Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study
Abstract
:1. Background
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gossett, P.C.; Schwartz, B.E.; Chuang, D.P.; Piponov, H.I.; Gonzalez, M.H. Urinary Tract Infection after Total Hip Arthroplasty: A Retrospective Cohort Study. J. Surg. Orthop. Adv. 2020, 29, 162–164. [Google Scholar] [PubMed]
- Ma, Y.; Lu, X. Indwelling catheter can increase postoperative urinary tract infection and may not be required in total joint arthroplasty: A meta-analysis of randomised controlled trial. BMC Musculoskelet. Disorder 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Parker, V.; Giles, M.; Graham, L.; Suthers, B.; Watts, W.; O’Brien, T.; Searles, A. Avoiding inappropriate urinary catheter use and catheter-associated urinary tract infection (CAUTI): A pre-post control intervention study. BMC Health Serv. Res. 2017, 17, 314. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control 2014, 3, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakker, A.; Briggs, N.; Maeda, A.; Byrne, J.; Davey, J.R.; Jackson, T.D. Reducing the rate of post-surgical urinary tract infections in orthopaedic patients. BMJ Open Qual. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Pawłowska, I.; Ziółkowski, G.; Wójkowska-Mach, J.; Bielecki, T. Can surgical site infections be controlled through microbiological surveillance? A three-year laboratory-based surveillance at an orthopaedic unit, retrospective observatory study. Int. Orthop. 2019. [CrossRef] [Green Version]
- ECDC. Surveillance of Healthcare-Associated Infections and Prevention Indicators in European Intensive Care Units HAI-Net ICU Protocol. Available online: https://ecdc.europa.eu/sites/portal/files/documents/HAI-Net-ICU-protocol-v2.2_0.pdf (accessed on 23 January 2020).
- EUCAST. Guideline for the Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. Available online: http://www.eucast.org/resistance_mechanisms/ (accessed on 23 January 2020).
- EUCAST. Clinical Breakpoints—Breakpoints and Guidance. Available online: http://www.eucast.org/clinical_breakpoints (accessed on 23 January 2020).
- Drieux, L.; Brossier, F.; Sougakoff, W.; Jarlier, V. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: Review and bench guide. Clin. Microbiol. Infect. 2008, 14, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Herruzo-Cabrera, R.; López-Giménez, J.; Munuera, C.L. Urinary infection after orthopaedic procedures. Int. Orthop. 2001, 25, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, A.P.; Demzik, A.L.; Alvi, H.M.; Hardt, K.D. Manning DW. Risk Factors for Postoperative Urinary Tract Infections in Patients Undergoing Total Joint Arthroplasty. Adv. Orthop. 2016, 2016, 7268985. [Google Scholar] [CrossRef]
- Dudeck, M.A.; Edwards, J.R.; Allen-Bridson, K.; Gross, C.; Malpiedi, P.J.; Peterson, K.D.; Pollock, D.A.; Weiner, L.M.; Sievert, D.M. NHSN Annual Report: Data summary for 2013, Device-associated Module. Am. J. Infect. Control 2015, 43, 206–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kołpa, M.; Wałaszek, M.; Różańska, A.; Wolak, Z.; Wójkowska-Mach, J. Hospital-Wide Surveillance of Healthcare-Associated Infections as a Source of Information about Specific Hospital Needs. A 5-Year Observation in a Multiprofile Provincial Hospital in the South of Poland. Int. J. Environ. Res. Public Health 2018, 15, 1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stéphan, F.; Sax, H.; Wachsmuth, M.; Hoffmeyer, P.; Clergue, F.; Pittet, D. Reduction of Urinary Tract Infection and Antibiotic Use after Surgery: A Controlled, Prospective, Before After Intervention Study. Clin. Infect. Dis. 2006, 42, 1544–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corigliano, A.; Galasso, O.; Varano, A.; Riccelli, D.A.; Gasparini, G. Urinary tract infections after early removal of urinary catheter in total joint arthroplasty. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Balderi, T.; Carli, F. Urinary retention after total hip and knee arthroplasty. Minerva Anestesiol. 2010, 76, 120–130. [Google Scholar] [PubMed]
- Koulouvaris, P.; Sculco, P.; Finerty, E.; Sculco, T.; Sharrock, N.E. Relationship between perioperative urinary tract infection and deep infection after joint arthroplasty. Clin. Orthop. Relat. Res. 2008, 467, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Pereira, S.; Rodríguez-Pardo, D.; Pellisé, F.; Pigrau, C.; Bagó, J.; Villanueva, C.; Cáceres, E. Postoperative urinary tract infection and surgical site infection in instrumented spinal surgery: Is there a link? Clin Microbiol. Infect. 2014, 20, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Sopeña-Sutil, R.; Medina-Polo, J.; Justo-Quintas, J.; Gil-Moradillo, J.; Garcia-Gonzalez, L.; Benítez-Sala, R.; Alonso-Isa, M.; Lara-Isla, A.; Tejido-Sanchez, A. Healthcare-Associated Infections after Lower Urinary Tract Endoscopic Surgery: Analysis of Risk Factors, Associated Microorganisms and Patterns of Antibiotic Resistance. Urol. Int. 2018, 100, 440–444. [Google Scholar] [CrossRef]
- Pellowe, C.; Pratt, R. Catheter-associated urinary tract infections: Primary care guidelines. Nurs. Times 2004, 100, 53–55. [Google Scholar]
- Fisher, J.F. Candida urinary tract infections—Epidemiology, pathogenesis, diagnosis, and treatment: Executive summary. Clin. Infect. Dis. 2011, 52, S429–S432. [Google Scholar] [CrossRef]
- Kauffman, C.A.; Vazquez, J.A.; Sobel, J.D.; Gallis, H.A.; McKinsey, D.S.; Karchmer, A.W.; Sugar, A.M.; Sharkey, P.K.; Wise, G.J.; Mangi, R.; et al. Prospective multicenter surveillance study of funguria in hospitalized patients. Clin. Infect. Dis. 2000, 30, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolas-Chanoine, M.H.; Blanco, J.; Leflon-Guibout, V.; Demarty, R.; Alonso, M.P.; Caniça, M.M.; Park, Y.J.; Lavigne, J.P.; Pitout, J.; Johnson, J.R. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2008, 61, 273–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA—Annual Epidemiological Report 2019; ECDC: Stockholm, Sweden, 2020; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf (accessed on 20 November 2020).
- Khawcharoenporn, T.; Vasoo, S.; Singh, K. Urinary Tract Infections due to Multidrug-Resistant Enterobacteriaceae: Prevalence and Risk Factors in a Chicago Emergency Department. Emerg. Med. Int. 2013, 2013, 258517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzariol, A.; Bazaj, A.; Cornaglia, G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: A review. J. Chemother. 2017, 29, 2–9. [Google Scholar] [CrossRef] [Green Version]
Pathogen | Monomicrobial n [%] | Polymicrobial n [%] | Total n [%] | Depending on the Use of Bladder Catheter [%] | Total n [%] | ||||
---|---|---|---|---|---|---|---|---|---|
Female | Male | Female | Male | Female | Male | CA-UTI | Non-CA-UTI | ||
Gram-positive (16.3% of all micro-organisms) | |||||||||
Staphylococcus aureus | 0 (0.0) | 2 (2.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (1.9) | 2 (1.0) | 0 (0.0) | 2 (1.0) |
Enterococcus faecalis | 5 (6.4) | 5 (5.9) | 5 (6.5) | 5 (22.7) | 10 (9.8) | 10 (9.3) | 18 (9.1) | 2 (16.7) | 20 (9.6) |
Enterococcus faecium | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (4.5) | 0 (0.0) | 1 (0.9) | 1 (0.5) | 0 (0.0) | 1 (0.5) |
Others | 11 (14.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 11 (10.8) | 0 (0.0) | 11 (5.6) | 0 (0.0) | 11 (5.3) |
Gram-negative (76.1% of all micro-organisms) | |||||||||
Escherichia coli | 13 (16.7) | 25 | 15 (62.5) | 8 (36.4) | 28 (27.5) | 33 (30.8) | 56 (28.4) | 5 (41.7) | 61 (29.2) |
Klebsiella pneumoniae | 11 (14.1) | 14 | 4 (16.7) | 3 (13.6) | 15 (14.7) | 17 15.9) | 30 (15.2) | 2 (16.7) | 32 (13.3) |
Proteus mirabilis | 7 (9.0) | 13 | 0 (0.0) | 5 (22.7) | 7 (6.9) | 18 (16.8) | 24 (12.2) | 1 (8.3) | 25 (12.0) |
Pseudomonas aeruginosa | 10 (12.8) | 11 | 0 (0.0) | 0 (0.0) | 10 (99.8) | 11 (10.3) | 21 (10.7) | 0 (0.0) | 21 (10.0) |
Acinetobacter baumannii | 3 (3.8) | 6 | 0 (0.0) | 0 (0.0) | 3 (2.9) | 6 (5.6) | 9 (4.6) | 0 (0.0) | 9 (4.3) |
Enterobacter cloacae | 2 (2.6) | 1 | 0 (0.0) | 0 (0.0) | 2 (2.0) | 1 (0.9) | 3 (1.5) | 0 (0.0) | 3 (1.4) |
Others | 8 (10.3) | 0 | 0 (0.0) | 0 (0.0) | 8 (7.8) | 0 (0.0) | 8 (4.1) | 0 (0.0) | 8 (3.8) |
Candida spp. | 8 (10.3) | 8 | 0 (0.0) | 0 (0.0) | 8 (7.8) | 8 (7.6) | 14 (7.1) | 2 (16.7) | 16 (7.7) |
total | 78 (100) | 85 (100) | 24 (100) | 22 (100) | 102 (100) | 107 | 197 (100) | 12 (100) | 209 (100) |
Antibiotics | Escherichia coli n = 61 | Klebsiella pneumoniae n = 32 | Proteus mirabilis (n = 25) | Pseudomonas aeruginosa n = 21 |
---|---|---|---|---|
Beta-lactam antibacterials: penicillins, with extended-spectrum, beta-lactamase resistant penicillins, combinations of penicillins incl. beta-lactamase inhibitors | ||||
Ampicillin | 26% | 0% | 37% | NT |
Piperacillin | 28% | 0% | 35% | 75% |
amoxicillin + clavulanate | 82% | 35% | 91% | NT |
piperacillin + tazobactam | 70% | 31% | 92% | 85% |
ticarcillin + clavulanate | NT | NT | NT | 90 |
Other beta-lactam antibacterials: second/third-generation cephalosporins, carbapenems | ||||
Cefuroxime | 84% | 25% | 78% | NT |
Ceftazidime | 94% | 38% | 93% | 85% |
Cefotaxime | 96% | 38% | 94% | NT |
Cefepime | 92% | 31% | 97% | 100% |
Imipenem | 100% | 100% | 33% | 77% |
Meropenem | 100% | 100% | 100% | 77% |
Ertapenem | 100% | 100% | 100% | NT |
Aminoglycoside antibacterials | ||||
Gentamicin | 87% | 25% | 67% | 88% |
Tobramycin | 73% | 36% | 60% | 91% |
Amikacin | 88% | 50% | 67% | 92% |
Netilmicin | 89% | 40% | 60% | 82% |
Quinolone antibacterials | ||||
Ciprofloxacin | 64% | 42% | 57% | 37% |
Levofloxacin | 64% | 38% | 43% | 50% |
Other antibacterials | ||||
Nitrofurantoin | 96% | NT | NT | NT |
Fosfomycin | 100% | 80% | NT | 98% |
trimethoprim-sulfamethoxazole | 55% | 42% | 50% | NT |
Pathogen | MDR Isolates [n] | Prevalence of MDR [%] | Trend in 2013–2015 p-Value | ||
---|---|---|---|---|---|
Female | Male | Total | |||
Acinetobacter baumannii XDR, n = 9 | 2 | 5 | 7 | 77.8 | p = 0.6015 |
Klebsiella pneumoniae MDR, incl. ESBL, n = 32 | 10 | 11 | 21 | 65.6 | p = 0.6015 |
Pseudomonas aeruginosa MDR, XDR, n = 21 | 2 | 3 | 5 | 23.8 | p = 0.6015 |
Proteus mirabilis MDR, incl. ESBL, n = 25 | 2 | 2 | 4 | 16.0 | p = 0.2008 |
Escherichia coli MDR, incl. ESBL, n = 61 | 2 | 6 | 8 | 13.1 | p = 0.6015 |
Others, n = 61 | 6 | 2 | 6 | 9.8 | p = 0.6015 |
Total, n = 209 | 20 | 31 | 51 | 24.4 | p = 0.6015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziółkowski, G.; Pawłowska, I.; Stasiowski, M.; Jachowicz, E.; Wójkowska-Mach, J.; Bielecki, T. Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study. Antibiotics 2021, 10, 7. https://doi.org/10.3390/antibiotics10010007
Ziółkowski G, Pawłowska I, Stasiowski M, Jachowicz E, Wójkowska-Mach J, Bielecki T. Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study. Antibiotics. 2021; 10(1):7. https://doi.org/10.3390/antibiotics10010007
Chicago/Turabian StyleZiółkowski, Grzegorz, Iwona Pawłowska, Michał Stasiowski, Estera Jachowicz, Jadwiga Wójkowska-Mach, and Tomasz Bielecki. 2021. "Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study" Antibiotics 10, no. 1: 7. https://doi.org/10.3390/antibiotics10010007
APA StyleZiółkowski, G., Pawłowska, I., Stasiowski, M., Jachowicz, E., Wójkowska-Mach, J., & Bielecki, T. (2021). Multidrug-Resistant Micro-Organisms Associated with Urinary Tract Infections in Orthopedic Patients: A Retrospective Laboratory-Based Study. Antibiotics, 10(1), 7. https://doi.org/10.3390/antibiotics10010007