WISC-V Measurement Invariance According to Sex and Age: Advancing the Understanding of Intergroup Differences in Cognitive Performance
Abstract
:1. Introduction
1.1. Measurement Invariance
1.2. WISC-V Invariance According to Sex
1.3. WISC-V Invariance According to Age Group
1.4. WISC-V Invariance Studies in Chile
1.5. Performance Comparisons with WISC-V According to Sex and Age
1.6. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Instruments
Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V)
2.3. Procedure
2.4. Data Analyses
3. Results
3.1. Descriptions of WISC-V Scores According to Sex
3.2. Analysis of Invariance According to Sex and Age Group
3.2.1. Baseline Models
3.2.2. Configural Invariance
3.2.3. Metric Invariance
3.2.4. Scalar Invariance
3.2.5. Residual Invariance
4. Discussion
4.1. Invariance According to Sex
4.2. Invariance According to Age Group
4.3. Implications
4.4. Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abad, Francisco J., Miguel A. Sorrel, Francisco J. Román, and Roberto Colom. 2016. The Relationships between WAIS-IV Factor Index Scores and Educational Level: A Bifactor Model Approach. Psychological Assessment 28: 987–1000. [Google Scholar] [CrossRef]
- AERA, APA, and CME. 2018. Estándares Para Pruebas Educativas y Psicológicas (M. Lieve, Trad.). Washington, DC: American Educational Research Association. [Google Scholar]
- APA. 2020. APA Guidelines for Psychological Assessment and Evaluation. Washington, DC: APA. [Google Scholar] [CrossRef]
- Ardila, Rubén. 2011. Inteligencia. ¿Qué sabemos y qué nos falta por investigar? Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales 35: 97–103. [Google Scholar]
- Brenlla, María Elena. 2013. Interpretación Del WISC-IV. Puntuaciones Compuestas y Modelos CHC. Ciencias Psicológicas 7: 183–97. [Google Scholar] [CrossRef]
- Browne, Michael, and Robert Cudeck. 1992. Alternative Ways of Assessing Model Fit. Sociological Methods & Research 21: 230–58. [Google Scholar] [CrossRef]
- Bulut, Okan, Damien C. Cormier, Alexandra M. Aquilina, and Hatice C. Bulut. 2021. Age and Sex Invariance of the Woodcock-Johnson IV Tests of Cognitive Abilities: Evidence from Psychometric Network Modeling. Journal of Intelligence 9: 35. [Google Scholar] [CrossRef]
- Canivez, Gary L., and Marley W. Watkins. 2016. Review of the Weschler Intelligence Scale for Children—Fifth Edition: Critique, Commentary, and Independent Analyses in Intelligent Testing with the WISC-V. Hoboken: Wiley. [Google Scholar]
- Canivez, Gary L., Marley W. Watkins, and Stefan C. Dombrowski. 2016. Factor Structure of the Wechsler Intelligence Scale for Children—Fifth Edition: Exploratory Factor Analyses with the 16 Primary and Secondary Subtests. Psychological Assessment 28: 975–86. [Google Scholar] [CrossRef]
- Center on the Developing Child at Harvard University. 2011. Building the Brain’s ‘Air Traffic Control’ System: How Early Experiences Shape the Development of Executive Function. Available online: https://developingchild.harvard.edu/ (accessed on 31 May 2023).
- Chen, Fang Fang. 2007. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal 14: 464–504. [Google Scholar] [CrossRef]
- Chen, Hsinyi, and Jianjun Zhu. 2012. Measurement Invariance of WISC-IV across Normative and Clinical Samples. Personality and Individual Differences 52: 161–66. [Google Scholar] [CrossRef]
- Chen, Hsinyi, Jianjun Zhu, Yung-Kun Liao, and Timothy Z. Keith. 2020. Age and Gender Invariance in the Taiwan Wechsler Intelligence Scale for Children, Fifth Edition: Higher Order Five-Factor Model. Journal of Psychoeducational Assessment 38: 1033–45. [Google Scholar] [CrossRef]
- Chen, Hsinyi, Ou Zhang, Susan Engi Raiford, Jianjun Zhu, and Lawrence G. Weiss. 2015. Factor Invariance between Genders on the Wechsler Intelligence Scale for Children–Fifth Edition. Personality and Individual Differences 86: 1–5. [Google Scholar] [CrossRef]
- Cheung, Gordon W., and Roger B. Rensvold. 2002. Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal 9: 233–55. [Google Scholar] [CrossRef]
- Cohen, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences, 2nd ed. New York: Lawrence Erlbaum Associates. [Google Scholar]
- Coronel, Claudia Paola, Ana Betina Lacunza, and Norma Contini. 2006. Las Habilidades Cognitivas En Niños Privados Culturalmente. Resultados Preliminares de La Primera Fase de Evaluación. Revista Iberoamericana de Diagnóstico y Evaluación—E Avaliação Psicológica 2: 49–74. [Google Scholar]
- Diamond, Adele. 2013. Executive Functions. Annual Review of Psychology 64: 135–68. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, Dimiter. 2010. Testing for Factorial Invariance in the Context of Construct Validation. Measurement and Evaluation in Counseling and Development 43: 121–49. [Google Scholar] [CrossRef]
- Dolan, Conor V. 2000. Investigating Spearman’s Hypothesis by Means of Multi-Group Confirmatory Factor Analysis. Multivariate Behavioral Research 35: 21–50. [Google Scholar] [CrossRef]
- Dolan, Conor V., Roberto Colom, Francisco J. Abad, Jelte M. Wicherts, David J. Hessen, and Sophie Van De Sluis. 2006. Multi-Group Covariance and Mean Structure Modeling of the Relationship between the WAIS-III Common Factors and Sex and Educational Attainment in Spain. Intelligence 34: 193–210. [Google Scholar] [CrossRef]
- Dolan, Conor V., Willemijn Roorda, and Jelte M. Wicherts. 2004. Two Failures of Spearman’s Hypothesis: The GATB in Holland and the JAT in South Africa. Intelligence 32: 155–73. [Google Scholar] [CrossRef]
- Dombrowski, Stefan C., Marley W. Watkins, Ryan J. McGill, Gary L. Canivez, Calliope Holingue, Alison E. Pritchard, and Lisa A. Jacobson. 2021. Measurement Invariance of the Wechsler Intelligence Scale for Children, Fifth Edition 10-Subtest Primary Battery: Can Index Scores Be Compared across Age, Sex, and Diagnostic Groups? Journal of Psychoeducational Assessment 39: 89–99. [Google Scholar] [CrossRef]
- Elosua, Paula. 2003. Sobre la validez de los tests. Psicothema 15: 315–21. [Google Scholar]
- Elosua, Paula. 2005. Evaluación progresiva de la invarianza factorial entre las versiones original y adaptada de una escala de autoconcepto. Psicothema 17: 356–62. [Google Scholar]
- Flanagan, Dawn, and Shauna Dixon. 2014. The Cattell-Horn-Carroll Theory of Cognitive Abilities. In Encyclopedia of Special Education. Edited by Cecil Reynolds, Kimberly Vannest and Elaine Fletcher-Janzen. Hoboken: Wiley. [Google Scholar] [CrossRef]
- Flanagan, Dawn, and Vicent Alfonso. 2017. Essentials of WISC-V Assessment. Hoboken: Wiley. [Google Scholar]
- Forns, María, and J. A. Amador. 2017. Habilidades Clínicas Para Aplicar, Corregir e Interpretar Las Escalas de Inteligencia de Wechsler. Madrid: Pirámide. [Google Scholar]
- Garolera, Marion, and Valentina Navarro. 2020. Género y WISC en Chile: ¿mejora en el rendimiento o en la evaluación? Papeles de Investigación CEDETi-UC 13: 1–34. [Google Scholar]
- Giofrè, David, Katie Allen, Enrico Toffalini, and Sara Caviola. 2022. The Impasse on Gender Differences in Intelligence: A Meta-Analysis on WISC Batteries. Educational Psychology Review 34: 2543–68. [Google Scholar] [CrossRef]
- Gómez-Benito, Juana, M. Dolores Hidalgo, and Georgina Guilera. 2010. El Sesgo de los Instrumentos de Medición. Test Justos. Papeles del Psicólogo 31: 75–84. [Google Scholar]
- Grégoire, Jacques. 2020. Intellectual Differences between Boys and Girls, 35 Years of Evolution between WISC-R and WISC-V. A.N.A.E. 169: 1–8. [Google Scholar]
- Hernández, Ana, Cristina Aguilar, Èrica Paradell, María Muñoz, Louis-Charles Vannier, and Frédérique Vallar. 2017. The Effect of Demographic Variables on the Assessment of Cognitive Ability. Psicothema 29: 469–74. [Google Scholar] [CrossRef] [PubMed]
- Hu, Li-tze, and Peter Bentler. 1999. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6: 1–55. [Google Scholar] [CrossRef]
- Immekus, Jason C., and Susan J. Maller. 2010. Factor Structure Invariance of the Kaufman Adolescent and Adult Intelligence Test Across Male and Female Samples. Educational and Psychological Measurement 70: 91–104. [Google Scholar] [CrossRef]
- International Journal of Testing. 2017. ITC Guidelines for Translating and Adapting Tests (Second Edition). International Journal of Testing 18: 101–34. [Google Scholar] [CrossRef]
- Kaufman, Alan, Susan Engi Raiford, and Diane L. Coalson. 2016. Intelligent Testing with the WISC-V. Hoboken: Wiley. [Google Scholar]
- Leitgöb, Heinz, Daniel Seddig, Tihomir Asparouhov, Dorothée Behr, Eldad Davidov, Kim De Roover, Suzanne Jak, Katharina Meitinger, Natalja Menold, Bengt Muthén, and et al. 2023. Measurement Invariance in the Social Sciences: Historical Development, Methodological Challenges, State of the Art, and Future Perspectives. Social Science Research 110: 102805. [Google Scholar] [CrossRef]
- Marín, Carolina. 2021. Guía Práctica de Evaluación Psicológica Clínica. Desarrollo de Competencias. Madrid: Pirámide. [Google Scholar]
- McGill, Ryan J., T. Ward, and Gary L. Canivez. 2020. Use of Translated and Adapted Versions of the WISC-V: Caveat Emptor. School Psychology International 41: 276–94. [Google Scholar] [CrossRef]
- McGrew, Kevin S., W. Joel Schneider, Scott L. Decker, and Okan Bulut. 2023. A Psychometric Network Analysis of CHC Intelligence Measures: Implications for Research, Theory, and Interpretation of Broad CHC Scores ‘Beyond g’. Journal of Intelligence 11: 19. [Google Scholar] [CrossRef]
- Meredith, William. 1993. Measurement Invariance, Factor Analysis and Factorial Invariance. Psychometrika 58: 525–43. [Google Scholar] [CrossRef]
- Millsap, Roger E. 2011. Statistical Approaches to Measurement Invariance. New York: Routledge. Taylor and Francis Group. [Google Scholar]
- Ministerio Educación Chile. 2009. Decreto 170/Fija Normas Para Determinar Los Alumnos Con Necesidades Educativas Especiales Que Serán Beneficiarios de Las Subvenciones Para Educación Especial. Available online: https://www.leychile.cl/Navegar?idNorma=1012570 (accessed on 7 December 2022).
- Muñiz, José, Ana Hernández, and Vicente Ponsoda. 2015. Nuevas Directrices sobre el Uso de los Test: Investigación, Control de Calidad y Seguridad. Papeles del Psicólogo 36: 161–73. [Google Scholar]
- Muñiz, José, and Eduardo Fonseca-Pedrero. 2019. Diez pasos para la construcción de un test. Psicothema 31: 7–16. [Google Scholar] [CrossRef]
- Niileksela, Christopher, and Matthew Reynolds. 2019. Enduring the Tests of Age and Time: Wechsler Constructs across Versions and Revisions. Intelligence 77: 2–15. [Google Scholar] [CrossRef]
- Olivera-Aguilar, Margarita, Samuel H. Rikoon, Oscar Gonzalez, Yasemin Kisbu-Sakarya, and David P. MacKinnon. 2018. Bias, Type I Error Rates, and Statistical Power of a Latent Mediation Model in the Presence of Violations of Invariance. Educational and Psychological Measurement 78: 460–81. [Google Scholar] [CrossRef] [PubMed]
- Pauls, Franz, Monika Daseking, and Franz Petermann. 2020. Measurement Invariance Across Gender on the Second-Order Five-Factor Model of the German Wechsler Intelligence Scale for Children–Fifth Edition. Assessment 27: 1836–52. [Google Scholar] [CrossRef] [PubMed]
- Pedrero, Víctor. 2019. Medición de Invarianza Factorial En Pruebas de Gran Escala. In Validez de Las Evaluaciones Educacionales En Chile y Latinoamérica. Santiago: Ediciones UC, pp. 265–300. [Google Scholar]
- Putnick, Diane L., and Marc H. Bornstein. 2016. Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Developmental Review 41: 71–90. [Google Scholar] [CrossRef]
- Reynolds, Matthew R., and Timothy Z. Keith. 2017. Multi-Group and Hierarchical Confirmatory Factor Analysis of the Wechsler Intelligence Scale for Children—Fifth Edition: What Does It Measure? Intelligence 62: 31–47. [Google Scholar] [CrossRef]
- Rodríguez-Cancino, Marcela, María Beatriz Vizcarra, and Andrés Concha-Salgado. 2021. ¿Se Puede Evaluar a Niños Rurales con WISC-V? Explorando la Invarianza Factorial de la Inteligencia en Chile. Revista Iberoamericana de Diagnóstico y Evaluación—E Avaliação Psicológica 60: 117–31. [Google Scholar] [CrossRef]
- Rosas, Ricardo, and Marcelo Pizarro. 2018. WISC-V: Manual de Administración y Corrección. Santiago: Pontificia Universidad Católica de Chile, Centro de Desarrollo de Tecnologías de Inclusión & Pearson. [Google Scholar]
- Rosas, Ricardo, Marcelo Pizarro, Olivia Grez, Valentina Navarro, Dolly Tapia, Susana Arancibia, María Teresa Muñoz-Quezada, Boris Lucero, Claudia P. Pérez-Salas, Karen Oliva, and et al. 2022. Estandarización Chilena de la Escala Wechsler de Inteligencia para Niños—Quinta Edición. Psykhe 31: 1–23. [Google Scholar] [CrossRef]
- Rosas, Ricardo, Victoria Espinoza, Felipe Porflitt, and Francisco Ceric. 2019. Executive Functions Can Be Improved in Preschoolers Through Systematic Playing in Educational Settings: Evidence From a Longitudinal Study. Frontiers in Psychology 10: 2024. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, Mónica, Esmeralda Matute, and Alfredo Ardila. 2010. Neuropsicología Del Desarrollo Infantil. Mexico: Manual Moderno. [Google Scholar]
- Sattler, Jerome. 2003. Child Assessment: Cognitive Applications. Mexico: Manual Moderno, vol. 1. [Google Scholar]
- Scheiber, Caroline. 2016. Is the Cattell–Horn–Carroll-Based Factor Structure of the Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V) Construct Invariant for a Representative Sample of African–American, Hispanic, and Caucasian Male and Female Students Ages 6 to 16 Years? Journal of Pediatric Neuropsychology 2: 79–88. [Google Scholar] [CrossRef]
- Smith, Leann V., and Scott L. Graves. 2021. An Exploration of Gender Invariance of the WISC-V Among Black Children in an Urban School District. Contemporary School Psychology 25: 170–82. [Google Scholar] [CrossRef]
- Tommasi, Marco, Lina Pezzuti, Roberto Colom, Francisco J. Abad, Aristide Saggino, and Arturo Orsini. 2015. Increased Educational Level Is Related with Higher IQ Scores but Lower G-Variance: Evidence from the Standardization of the WAIS-R for Italy. Intelligence 50: 68–74. [Google Scholar] [CrossRef]
- Van de Schoot, Rens, Peter Lugtig, and Joop Hox. 2012. A Checklist for Testing Measurement Invariance. European Journal of Developmental Psychology 9: 486–92. [Google Scholar] [CrossRef]
- Van de Vijver, Fons, Lawrence G. Weiss, Donald Saklofke, Abigail Batty, and Aurelio Prifitera. 2019. A Cross-Cultural Analysis of the WISC-V. In WISC-V. Clinical Use and Interpretation, 2nd ed. London: Elsevier, pp. 223–44. [Google Scholar]
- Vandenberg, Robert J., and Charles E. Lance. 2000. A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research. Organizational Research Methods 3: 4–70. [Google Scholar] [CrossRef]
- Vinet, Eugenia V., Marcela Rodríguez-Cancino, Ailin Sandoval-Dominguez, Paloma Rojas-Mora, and José L. Saiz. 2023. El Empleo de Test por Psicólogos/as Chilenos/as: Un Inquietante Panorama. Psykhe 32: 1–19. [Google Scholar] [CrossRef]
- Wechsler, David. 2014. WISC-V Wechsler Intelligence Scale for Children-Fifth Edition: Technical and Interpretive Manual. Bloomington: Pearson Clinical Assessment. [Google Scholar]
- Weiss, Lawrence G., Donald Saklofke, James Holdnack, and Aurelio Prifitera. 2019. WISC-V. Clinical Use and Interpretation, 2nd ed. London: Elsevier. [Google Scholar]
- Wicherts, Jelte M. 2016. The Importance of Measurement Invariance in Neurocognitive Ability Testing. The Clinical Neuropsychologist 30: 1006–16. [Google Scholar] [CrossRef]
- Wicherts, Jelte M., and Conor V. Dolan. 2010. Measurement Invariance in Confirmatory Factor Analysis: An Illustration Using IQ Test Performance of Minorities: Fall 2010. Educational Measurement: Issues and Practice 29: 39–47. [Google Scholar] [CrossRef]
- Wicherts, Jelte M., Conor V. Dolan, David J. Hessen, Paul Oosterveld, G. Caroline M. Van Baal, Dorret I. Boomsma, and Mark M. Span. 2004. Are Intelligence Tests Measurement Invariant over Time? Investigating the Nature of the Flynn Effect. Intelligence 32: 509–37. [Google Scholar] [CrossRef]
Authors | Country | Groups | Results |
---|---|---|---|
Chen et al. (2015) | USA | Gender (male female) n = 2200 | Configural, metric, scalar and residual invariance between sexes with a second-order hierarchical pentafactorial model. |
Scheiber (2016) | USA | Ethnicity and gender (African-American, Hispanic, and Caucasian) n = 2637 | Configural, metric, and scalar invariance for the six groups according to ethnicity and sex with a second-order hierarchical pentafactorial model. |
Reynolds and Keith (2017) | USA | Age group (11 separate age groups between 6 and 16 years) n = 2200 | Configural, metric, scalar, and residual invariance by age group with first-order, hierarchical, and bifactorial factorial models. |
Pauls et al. (2020) | Germany | Gender (male female) n = 1411 | Configural, metric and partial scalar invariance according to sex, with a second-order hierarchical pentafactorial model. Inequality in the Information, Figure Weights, Coding and Cancellation subtests |
Smith and Graves (2021) | USA | Gender (boys girls) among African Americans n = 647 | Configural, metric and partial scalar invariance between sexes, with an oblique model of five first-order factors. Inequality in the Similarities and Coding subtests. |
Chen et al. (2020) | Taiwan | Gender (boys girls) and age group (6–8, 9–11, 12–14, and 15–16) n = 1034 | Configural, metric, scalar, and residual invariance between sexes and age group with a second-order hierarchical pentafactorial model. |
Dombrowski et al. (2021) | USA | Sex (male female), age group (6–8, 9–11, 12–14, and 15–16), and clinical diagnosis (ADHD, anxiety, and encephalopathy) n = 5359 | Configural, metric, and full scalar invariance for sex and clinical diagnosis groups. Partial scalar invariance for the age group. Invariance was tested in an oblique model of five first-order factors. Inequality in the Fluid Reasoning subtests for the age group. |
Rodríguez-Cancino et al. (2021) | Chile | Origin (urban-rural) n = 480 | Configural invariance and partial metric according to origin with a second-order hierarchical pentafactorial model. Inequality in the Similarities subtest. |
Age Group (in Years) | Boys | Girls | Missing | Total Sample | ||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | |
6–8 | 100 | 51.5% | 94 | 48.5% | 0 | 0.0% | 194 | 26.2% |
9–11 | 111 | 47.0% | 123 | 52.1% | 2 | 0.8% | 236 | 31.9% |
12–14 | 94 | 48.7% | 98 | 50.8% | 1 | 0.5% | 193 | 26.1% |
15–16 | 53 | 45.3% | 64 | 54.7% | 0 | 0.0% | 117 | 15.8% |
Total sex | 358 | 48.3% | 379 | 51.2% | 3 | 0.5% | 740 | 100% |
Type of Subtest | Cognitive Domain | ||||
---|---|---|---|---|---|
Verbal Comprehension (α = 0.943) | Visual Spatial (α = 0.912) | Fluid Reasoning (α = 0.945) | Working Memory (α = 0.933) | Processing Speed (α = 0.900) | |
Primary subtest | Similarities (SI; α = 0.921) | Block Design (BD; α = 0.824) | Matrix Reasoning (MR; α = 0.900) | Digit Span (DS; α = 0.907) | Coding (CD; α = 0.898) |
Vocabulary (VC; α = 0.888) | Visual Puzzles (VP; α = 0.903) | Figure Weights (FW; α = 0.941) | Picture Span (PS; α = 0.891) | Symbol Search (SS; α = 0.822) | |
Complementary subtest | Information (IN; α = 0.910) | Arithmetic (AR; α = 0.900) | Letter-Number Sequencing (LN; α = 0.895) | Cancellation (CA; α = 0.645) | |
Comprehension (CO; α = 0.876) |
Boys | Girls | Differences | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subtest/ Index | M | SD | Skew. | Kurt. | M | SD | Skew. | Kurt. | F | p | η2p |
BD | 10.25 | 2.919 | −0.025 | −0.015 | 10.01 | 2.861 | −0.272 | 0.202 | 1.596 | 0.207 | 0.002 |
SI | 10.12 | 2.867 | −0.038 | 0.033 | 10.09 | 2.929 | −0.175 | −0.027 | 0.013 | 0.908 | <0.001 |
MR | 10.03 | 2.978 | 0.409 | 0.191 | 10.24 | 2.786 | 0.141 | −0.265 | 0.583 | 0.445 | 0.001 |
DS | 10.38 | 2.844 | 0.238 | 0.470 | 10.01 | 2.822 | 0.318 | 0.078 | 4.495 | 0.034 | 0.006 |
CD | 9.75 | 2.765 | 0.480 | 0.187 | 10.72 | 2.655 | 0.167 | 0.422 | 21.994 | <.001 | 0.030 |
VC | 10.19 | 2.890 | 0.136 | −0.520 | 10.07 | 2.981 | −0.125 | −0.624 | 0.288 | 0.592 | <0.001 |
FW | 10.20 | 2.965 | −0.427 | −0.376 | 10.02 | 2.954 | −0.099 | −0.311 | 0.981 | 0.322 | 0.001 |
VP | 10.04 | 2.955 | 0.222 | −0.366 | 10.20 | 2.823 | 0.155 | −0.036 | 0.09 | 0.765 | <0.001 |
PS | 10.13 | 3.023 | −0.085 | −0.146 | 10.23 | 2.820 | 0.155 | −0.219 | 0.26 | 0.610 | <0.001 |
SS | 9.85 | 2.898 | 0.424 | 0.055 | 10.42 | 2.926 | 0.047 | −0.329 | 6.929 | 0.009 | 0.010 |
VCI | 100.85 | 14.048 | 0.066 | −0.303 | 100.42 | 14.514 | −0.083 | −0.625 | 0.131 | .718 | <0.001 |
VSI | 100.84 | 14.411 | 0.070 | −0.423 | 100.55 | 13.879 | 0.072 | 0.064 | 0.358 | .550 | 0.001 |
FRI | 100.64 | 14.194 | 0.044 | −0.567 | 100.71 | 14.233 | 0.107 | −0.231 | 0.033 | .855 | <0.001 |
WMI | 100.82 | 13.874 | 0.223 | −0.080 | 100.05 | 14.064 | 0.277 | −0.176 | 0.834 | .362 | 0.001 |
PSI | 98.61 | 13.706 | 0.598 | 0.471 | 103.12 | 13.520 | −0.110 | −0.263 | 19.244 | <.001 | 0.026 |
FSIQ | 100.78 | 13.491 | 0.141 | −0.084 | 100.87 | 13.934 | −0.045 | −0.380 | 0.008 | 0.930 | <0.001 |
Model Fit Indexes | ||||||||
---|---|---|---|---|---|---|---|---|
Group | χ2 | df | p | CFI | TLI | RMSEA [90% CI] | SRMR | AIC |
Hierarchical Model | ||||||||
Full sample n = 740 | 49.498 | 30 | 0.014 | 0.990 | 0.985 | 0.030 [0.013, 0.044] | 0.022 | 34,654.667 |
Boys n = 358 | 49.982 | 30 | 0.012 | 0.977 | 0.966 | 0.043 [0.020, 0.064] | 0.032 | 16,887.609 |
Girls n = 379 | 32.019 | 30 | 0.366 | 0.998 | 0.997 | 0.013 [0.000, 0.042] | 0.025 | 17,626.372 |
Age 6–8 n =194 | 41.552 | 30 | 0.078 | 0.974 | 0.961 | 0.045 [0.000, 0.075] | 0.037 | 9171.730 |
Age 9–11 n = 236 | 34.542 | 30 | 0.259 | 0.994 | 0.991 | 0.025 [0.000, 0.057] | 0.030 | 10,918.633 |
Age 12–14 n = 193 | 32.072 | 30 | 0.413 | 0.998 | 0.997 | 0.013 [0.000, 0.056] | 0.034 | 8942.556 |
Age 15–16 n = 117 | 39.451 | 30 | 0.115 | 0.975 | 0.963 | 0.052 [0.000, 0.092] | 0.046 | 5523.953 |
Oblique Model | ||||||||
Full sample n = 740 | 28.263 | 25 | 0.296 | 0.998 | 0.997 | 0.013 [0.000, 0.033] | 0.015 | 34,643.432 |
Boys n = 358 | 35.190 | 25 | 0.085 | 0.988 | 0.979 | 0.034 [0.000, 0.058] | 0.025 | 16,882.817 |
Girls n = 379 | 23.328 | 25 | 0.558 | 1.000 | 1.000 | 0.000 [0.000, 0.038] | 0.020 | 17,627.681 |
Age 6–8 n = 194 | 23.448 | 25 | 0.551 | 1.000 | 1.000 | 0.000 [0.000, 0.053] | 0.029 | 9163.626 |
Age 9–11 n = 236 | 26.327 | 25 | 0.390 | 0.998 | 0.997 | 0.015 [0.000, 0.055] | 0.026 | 10,920.418 |
Age 12–14 n = 193 | 22.375 | 25 | 0.614 | 1.000 | 1.000 | 0.000 [0.000, 0.050] | 0.023 | 8944.859 |
Age 15–16 n = 117 | 34.680 | 25 | 0.094 | 0.975 | 0.955 | 0.058 [0.000, 0.100] | 0.041 | 5529.182 |
Invariance Model | Model Fit Indexes | Model Comparison | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | p | CFI | TLI | RMSEA [90% CI] | SRMR | AIC | Comparison | Δχ2 | Δdf | ΔCFI | ΔRMSEA | ΔSRMR | |
M0: Configural | 81.584 | 60 | 0.033 | 0.988 | 0.982 | 0.031 [0.009, 0.047] | 0.028 | 34,513.980 | - | - | - | - | - | - |
M1: Metric (First-Order Loadings) | 87.433 | 65 | 0.033 | 0.988 | 0.983 | 0.031 [0.009, 0.046] | 0.034 | 34,509.755 | M1–M0 | 5.849 | 5 | 0.000 | 0.000 | 0.006 |
M2: Metric (Second-Order Loadings) | 87.680 | 69 | 0.064 | 0.990 | 0.987 | 0.027 [0.000, 0.043] | 0.035 | 34,502.287 | M2–M1 | 0.247 | 4 | 0.002 | −0.004 | 0.001 |
M3: Scalar (Intercepts of the Indicators) | 101.126 | 74 | 0.019 | 0.985 | 0.982 | 0.032 [0.013, 0.046] | 0.039 | 34,505.703 | M3–M2 | 13.446 | 5 | −0.005 | 0.005 | 0.004 |
M4: Scalar (Intercepts of the First-Order Factors) | 127.401 | 78 | <0.001 | 0.973 | 0.969 | 0.041 [0.028, 0.054] | 0.046 | 34,524.338 | M4–M3 | 26.275 | 4 | −0.012 | 0.009 | 0.007 |
M5: Residual (Disturbances of First-Order Factors) | 155.410 | 87 | <0.001 | 0.963 | 0.962 | 0.046 [0.034, 0.058] | 0.054 | 34,534.381 | M5–M4 | 28.009 | 9 | −0.010 | 0.005 | 0.008 |
M6: Residual (Uniqueness of the Indicators) | 171.796 | 97 | <0.001 | 0.959 | 0.962 | 0.046 [0.034, 0.057] | 0.064 | 34,533.061 | M6–M5 | 16.386 | 10 | −0.004 | 0.000 | 0.010 |
Invariance Model | Model Fit Indexes | Model Comparison | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | p | CFI | TLI | RMSEA [90% CI] | SRMR | AIC | Comparison | Δχ2 | Δdf | ΔCFI | ΔRMSEA | ΔSRMR | |
M0: Configural | 148.313 | 121 | 0.046 | 0.986 | 0.979 | 0.035 [0.005, 0.053] | 0.036 | 34,556.882 | - | - | - | - | - | - |
M1: Metric (First-Order Loadings) | 210.727 | 136 | <0.001 | 0.961 | 0.949 | 0.054 [0.040, 0.068] | 0.072 | 34,587.547 | M1–M0 | 62.414 | 15 | −0.025 | 0.019 | 0.036 |
M1a: Metric–Partial (First-Order Loadings) | 181.533 | 132 | 0.002 | 0.974 | 0.965 | 0.045 [0.027, 0.060] | 0.057 | 34,568.112 | M1a–M0 | 33.220 | 11 | −0.012 | 0.01 | 0.021 |
M2: Metric–Partial (Second-Order Loadings) | 286.790 | 163 | <0.001 | 0.936 | 0.929 | 0.064 [0.052, 0.076] | 0.094 | 34,607.742 | M2–M1 | 105.257 | 31 | −0.038 | 0.019 | 0.037 |
M3: Scalar–Partial (Intercepts of the Indicators) | 321.900 | 175 | <0.001 | 0.924 | 0.922 | 0.067 [0.056, 0.079] | 0.094 | 34,616.754 | M3–M2 | 35.110 | 12 | −0.012 | 0.003 | 0.000 |
M4: Scalar–Partial (Intercepts of the First-Order Factors) | 337.396 | 184 | <0.001 | 0.921 | 0.923 | 0.067 [0.056, 0.078] | 0.094 | 34,616.174 | M4–M3 | 15.496 | 9 | −0.003 | 0.000 | 0.000 |
M5: Residual–Partial (Disturbances of First-Order Factors) | 292.425 | 177 | <0.001 | 0.940 | 0.939 | 0.059 [ 0.047, 0.071] | 0.089 | 34,588.607 | M5–M4 | −44.971 | −7 | 0.019 | −0.008 | −0.005 |
M6: Residual–Partial (Uniqueness of the Indicators) | 397.257 | 204 | <0.001 | 0.900 | 0.912 | 0.072 [0.061, 0.082] | 0.144 | 34,644.369 | M6—M5 | 104.832 | 27 | −0.040 | 0.013 | 0.055 |
Invariance Model | Model Fit Indexes | Model Comparison | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | p | CFI | TLI | RMSEA [90% CI] | SRMR | AIC | Comparison | Δχ2 | Δdf | ΔCFI | ΔRMSEA | ΔSRMR | |
M0: Configural | 58.518 | 50 | 0.191 | 0.996 | 0.992 | 0.022 [0.000, 0.042] | 0.022 | 34,510.498 | - | - | - | - | - | - |
M1: Metric (Loadings) | 61.988 | 55 | 0.241 | 0.996 | 0.994 | 0.019 [0.000, 0.039] | 0.028 | 34,503.967 | M1–M0 | 3.470 | 5 | 0.000 | −0.003 | 0.006 |
M2: Scalar (Intercepts of the Indicators) | 74.659 | 60 | 0.096 | 0.992 | 0.989 | 0.026 [0.000, 0.043] | 0.033 | 34,506.639 | M2–M1 | 12.671 | 5 | −0.004 | 0.007 | 0.005 |
M3: Residual (Disturbances of First-Order Factors) | 94.906 | 70 | 0.026 | 0.987 | 0.983 | 0.031 [0.011, 0.046] | 0.046 | 34,506.886 | M3–M2 | 20.247 | 10 | −0.005 | 0.005 | 0.013 |
Invariance Model | Model Fit Indexes | Model Comparison | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | df | p | CFI | TLI | RMSEA [90% CI] | SRMR | AIC | Comparison | Δχ2 | Δdf | ΔCFI | ΔRMSEA | ΔSRMR | |
M0: Configural | 108.071 | 100 | 0.273 | 0.996 | 0.992 | 0.021 [0.000, 0.045] | 0.029 | 34558.084 | - | - | - | - | - | - |
M1: Metric (Loadings) | 161.543 | 111 | 0.001 | 0.974 | 0.958 | 0.050 [0.032, 0.066] | 0.064 | 34589.475 | M1–M0 | 53.472 | 11 | −0.022 | 0.029 | 0.035 |
M1a: Metric–Partial (Intercepts of th Indicators) | 166.947 | 112 | <0.001 | 0.972 | 0.954 | 0.051 [0.034, 0.067] | 0.067 | 34592.216 | M1a–M0 | 58.876 | 12 | −0.020 | 0.030 | 0.038 |
M2: Scalar (Intercepts of the Indicators) | 190.807 | 124 | <0.001 | 0.966 | 0.950 | 0.054 [0.038, 0.069] | 0.066 | 34592.167 | M2–M1a | 23.860 | 12 | −0.006 | 0.003 | −0.001 |
M3: Residual (Disturbances of First-Order Factors) | 271.746 | 151 | <0.001 | 0.938 | 0.926 | 0.066 [0.053, 0.078] | 0.102 | 34624.586 | M3–M2 | 80.939 | 27 | −0.028 | 0.011 | 0.036 |
Sex | Age Group | |||
---|---|---|---|---|
Level | Hierarchical | Oblique | Hierarchical | Oblique |
Configural | Yes | Yes | Yes | Yes |
Metric | Yes | Yes | Partial | Partial |
Scalar | Yes | Yes | No | No |
Residual | Yes | Yes | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Cancino, M.; Concha-Salgado, A. WISC-V Measurement Invariance According to Sex and Age: Advancing the Understanding of Intergroup Differences in Cognitive Performance. J. Intell. 2023, 11, 180. https://doi.org/10.3390/jintelligence11090180
Rodríguez-Cancino M, Concha-Salgado A. WISC-V Measurement Invariance According to Sex and Age: Advancing the Understanding of Intergroup Differences in Cognitive Performance. Journal of Intelligence. 2023; 11(9):180. https://doi.org/10.3390/jintelligence11090180
Chicago/Turabian StyleRodríguez-Cancino, Marcela, and Andrés Concha-Salgado. 2023. "WISC-V Measurement Invariance According to Sex and Age: Advancing the Understanding of Intergroup Differences in Cognitive Performance" Journal of Intelligence 11, no. 9: 180. https://doi.org/10.3390/jintelligence11090180
APA StyleRodríguez-Cancino, M., & Concha-Salgado, A. (2023). WISC-V Measurement Invariance According to Sex and Age: Advancing the Understanding of Intergroup Differences in Cognitive Performance. Journal of Intelligence, 11(9), 180. https://doi.org/10.3390/jintelligence11090180