Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model
Abstract
:1. Introduction
2. Numerical Model
3. Validation and Parametrization
3.1. Dynamic Capillary Intrusion
3.2. Contact Angle
4. Setup and Boundary Conditions
5. Results and Discussion
5.1. Pore Meniscus
5.2. Corner Arc Menisci
6. Conclusions
- When the contact angle is larger than the critical contact angle, θ ≥ θc, only a pore meniscus develops and its height increases with the decreasing contact angle for both square and triangular tubes. The LB simulation results show good agreement with the analytical solution. At a very low contact angle in the triangular tube, the height is under-predicted due to the artificial roughness introduced. The LB heights normalized with the circumscribed radius for hydrophobic and hydrophilic surfaces as a function of the effective contact angle collapse into a single S-shaped curve for square and triangular tubes.
- When the contact angle is smaller than the critical contact angle, θ < θc, LB simulations predict that the liquid invades the corners, forming corner arc menisci. The relation between the degree of saturation and the curvature of the corner arc menisci follows the Mayer and Stoewe-Princen (MS-P) model. The study of the time-dependence of the degree of saturation shows corners filling faster at an early stage and corner arc menisci thickening at a later stage.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Concus, P.; Finn, R. On capillary free surfaces in the absence of gravity. Acta Math. 1974, 132, 177–198. [Google Scholar] [CrossRef]
- Concus, P.; Finn, R. Dichotomous behavior of capillary surfaces in zero gravity. Microgravity Sci. Technol. 1990, 3, 87–92. [Google Scholar]
- Wong, H.; Morris, S.; Radke, C. Three-dimensional menisci in polygonal capillaries. J. Colloid Interface Sci. 1992, 148, 317–336. [Google Scholar] [CrossRef]
- Dong, M.; Chatzis, I. The imbibition and flow of a wetting liquid along the corners of a square capillary tube. J. Colloid Interface Sci. 1995, 172, 278–288. [Google Scholar] [CrossRef]
- Princen, H. Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J. Colloid Interface Sci. 1969, 30, 69–75. [Google Scholar] [CrossRef]
- Princen, H. Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 1969, 30, 359–371. [Google Scholar] [CrossRef]
- Mayer, R.P.; Stowe, R.A. Mercury porosimetry—Breakthrough pressure for penetration between packed spheres. J. Colloid Sci. 1965, 20, 893–911. [Google Scholar] [CrossRef]
- Princen, H. Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal parallel cylinders. J. Colloid Interface Sci. 1970, 34, 171–184. [Google Scholar] [CrossRef]
- Bico, J.; Quéré, D. Rise of liquids and bubbles in angular capillary tubes. J. Colloid Interface Sci. 2002, 247, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Mason, G.; Morrow, N.R. Effect of contact angle on drainage and imbibition in regular polygonal tubes. Colloids Surf. A Physicochem. Eng. Asp. 1996, 117, 273–291. [Google Scholar] [CrossRef]
- Feng, J.; Rothstein, J.P. Simulations of novel nanostructures formed by capillary effects in lithography. J. Colloid Interface Sci. 2011, 354, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S. An improved level set method for incompressible two-phase flows. Comput. Fluids 1998, 27, 663–680. [Google Scholar] [CrossRef]
- Tryggvason, G.; Esmaeeli, A.; Lu, J.; Biswas, S. Direct numerical simulations of gas/liquid multiphase flows. Fluid Dyn. Res. 2006, 38, 660–681. [Google Scholar] [CrossRef]
- Owkes, M.; Desjardins, O. A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method. J. Comput. Phys. 2014, 270, 587–612. [Google Scholar] [CrossRef]
- Chen, S.Y.; Doolen, G.D. Lattice Boltzmann methode for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Q.; Carey, B.; Tao, W.Q. Pore-scale study of diffusion-reaction processes involving dissolution and precipitation using the lattice Boltzmann method. Int. J. Heat Mass Transf. 2014, 75, 483–496. [Google Scholar] [CrossRef]
- Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 1991, 43, 4320. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.R.; Orlandini, E.; Osborn, W.; Yeomans, J. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 1996, 54, 5041. [Google Scholar] [CrossRef]
- He, X.; Chen, S.; Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 1999, 152, 642–663. [Google Scholar] [CrossRef]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815–1819. [Google Scholar] [CrossRef]
- Shan, X.; Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 1994, 49, 2941. [Google Scholar] [CrossRef]
- Chen, L.; Luan, H.B.; He, Y.L.; Tao, W.Q. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields. Int. J. Thermal Sci. 2012, 51, 132–144. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Q.; Mu, Y.; He, Y.-L.; Tao, W.-Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass Transfer 2014, 76, 210–236. [Google Scholar] [CrossRef]
- Thorne, D.T.; Michael, C. Lattice Boltzmann Modeling An Introduction for Geoscientists and Engineers; Springer: Miami, FL, USA, 2006. [Google Scholar]
- Raiskinmäki, P.; Shakib-Manesh, A.; Jäsberg, A.; Koponen, A.; Merikoski, J.; Timonen, J. Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 2002, 107, 143–158. [Google Scholar] [CrossRef]
- Dos Santos, L.O.; Wolf, F.G.; Philippi, P.C. Dynamics of interface displacement in capillary flow. J. Stat. Phys. 2005, 121, 197–207. [Google Scholar] [CrossRef]
- Lu, G.; Wang, X.-D.; Duan, Y.-Y. Study on initial stage of capillary rise dynamics. Colloids Surf. A Physicochem. Eng. Asp. 2013, 433, 95–103. [Google Scholar] [CrossRef]
- Martys, N.S.; Chen, H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 1996, 53, 743–750. [Google Scholar] [CrossRef]
- Hecht, M.; Harting, J. Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. J. Stat. Mech.: Theory Exp. 2010, 2010, P01018. [Google Scholar] [CrossRef]
- Li, Q.; Luo, K.H.; Li, X.J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys. Rev. E 2012, 86, 016709. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Krafczyk, M.; Lu, X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Phys. Re. E 2011, 84, 046710. [Google Scholar] [CrossRef] [PubMed]
- Kupershtokh, A.; Medvedev, D.; Karpov, D. On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 2009, 58, 965–974. [Google Scholar] [CrossRef]
- Yuan, P.; Schaefer, L. Equations of state in a lattice Boltzmann model. Phys. Fluids 2006, 18, 042101. [Google Scholar] [CrossRef]
- Azwadi, C.N.; Witrib, M.A. Simulation of multicomponent multiphase flow using lattice Boltzmann method. In Proceedings of the 4th International Meeting of Advances in Thermofluids (IMAT 2011); AIP Publishing: Melaka, Malaysia, 2012. [Google Scholar]
- Chen, L.; Kang, Q.; Robinson, B.A.; He, Y.-L.; Tao, W.-Q. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems. Phys. Rev. E 2013, 87, 043306. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Valocchi, A.; Kang, Q.; Werth, C. Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous Pore Network Using the Lattice Boltzmann Method. Transport Porous Media 2013, 99, 555–580. [Google Scholar] [CrossRef]
- Diotallevi, F.; Biferale, L.; Chibbaro, S.; Lamura, A.; Pontrelli, G.; Sbragaglia, M.; Succi, S.; Toschi, F. Capillary filling using lattice Boltzmann equations: The case of multi-phase flows. Eur. Phys. J. Spec. Top. 2009, 166, 111–116. [Google Scholar] [CrossRef]
- Pooley, C.; Kusumaatmaja, H.; Yeomans, J. Modelling capillary filling dynamics using lattice Boltzmann simulations. Eur. Phys. J.-Spec. Top. 2009, 171, 63–71. [Google Scholar] [CrossRef]
- Son, S.; Chen, L.; Derome, D.; Carmeliet, J. Numerical study of gravity-driven droplet displacement on a surface using the pseudopotential multiphase lattice Boltzmann model with high density ratio. Comput. Fluids 2015, 117, 42–53. [Google Scholar] [CrossRef]
- Stalder, A.F.; Melchior, T.; Müller, M.; Sage, D.; Blu, T.; Unser, M. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 2010, 364, 72–81. [Google Scholar] [CrossRef]
- Mei, R.; Luo, L.-S.; Shyy, W. An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 1999, 155, 307–330. [Google Scholar] [CrossRef]
- Mei, R.; Shyy, W.; Yu, D.; Luo, L.-S. Lattice Boltzmann method for 3-D flows with curved boundary. J. Comput. Phys. 2000, 161, 680–699. [Google Scholar] [CrossRef]
- De Gennes, P.G. Wetting: Statics and dynamics. Rev. Modern Phys. 1985, 57, 827. [Google Scholar] [CrossRef]
- Quéré, D. Rough ideas on wetting. Phys. A: Stat. Mech. Appl. 2002, 313, 32–46. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.; Chen, L.; Kang, Q.; Derome, D.; Carmeliet, J. Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model. Computation 2016, 4, 12. https://doi.org/10.3390/computation4010012
Son S, Chen L, Kang Q, Derome D, Carmeliet J. Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model. Computation. 2016; 4(1):12. https://doi.org/10.3390/computation4010012
Chicago/Turabian StyleSon, Soyoun, Li Chen, Qinjun Kang, Dominique Derome, and Jan Carmeliet. 2016. "Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model" Computation 4, no. 1: 12. https://doi.org/10.3390/computation4010012
APA StyleSon, S., Chen, L., Kang, Q., Derome, D., & Carmeliet, J. (2016). Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model. Computation, 4(1), 12. https://doi.org/10.3390/computation4010012