A Simple Model of Turbine Control Under Stochastic Fluctuations of Internal Parameters
Abstract
:1. Introduction
- Blades ;
- Gearbox T with meshed gears;
- The generator axis .
2. Stochastic Backlash
3. A Turbine Model
4. Dissipation Effects
5. Control of the Electricity Generation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010; 577p. [Google Scholar] [CrossRef]
- Stiebler, M. Wind Energy Systems for Electric Power Generation; Springer Series in Green Energy and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; 193p. [Google Scholar] [CrossRef]
- Archer, C.L.; Caldeira, K. Global assessment of high-altitude wind power. Energies 2009, 2, 307–319. [Google Scholar] [CrossRef]
- Aubrun, S.; Loyer, S.; Hancock, P.E.; Hayden, P. Wind turbine wake properties: Comparison between a non-rotating simplified wind turbine model and a rotating model. J. Wind. Eng. Ind. Aerodyn. 2013, 120, 1–8. [Google Scholar] [CrossRef]
- Chen, P.; Thiringer, T. Analysis of energy curtailment and capacity overinstallation to maximize wind turbine profit considering electricity price-wind correlation. IEEE Trans. Sustain. Energy 2017, 8, 1406–1414. [Google Scholar] [CrossRef]
- Davidson, J.; Henriques, J.C.; Galeazzi, R.; Kalmár-Nagy, T. Parametric Resonance in Wave Energy Converters and Offshore Wind Turbines: A Review. SSRN 4899538. 2024, pp. 1–45. Available online: https://ssrn.com/abstract=4899538 (accessed on 23 January 2025).
- Falcão, A.F.O.; Henriques, J.C.C.; Gato, L.M.C. Air turbine optimization for a bottom-standing oscillating-water-column wave energy converter. J. Ocean. Eng. Mar. Energy 2016, 2, 459–472. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Yuan, Y.; Heng, F. Residual strength modeling and reliability analysis of wind turbine gear under different random loadings. Mathematics 2023, 11, 4013. [Google Scholar] [CrossRef]
- Krogstad, P.Å.; Lund, J.A. An experimental and numerical study of the performance of a model turbine. Wind Energy 2012, 15, 443–457. [Google Scholar] [CrossRef]
- Maheshwari, Z.; Kengne, K.; Bhat, O. A comprehensive review on wind turbine emulators. Renew. Sustain. Energy Rev. 2023, 180, 113297. [Google Scholar] [CrossRef]
- Ovy, E.G.; Sun, Q. Wind turbine dynamics modelling by a bond graph approach. Int. J. Dyn. Control. 2018, 6, 1523–1542. [Google Scholar] [CrossRef]
- Petru, T.; Thiringer, T. Modeling of wind turbines for power system studies. IEEE Trans. Power Syst. 2002, 17, 1132–1139. [Google Scholar] [CrossRef]
- Pfaffel, S.; Faulstich, S.; Rohrig, K. Performance and reliability of wind turbines: A review. Energies 2017, 10, 1904. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L. Environmental impact and waste recycling technologies for modern wind turbines: An overview. Waste Manag. Res. 2023, 41, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, J.; Wu, S.; Wang, X.; Zhao, D. Dynamics characteristics of wind turbine gear pairs considering lubrication and tooth surface roughness. Meccanica 2024, 59, 255–277. [Google Scholar] [CrossRef]
- He, X.; Geng, H.; Mu, G. Modeling of wind turbine generators for power system stability studies: A review. Renew. Sustain. Energy Rev. 2021, 143, 110865. [Google Scholar] [CrossRef]
- Njiri, J.G.; Söffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–393. [Google Scholar] [CrossRef]
- Shourangiz-Haghighi, A.; Diazd, M.; Zhang, Y.; Li, J.; Yuan, Y.; Faraji, R.; Guerrero, J.M. Developing more efficient wind turbines: A survey of control challenges and opportunities. IEEE Ind. Electron. Mag. 2020, 14, 53–64. [Google Scholar] [CrossRef]
- Kong, X.; Ma, L.; Liu, X.; Abdelbaky, M.A.; Wu, Q. Wind turbine control using nonlinear economic model predictive control over all operating regions. Energies 2020, 13, 184. [Google Scholar] [CrossRef]
- Tang, Z.H.; Melville, B.; Singhal, N.; Shamseldin, A.; Zheng, J.H.; Guan, D.W.; Cheng, L. Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Sci. Eng. 2022, 15, 15–28. [Google Scholar] [CrossRef]
- Xie, F.; Aly, A.-M. Structural control and vibration issues in wind turbines: A review. Eng. Struct. 2020, 210, 110087. [Google Scholar] [CrossRef]
- Kahnamouei, J.T.; Yang, J. Development and verification of a computationally efficient stochastically linearized planetary gear train model with ring elasticity. Mech. Mach. Theory 2021, 155, 104061. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, W.; Liu, J. Dynamic characteristics analysis of a high-speed-level gear transmission system of a wind turbine consid-ering a time-varying wind load and an electromagnetic torque disturbance. J. Low Freq. Noise Vib. Act. Control. 2021, 40, 1876–1895. [Google Scholar] [CrossRef]
- Shuai, M.; Yingxin, Z.; Yuling, S.; Wenhao, S.; Yunsheng, H. Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system. Nonlinear Dyn. 2022, 108, 3367–3389. [Google Scholar] [CrossRef]
- Xiang, L.; An, C.; Zhang, Y.; Hu, A. Failure dynamic modelling and analysis of planetary gearbox considering gear tooth spalling. Eng. Fail. Anal. 2021, 125, 105444. [Google Scholar] [CrossRef]
- Borzunov, S.V.; Semenov, M.E.; Sel’vesyuk, N.I.; Meleshenko, P.A. Generalized Play-Operator Under Stochastic Perturbations: An Analytic Approach. J. Vib. Eng. Technol. 2021, 9, 355–365. [Google Scholar] [CrossRef]
- Borzunov, S.V.; Semenov, M.E.; Sel’vesyuk, N.I.; Meleshenko, P.A. Hysteretic Converters with Stochastic Parameters. Math. Model. Comput. Simulations 2020, 12, 164–175. [Google Scholar] [CrossRef]
- Semenov, M.E.; Borzunov, S.V.; Meleshenko, P.A. Stochastic Preisach operator: Definition within the design approach. Nonlinear Dyn. 2020, 101, 2599–2614. [Google Scholar] [CrossRef]
- Krasnosel’skiǐ, M.A.; Pokrovskiǐ, A.V. Systems with Hysteresis; Springer: Berlin/Heidelberg, Germany, 1989; Volume xviii, 410p. [Google Scholar] [CrossRef]
- Wright, A.; Fleming, P.; Scholbrock, A.; Johnson, K.; Pao, L.; van Wingerden, J.-W. Wind turbine control design. In Wind Energy Modeling and Simulation. Volume 2. Turbine and System; IET Energy Engineering Series, 125; Veers, P., Ed.; The Institution of Engineering and Technology: London, UK, 2020; pp. 169–233. ISBN 978-1-78561-524-5. [Google Scholar] [CrossRef]
- Acho, L.; Rodellar, J.; Tutivén, C.; Vidal, Y. Passive fault tolerant control strategy in controlled wind turbines. In Proceedings of the 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, 7–9 September 2016; pp. 636–641. [Google Scholar] [CrossRef]
- Tutivén, C.; Vidal, Y.; Rodellar, J.; Acho, L. Acceleration-based fault-tolerant control design of offshore fixed wind turbines. Struct. Control. Health Monit. 2017, 24, e1920. [Google Scholar] [CrossRef]
- Vidal, Y.; Tutivén, C.; Rodellar, J.; Acho, L. Fault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator. Energies 2015, 8, 4300–4316. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borzunov, S.V.; Semenov, M.E.; Zybin, E.Y.; Zheltov, S.Y.; Kosyanchuk, V.V.; Barsukov, A.I. A Simple Model of Turbine Control Under Stochastic Fluctuations of Internal Parameters. Computation 2025, 13, 27. https://doi.org/10.3390/computation13020027
Borzunov SV, Semenov ME, Zybin EY, Zheltov SY, Kosyanchuk VV, Barsukov AI. A Simple Model of Turbine Control Under Stochastic Fluctuations of Internal Parameters. Computation. 2025; 13(2):27. https://doi.org/10.3390/computation13020027
Chicago/Turabian StyleBorzunov, Sergei V., Mikhail E. Semenov, Eugene Y. Zybin, Sergey Y. Zheltov, Vladislav V. Kosyanchuk, and Andrey I. Barsukov. 2025. "A Simple Model of Turbine Control Under Stochastic Fluctuations of Internal Parameters" Computation 13, no. 2: 27. https://doi.org/10.3390/computation13020027
APA StyleBorzunov, S. V., Semenov, M. E., Zybin, E. Y., Zheltov, S. Y., Kosyanchuk, V. V., & Barsukov, A. I. (2025). A Simple Model of Turbine Control Under Stochastic Fluctuations of Internal Parameters. Computation, 13(2), 27. https://doi.org/10.3390/computation13020027