.I. Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers. Computation 2024, 12, 97. https://doi.org/10.3390/computation12050097
Smolyanov I, Shmakov E, Butusov D, Khalyasmaa AI. Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers. Computation. 2024; 12(5):97. https://doi.org/10.3390/computation12050097
Chicago/Turabian StyleSmolyanov, Ivan, Evgeniy Shmakov, Denis Butusov, and Alexandra I. Khalyasmaa. 2024. "Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers" Computation 12, no. 5: 97. https://doi.org/10.3390/computation12050097
APA StyleSmolyanov, I., Shmakov, E., Butusov, D., & Khalyasmaa, A. I. (2024). Review of Modeling Approaches for Conjugate Heat Transfer Processes in Oil-Immersed Transformers. Computation, 12(5), 97. https://doi.org/10.3390/computation12050097