The Internal Structure of the WISC-V in Chile: Exploratory and Confirmatory Factor Analyses of the 15 Subtests
Abstract
:1. Introduction
1.1. Factor Structure of the WISC-V
1.2. Criticisms of the Factor Structure Proposed for the WISC-V
1.3. Factor Structure of the WISC-V in Chile
1.4. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Instruments
Wechsler Intelligence Scale for Children, Fifth Edition (WISC-V)
2.3. Procedure
2.4. Data Analyses
2.4.1. Exploratory Factor Analyses
2.4.2. Confirmatory Factor Analyses
- M1 =
- a model where all subtests load directly on a general ability factor as the only indicator responsible for the intercorrelations between subtests.
- M2 =
- a “traditional” two-factor Wechsler model (VIQ and PIQ) that distinguishes verbal from performance, present in initial versions of the instrument.
- M3 =
- a three-factor model combining verbal comprehension with auditory working memory on the one hand; fluid reasoning, visuospatial ability, and visual working memory on the other; and a third factor containing only processing speed.
- M4 =
- four models of four factors each, where VC and PS (with the same subtests) are common to all four variants but with the following distinctions in the other two factors that comprise them:
- M4a,
- as in the WISC-IV, which includes a reasoning factor (PR) that merges fluid and visuospatial reasoning and another for working memory (WM);
- M4b,
- which, based on findings in cognitive neuroscience, combines fluid reasoning and working memory into a single factor since they share a common function of the prefrontal cortex (FR+WM) and another of visuospatial skills (VS);
- M4c,
- the same as M4a but with cross-loadings from the arithmetic subtest in WM and PR; and
- M4d,
- the same as M4a, but with cross-loadings from the arithmetic subtest in WM, PR, and VC.
- M5 =
- five five-factor models, including VC, VS, FR, WM, and PS, which differ only in the location of the arithmetic subtest loading(s):
2.4.3. Age-Group Model Comparison
2.4.4. Reliability
3. Results
3.1. Exploratory Approach
3.2. Confirmatory Approach
3.3. Best Fitted Models Comparison by Age Group
3.4. Internal Consistency
4. Discussion
Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Education Research Association [AERA], American Psychological Association [APA], and National Council on Measurement in Education [NCME]. 2018. Estándares para pruebas educativas y psicológicas. Washington, DC: American Educational Research Association. [Google Scholar]
- American Psychological Association [APA]. 2020. APA Guidelines for Psychological Assessment and Evaluation. Washington, DC: American Psychological Association. [Google Scholar] [CrossRef]
- Arango-Lasprilla, Juan Carlos, Diego Rivera, and Laiene Olabarrieta-Landa. 2017. Neuropsicología Infantil. Mexico City: Manual Moderno. [Google Scholar]
- Breit, Moritz, Martin Brunner, Dylan Molenaar, and Franzis Preckel. 2022. Differentiation hypotheses of intelligence: A systematic review of the empirical evidence and an agenda for future research. Psychological Bulletin 148: 518–54. [Google Scholar] [CrossRef]
- Brenlla, María Elena, Mariana Soledad Seivane, Rocío Giselle Fernández Da Lama, and Guadalupe Germano. 2023. Pasos fundamentales para realizar adaptaciones de pruebas psicológicas. Revista de Psicología 19: 121–48. [Google Scholar] [CrossRef]
- Browne, Michael W., and Robert Cudeck. 1992. Alternative Ways of Assessing Model Fit. Sociological Methods & Research 21: 230–58. [Google Scholar] [CrossRef]
- Brue, Alan W., and Linda Wilmshurst. 2016. Essentials of Intellectual Disability Assessment and Identification. New York: Wiley. [Google Scholar]
- Canivez, Gary L., and Marley W. Watkins. 2016. Review of the Weschler Intelligence Scale for Children—Fifth Edition: Critique, Commentary, and Independent Analyses in Intelligent Testing with the WISC-V. New York: Wiley. [Google Scholar]
- Canivez, Gary L., Marley W. Watkins, and Ryan J. McGill. 2018. Construct validity of the Wechsler Intelligence Scale for Children—Fifth UK Edition: Exploratory and confirmatory factor analyses of the 16 primary and secondary subtests. British Journal of Educational Psychology 89: 195–224. [Google Scholar] [CrossRef] [PubMed]
- Canivez, Gary L., Marley W. Watkins, and Stefan C. Dombrowski. 2017. Structural validity of the Wechsler Intelligence Scale for Children–Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment 28: 975–86. [Google Scholar] [CrossRef] [PubMed]
- Canivez, Gary L., Ryan J. McGill, Stefan C. Dombrowski, Marley W. Watkins, Alison E. Pritchard, and Lisa A. Jacobson. 2020. Construct validity of the WISC-V in clinical cases: Exploratory and confirmatory factor analyses of the 10 Primary Subtests. Assessment 27: 274–96. [Google Scholar] [CrossRef]
- Chen, Hsinyi, Ou Zhang, Susan Engi Raiford, Jianjun Zhu, and Lawrence G. Weiss. 2015. Factor invariance between genders on the Wechsler Intelligence Scale for Children–Fifth Edition. Personality and Individual Differences 86: 1–5. [Google Scholar] [CrossRef]
- Dehn, Milton J. 2015. Working Memory Assessment and Intervention. New York: Wiley. [Google Scholar]
- deLeyer-Tiarks, Johanna M., Jacqueline M. Caemmerer, Melissa A. Bray, and Alan S. Kaufman. 2024. Assessment of Human Intelligence—The State of the Art in the 2020s. Journal of Intelligence 12: 72. [Google Scholar] [CrossRef]
- Dombrowski, Stefan C., Ryan J. McGill, Marley W. Watkins, Gary L. Canivez, Alison E. Pritchard, and Lisa A. Jacobson. 2022. Will the Real Theoretical Structure of the WISC-V Please Stand Up? Implications for Clinical Interpretation. Contemporary School Psychology 26: 492–503. [Google Scholar] [CrossRef]
- Echavarría-Ramírez, Luis M., and Javier Tirapu-Ustárroz. 2021. Exploración neuropsicológica en niños con discapacidad intelectual. Revista de Neurología 73: 66–76. [Google Scholar] [CrossRef]
- Estrada, M. Elena. 2022. La evaluación e intervención neuropsicológica en los trastornos del desarrollo. Seville: Punto Rojo Libros S.L. [Google Scholar]
- Fenollar-Cortés, Javier, and Marley W. Watkins. 2019. Construct validity of the Spanish Version of the Wechsler Intelligence Scale for Children Fifth Edition (WISC-VSpain). International Journal of School & Educational Psychology 7: 150–64. [Google Scholar] [CrossRef]
- Flanagan, Dawn P., and Alan S. Kaufman. 2009. Claves para la evaluación con WISC-IV, 2nd ed. Mexico City: Manual Moderno. [Google Scholar]
- Flanagan, Dawn P., and Vincent C. Alfonso. 2017. Essentials of WISC-V Assessment. New York: Wiley. [Google Scholar]
- Forns, Maria, and Juan Antonio Amador. 2017. Habilidades clínicas para aplicar, corregir e interpretar las escalas de inteligencia de Wechsler. Madrid: Pirámide. [Google Scholar]
- Ger, Ebru, and Claudia M. Roebers. 2023. The Relationship between Executive Functions, Working Memory, and Intelligence in Kindergarten Children. Journal of Intelligence 11: 64. [Google Scholar] [CrossRef] [PubMed]
- Hebben, Nancy, and William Milberg. 2009. Essentials of Neuropsychological Assessment, 2nd ed. New York: Wiley. [Google Scholar]
- Hu, Li-tze, and Peter M. Bentler. 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6: 1–55. [Google Scholar] [CrossRef]
- Ikeda, Yoshifumi, Yosuke Kita, Yuhei Oi, Hideyuki Okuzumi, Silvia Lanfranchi, Francesca Pulina, Irene Cristina Mammarella, Katie Allen, and David Giofrè. 2023. The Structure of Working Memory and Its Relationship with Intelligence in Japanese Children. Journal of Intelligence 11: 167. [Google Scholar] [CrossRef]
- Iliescu, Dragos, Dave Bartram, Pia Zeinoun, Matthias Ziegler, Paula Elosua, Stephen Sireci, Kurt F. Geisinger, Aletta Odendaal, Maria Elena Oliveri, Jon Twing, and et al. 2024. The Test Adaptation Reporting Standards (TARES): Reporting test adaptations. International Journal of Testing 24: 80–102. [Google Scholar] [CrossRef]
- International Test Commission [ITC]. 2013. International Test Commission Guidelines on Test Use. Available online: https://www.intestcom.org/files/guideline_test_use.pdf (accessed on 1 July 2024).
- JASP Team. 2024. JASP (Version 0.18.3). JASP Team. Amsterdam. Available online: https://jasp-stats.org/ (accessed on 17 July 2024).
- Juan-Espinosa, Manuel, Lara Cuevas, Sergio Escorial, and Luis F. García. 2006. The differentiation hypothesis and the Flynn effect. Psicothema 18: 284–87. [Google Scholar]
- Kahan, Evelina, and Lourdes Salvo. 2022. Evaluación de la inteligencia en niños. Actualización en WISC-V. Cambridge, UK: Ediciones Universitarias. Available online: https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/35019 (accessed on 12 June 2024).
- Kaufman, Alan S., Susan Engi Raiford, and Diane L. Coalson. 2016. Intelligent testing with the WISC-V. New York: I. John Wiley & Sons. [Google Scholar]
- Keith, Timothy Z., and Matthew R. Reynolds. 2018. Using confirmatory factor analysis to aid in understanding the constructs measured by intelligence tests. In Contemporary Intellectual Assessment: Theories, Tests and Issues, 4th ed. Edited by Dawn P. Flanagan and Erin M. McDonough. New York: Guildford Press. [Google Scholar]
- Lecerf, Thierry, and Gary L. Canivez. 2018. Complementary exploratory and confirmatory factor analyses of the French WISC-V: Analyses based on the standardization sample. Psychological Assessment 30: 793–808. [Google Scholar] [CrossRef]
- Lecerf, Thierry, Salome Döll, and Mathilde Bastien. 2023. Investigating the structure of the French WISC–V (WISC–VFR) for five age groups using psychometric network modeling. Journal of Intelligence 11: 160. [Google Scholar] [CrossRef]
- Leong, Frederick T. L., Dave Bartram, and Fanny M. Cheung. 2020. Manual internacional de pruebas y evaluación del ITC. Mexico City: Manual Moderno. [Google Scholar]
- Manzi, Jorge, María Rosa García, and Sandy Taut. 2019. Validez de las evaluaciones educacionales en Chile y Latinoamérica. Santiago: Ediciones Universidad Católica de Chile. [Google Scholar]
- McGill, Ryan J., Thomas J. Ward, and Gary L. Canivez. 2020. Use of translated and adapted versions of the WISC-V: Caveat emptor. School Psychology International 41: 276–94. [Google Scholar] [CrossRef]
- Ministerio Educación Chile. 2009. Decreto 170/Fija normas para determinar los alumnos con necesidades educativas especiales que serán beneficiarios de las subvenciones para educación especial. Available online: https://www.leychile.cl/Navegar?idNorma=1012570 (accessed on 1 July 2024).
- Muñiz, José, Ana Hernández, and Vicente Ponsoda. 2015. Nuevas Directrices sobre el Uso de los Test: Investigación, Control de Calidad y Seguridad. Papeles del Psicólogo 36: 161–73. [Google Scholar]
- Muñiz, José, and Eduardo Fonseca-Pedrero. 2019. Diez pasos para la construcción de un test. Psicothema 31: 7–16. [Google Scholar] [CrossRef] [PubMed]
- Muthen, L. K., and B. O. Muthen. 2020. MPlus (Version 8.10). Available online: https://www.statmodel.com/index.shtml (accessed on 1 July 2024).
- Niileksela, Christopher R., and Matthew R. Reynolds. 2019. Enduring the tests of age and time: Wechsler constructs across versions and revisions. Intelligence 77: 2–15. [Google Scholar] [CrossRef]
- Reynolds, Matthew R., and Timothy Z. Keith. 2017. Multi-group and hierarchical confirmatory factor analysis of the Wechsler Intelligence Scale for Children—Fifth Edition: What does it measure? Intelligence 62: 31–47. [Google Scholar] [CrossRef]
- Rodríguez-Cancino, Marcela, and Andrés Concha-Salgado. 2023. WISC-V Measurement Invariance According to Sex and Age: Advancing the Understanding of Intergroup Differences in Cognitive Performance. Journal of Intelligence 11: 180. [Google Scholar] [CrossRef]
- Rodríguez-Cancino, Marcela, María Beatriz Vizcarra, and Andrés Concha-Salgado. 2021. ¿Se Puede Evaluar a Niños Rurales con WISC-V? Explorando la Invarianza Factorial de la Inteligencia en Chile. Revista Iberoamericana de Diagnóstico y Evaluación–e Avaliação Psicológica 60: 117–31. [Google Scholar] [CrossRef]
- Rodríguez-Cancino, Marcela, María Beatriz Vizcarra, and Andrés Concha-Salgado. 2022. Propiedades Psicométricas de la Escala WISC-V en Escolares Rurales Chilenos. Psykhe 31: 1–14. [Google Scholar] [CrossRef]
- Rosas, Ricardo, and Marcelo Pizarro. 2018. WISC-V: Manual de administración y corrección. Santiago: Pontificia Universidad Católica de Chile, Centro de Desarrollo de Tecnologías de Inclusión & Pearson. [Google Scholar]
- Rosas, Ricardo, Marcelo Pizarro, Olivia Grez, Valentina Navarro, Dolly Tapia, Susana Arancibia, María Teresa Muñoz-Quezada, Boris Lucero, Claudia P. Pérez-Salas, Karen Oliva, and et al. 2022. Estandarización Chilena de la Escala Wechsler de Inteligencia para Niños—Quinta Edición. Psykhe 31: 1–23. [Google Scholar] [CrossRef]
- Sireci, Stephen G. 2020. De-“Constructing” Test Validation. Chinese/English Journal of Educational Measurement and Evaluation 1: 1–12. [Google Scholar] [CrossRef]
- Sireci, Stephen G., and Isabel Benítez. 2023. Evidence for Test Validation: A Guide for Practitioners. Psicothema 3: 217–26. [Google Scholar] [CrossRef]
- Statmodel. 2024. Chi-Square Difference Testing Using the Satorra-Bentler Scaled Chi-Square. Available online: http://www.statmodel.com/chidiff.shtml (accessed on 25 July 2024).
- Van de Vijver, F. J. R. 2020. Adaptaciones de pruebas en F. Leong, Manual internacional de pruebas y evaluación del ITC (371–385). Mexico City: Manual Moderno. [Google Scholar]
- Vinet, Eugenia V., Marcela Rodríguez-Cancino, Ailin Sandoval Domínguez, Paloma Rojas Mora, and José L. Saiz. 2023. El Empleo de Test por Psicólogos/as Chilenos/as: Un Inquietante Panorama. Psykhe 32: 1–19. [Google Scholar]
- Watkins, Marley W., Stefan C. Dombrowski, and Gary L. Canivez. 2018. Reliability and factorial validity of the Canadian Wechsler Intelligence Scale for Children–Fifth Edition. International Journal of School & Educational Psychology 6: 252–65. [Google Scholar] [CrossRef]
- Wechsler, D. 2014a. Wechsler Intelligence Scale for Children-Fifth Edition: Canadian Manual. London: Pearson Canada Assessment. [Google Scholar]
- Wechsler, D. 2014b. WISC-V Wechsler Intelligence Scale for Children-Fifth Edition: Technical and Interpretive Manual. London: Pearson. [Google Scholar]
- Wechsler, D. 2015. WISC-V. Manual Técnico y de Interpretación. London: Pearson Educación. [Google Scholar]
- Wechsler, D. 2016. WISC-V. Echelle d’intelligence de Wechsler pour enfants-5e Edition. Paris: Pearson France-ECPA. [Google Scholar]
- Wechsler, D. 2017. Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V): Technisches Manual. (German Version of F. Petermann). London: Pearson. [Google Scholar]
- Weiss, Lawrence G., Donald H. Saklofske, James A. Holdnack, and Aurelio Prifitera. 2019. WISC-V. Clinical Use and Interpretation, 2nd ed. Amsterdam: Elsevier. [Google Scholar]
- Wilson, Christopher J., Stephen C. Bowden, Linda K. Byrne, Louis-Charles Vannier, Ana Hernández, and Lawrence G. Weiss. 2023. Cross-National Generalizability of WISC-V and CHC Broad Ability Constructs across France, Spain, and the US. Journal of Intelligence 11: 159. [Google Scholar] [CrossRef] [PubMed]
- Zimprich, Daniel, and Mike Martin. 2010. Differentiation-Dedifferentiation as a Guiding Principle for the Analysis of Lifespan Development. In Life in Old Age: Personal and Shared Responsibility in Society, Culture and Politics. Edited by Astrid Kruse. Heidelberg: AKA. Available online: https://www.zora.uzh.ch/id/eprint/40639 (accessed on 30 July 2024).
Edition | Ages | Subtests | g Level | Indexes Level | ||||
---|---|---|---|---|---|---|---|---|
WISC (1949) | 5–15 | 12 | Full Scale IQ (FSIQ) | Verbal IQ (VIQ) | Performance IQ (PIQ) | |||
WISC-R (1974) | 6–16 | 12 | Full Scale IQ (FSIQ) | Verbal IQ (VIQ) | Performance IQ (PIQ) | |||
WISC-III (1991) | 6–16 | 13 | Full Scale IQ (FSIQ) | Verbal IQ (VIQ) | Performance IQ (PIQ) | |||
Verbal comprehension (VCI) | Freedom from distractibility (FDI) | Perceptual organization (POI) | Processing speed (PSI) | |||||
WISC-IV (2003) | 6–16 | 15 | Full Scale IQ (FSIQ) | Verbal comprehension (VCI) | Working memory (WMI) | Perceptual reasoning (PRI) | Processing speed (PSI) | |
WISC-V (2014) | 6–16 | 21 | Full Scale IQ (FSIQ) | Verbal comprehension (VCI) | Working memory (WMI) | Fluid reasoning (FRI) | Visual spatial (VSI) | Processing speed (PSI) |
Type of Subtest | Cognitive Domain | ||||
---|---|---|---|---|---|
Verbal Comprehension (α = 0.943) | Visual Spatial (α = 0.912) | Fluid Reasoning (α = 0.945) | Working Memory (α = 0.933) | Processing Speed (α = 0.900) | |
Primary subtest | Similarities (SI; α = 0.921) | Block Design (BD; α = 0.824) | Matrix Reasoning (MR; α = 0.900) | Digit Span (DS; α = 0.907) | Coding (CD; α = 0.898) |
Vocabulary (VO; α = 0.888) | Visual Puzzles (VP; α = 0.903) | Figure Weights (FW; α = 0.941) | Picture Span (PS; α = 0.891) | Symbol Search (SS; α = 0.822) | |
Complementary subtest | Information (IN; α = 0.910) | Arithmetic (AR; α = 0.900) | Letter-Number Sequencing (LN; α = 0.895) | Cancellation (CA; α = 0.645) | |
Comprehension (CO; α = 0.876) |
Age Group (in Years) | Boys | Girls | Missing | Total Sample | ||||
---|---|---|---|---|---|---|---|---|
f | % | f | % | f | % | f | % | |
6–8 | 112 | 50.5% | 110 | 49.5% | 0 | 0.0% | 222 | 26.0% |
9–11 | 126 | 47.4% | 139 | 52.2% | 1 | 0.4% | 266 | 31.2% |
12–14 | 110 | 48.7% | 115 | 50.9% | 1 | 0.4% | 226 | 26.5% |
15–16 | 64 | 46.0% | 75 | 54.0% | 0 | 0.0% | 139 | 16.3% |
Total sex | 412 | 48.3% | 439 | 51.5% | 2 | 0.2% | 853 | 100% |
Total Sample | G1 (6–8) | G2 (9–11) | G3 (12–14) | G4 (15–16) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-Tests | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 | F1 | F2 | F3 | F4 |
SI | .688 | .440 | .743 | .747 | .771 | |||||||||||||||
VO | .840 | .719 | .715 | .860 | .884 | |||||||||||||||
IN | .653 | .402 | .425 | .701 | .719 | .648 | ||||||||||||||
CO | .701 | .381 | .796 | .750 | .727 | |||||||||||||||
BD | .585 | .539 | .490 | .668 | .621 | |||||||||||||||
VP | .756 | .676 | .740 | .743 | .749 | |||||||||||||||
MR | .518 | .692 | .374 | .350 | .597 | |||||||||||||||
FW | .334 | .250 | .316 | .298 | .312 | .575 | ||||||||||||||
AR | .539 | .712 | .582 | .319 | .435 | .586 | ||||||||||||||
DS | .786 | .749 | .756 | .782 | .855 | |||||||||||||||
PS | .432 | .317 | .450 | .608 | .469 | |||||||||||||||
LN | .739 | .740 | .648 | .823 | .614 | |||||||||||||||
CD | .481 | .564 | .497 | .460 | .435 | |||||||||||||||
SS | .766 | .583 | .812 | .748 | .795 | |||||||||||||||
CA | .505 | .315 | .347 | .540 | .477 | .613 | ||||||||||||||
Fit | χ2 = 81.854, df = 51, p = .004 CFI = .993, TLI = 0.986 RMSEA [90% CI] = .027 [.015 .037] SRMR = .015 BIC = −262.333 | χ2 = 60.431, df = 51, p = .172 CFI = .990, TLI = 0.980 RMSEA [90% CI] = .029 [.00 .054] SRMR = .027 BIC = −215.105 | χ2 = 48.823, df = 51, p = .561 CFI = 1.000, TLI = 1.003 RMSEA [90% CI] = .000 [.000 .037] SRMR = .020 BIC = −235.936 | χ2 = 73.401, df = 51, p = .022 CFI = .981, TLI = 0.961 RMSEA [90% CI] = .044 [.018 .066] SRMR = .024 BIC = −203.046 | χ2 = 70.209, df = 51, p = .038 CFI = .979, TLI = 0.957 RMSEA [90% CI] = .052 [.013 .080] SRMR = .029 BIC = −181.450 |
Factors | Fit Indices | Model Comparison | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | F1 | F2 | F3 | F4 | F5 | χ2 | df | p | CFI | TLI | RMSEA [90%CI] | SRMR | AIC | BIC | Comparison | Δχ2 | Δdf | p |
M1 | All 15 subtests | - | - | - | - | 848.424 | 90 | <.001 | .819 | 0.789 | .099 [.093 .106] | .064 | 59,503 | 59,717 | - | - | - | - |
M2 | V SI VO IN CO AR DS LN | P BD VP MR FW PS CD SS CA | - | - | - | 724.117 | 89 | <.001 | .848 | 0.821 | .091 [.085 .098] | .060 | 59,372 | 59,590 | - | - | - | - |
M3 | V SI VO IN CO AR DS LN | P BD VP MR FW PS | PS CD SS CA | - | -- | 523.522 | 87 | <.001 | .896 | 0.874 | .077 [.070 .083] | .049 | 59,171 | 59,399 | - | - | - | - |
M4a * | VC SI VO IN CO | PR BD VP MR FW | WM AR DS PS LN | PS CD SS CA | - | 214.571 | 86 | <.001 | .969 | 0.963 | .042 [.035 .049] | .034 | 58,860 | 59,092 | M4a vs. M4c M4a vs. M4d M4a vs. M5a M4a vs. M5c M4a vs. M5d M4a vs. M5e | 7.497 17.124 4.773 7.402 14.857 16.474 | 1 2 1 2 2 3 | .011 <.001 .026 .029 .001 .001 |
M4b | VC SI VO IN CO | VS BD VP | FR+WM MR FW AR DS PS LN | PS CD SS CA | - | 283.097 | 86 | <.001 | .953 | 0.943 | .052 [.045 .059] | .038 | 58,931 | 59,163 | M4b vs. M4c M4b vs. M4d M4b vs. M5a M4b vs. M5c M4b vs. M5d M4b vs. M5e | 76.023 85.650 63.753 75.928 83.343 85.000 | 1 2 1 2 2 3 | <.001 <.001 <.001 <.001 <.001 <.001 |
M4c | VC SI VO IN CO | PR BD VP MR FW AR | WM AR DS PS LN | PS CD SS CA | - | 207.074 | 85 | <.001 | .971 | 0.964 | .041 [.034 .048] | .033 | 58,853 | 59,091 | M4c vs. M4d M4c vs. M5c M4c vs. M5d M4c vs. M5e | 9.627 0.095 7.360 8.977 | 1 1 1 2 | .001 .833 .004 .010 |
M4d | VC SI VO IN CO AR | PR BD VP MR FW AR | WM AR DS PS LN | PS CD SS CA | - | 197.447 | 84 | <.001 | .973 | 0.966 | .040 [.033 .047] | .033 | 58,846 | 59,088 | M4d vs. M5e | 0.650 | 1 | .394 |
M5a | VC SI VO IN CO | VS BD VP | FR MR FW | WM AR DS PS LN | PS CD SS CA | 219.344 | 85 | <.001 | .968 | 0.960 | .043 [.036 .050] | .036 | 58,867 | 59,104 | M5a vs. M4d M5a vs. M5c M5a vs. M5d M5a vs. M5e | 21.897 12.175 19.630 21.247 | 1 1 1 2 | <.001 .002 <.001 <.001 |
M5b | VC SI VO IN CO | VS BD VP | FR MR FW AR | WM DS PS LN | PS CD SS CA | 317.222 | 86 | <.001 | 0.945 | 0.933 | .056 [.050 .063] | .064 | 58,965 | 59,197 | M5b vs. M4d M5b vs. M5a M5b vs. M5c M5b vs. M5d M5b vs. M5e | 119.780 97.878 110.050 117.510 119.130 | 2 1 2 2 3 | <.001 <.001 <.001 <.001 <.001 |
M5c | VC SI VO IN CO | VS BD VP | FR MR FW AR | WM AR DS PS LN | PS CD SS CA | 207.169 | 84 | <.001 | .971 | 0.963 | .041 [.034 .049] | .035 | 58,855 | 59,098 | M5c vs M5e | 9.072 | 1 | .001 |
M5d | VC SI VO IN CO | VS BD VP | FR MR FW | WM AR DS PS LN | PS CD SS CA | 199.714 | 84 | <.001 | .972 | 0.965 | .040 [.033 .047] | .034 | 58,848 | 59,091 | M5d vs M5e | 1.617 | 1 | .199 |
M5e | VC SI VO IN CO AR | VS BD VP | FR MR FW AR | WM AR DS PS LN | PS CD SS CA | 198.097 | 83 | <.001 | .973 | 0.965 | .040 [.033 .048] | .034 | 58,849 | 59,096 |
Factors (Factor Loadings) | Fit Indices | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Age Group | F1 | F2 | F3 | F4 | F5 | χ2 | df | p | CFI | TLI | RMSEA [90%CI] | SRMR | AIC | BIC |
M4a | G1 (6–8) | VC (.880) SI (.678) VO (.743) IN (.605) CO (.551) | PR (.790) BD (.562) VP (.727) MR (.761) FW (.449) | WM (.901) AR (.776) DS (.809) PS (.557) LN (.757) | PS (.594) CD (.688) SS (.626) CA (.197) | 120.124 | 86 | .009 | .964 | 0.956 | .042 [.022 .059] | .048 | 15,502 | 15,669 | |
G2 (9–11) | VC (.861) SI (.831) VO (.816) IN (.792) CO (.667) | PR (.866) BD (.670) VP (.711) MR (.594) FW (.593) | WM (.920) AR (.702) DS (.761) PS (.590) LN (.683) | PS (.458) CD (.576) SS (.808) CA (.499) | 105.730 | 86 | .073 | .985 | 0.982 | .029 [.000 .047] | .040 | 18,168 | 18,344 | ||
G3 (12–14) | VC (.887) SI (.880) VO (.815) IN (.779) CO (.702) | PR (.804) BD (.572) VP (.690) MR (.604) FW (.599) | WM (.708) AR (.687) DS (.753) PS (.686) LN (.775) | PS (.556) CD (.509) SS (.720) CA (.563) | 155.831 | 86 | <.001 | .942 | 0.929 | .060 [.045 .075] | .055 | 15,381 | 15,549 | ||
G4 (15–16) | VC (.774) SI (.802) VO (.900) IN (.822) CO (.736) | PR (.853) BD (.696) VP (.634) MR (.763) FW (.781) | WM (.891) AR (.811) DS (.806) PS (.587) LN (.735) | PS (.677) CD (.675) SS (.731) CA (.629) | 122.196 | 86 | .006 | .961 | 0.953 | .055 [.030 .076] | .052 | 9570 | 9713 | ||
M5a | G1 (6–8) | VC (.859) SI (.680) VO (.759) IN (.587) CO (.549) | VS (.814) BD (.575) VP (.798) | FR (.846) MR (.791) FW (.489) | WM (.854) AR (.772) DS (.808) PS (.560) LN (.760) | PS (.583) CD (.664) SS (.650) CA (.201) | 131.846 | 85 | <.001 | .951 | 0.939 | .050 [.032 .066] | .051 | 15,516 | 15,687 |
G2 (9–11) | VC (.846) SI (.833) VO (.818) IN (.788) CO (.668) | VS (.826) BD (.716) VP (.746) | FR (.982) MR (.583) FW (.588) | WM (.910) AR (.704) DS (.761) PS (.593) LN (.677) | PS (.447) CD (.571) SS (.814) CA (.498) | 104.521 | 85 | .074 | .986 | 0.982 | .029 [.000 .047] | .041 | 18,169 | 18,348 | |
G3 (12–14) | VC (.838) SI (.877) VO (.816) IN (.780) CO (.705) | VS (.724) BD (.619) VP (.799) | FR (.983) MR (.589) FW (.598) | WM (.717) AR (.690) DS (.752) PS (.688) LN (.771) | PS (.524) CD (.510) SS (.719) CA (.563) | 151.314 | 85 | <.001 | .945 | 0.932 | .059 [.043 .074] | .052 | 15,377 | 15,548 | |
G4 (15–16) | VC (.758) SI (.803) VO (.900) IN (.822) CO (.734) | VS (.806) BD (.823) VP (.690) | FR (.859) MR (.787) FW (.823) | WM (.865) AR (.810) DS (.806) PS (.589) LN (.736) | PS (.678) CD (.678) SS (.730) CA (.626) | 112.915 | 85 | .023 | .970 | 0.963 | .049 [.019 .071] | .052 | 9563 | 9709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Cancino, M.; Concha-Salgado, A. The Internal Structure of the WISC-V in Chile: Exploratory and Confirmatory Factor Analyses of the 15 Subtests. J. Intell. 2024, 12, 105. https://doi.org/10.3390/jintelligence12110105
Rodríguez-Cancino M, Concha-Salgado A. The Internal Structure of the WISC-V in Chile: Exploratory and Confirmatory Factor Analyses of the 15 Subtests. Journal of Intelligence. 2024; 12(11):105. https://doi.org/10.3390/jintelligence12110105
Chicago/Turabian StyleRodríguez-Cancino, Marcela, and Andrés Concha-Salgado. 2024. "The Internal Structure of the WISC-V in Chile: Exploratory and Confirmatory Factor Analyses of the 15 Subtests" Journal of Intelligence 12, no. 11: 105. https://doi.org/10.3390/jintelligence12110105
APA StyleRodríguez-Cancino, M., & Concha-Salgado, A. (2024). The Internal Structure of the WISC-V in Chile: Exploratory and Confirmatory Factor Analyses of the 15 Subtests. Journal of Intelligence, 12(11), 105. https://doi.org/10.3390/jintelligence12110105