Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics
Abstract
:1. Introduction
2. Diarylureas with Antimicrobial Activity
2.1. Diarylureas with Antiparasitic Activity
2.2. Diarylureas with Antibacterial and Antifungal Activity
3. Diarylureas with Antiviral Activity
4. Diarylureas as Antimalarial Agents
5. Diarylureas as Anti-Inflammatory Agents and Antiulcer Agents
6. Diarylureas as Integrine Antagonists
7. Diarylureas as Allosteric Modulators of Cannabinoid Receptor 1
8. Diarylureas as Antiplatelet Agents
9. Diarylureas Acting on Central Nervous System
10. Diarylureas for Neuroinflammation
11. Diarylureas as Inhibitors of AChE and BuChE
12. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE2 | angiotensin converting enzyme 2 |
AChE | acetylcholinesterase |
AD | Alzheimer’s disease |
ADP | adenosine-5′-diphosphate |
CB1 | cannabinoid receptor 1 |
CB2 | cannabinoid receptor 2 |
CL | clearance |
CNS | Central Nervous System |
COVID-19 | Coronavirus disease 2019 |
CXCR2 | CXC chemokine receptor 2 |
DENV | dengue virus |
ECAT | electrolytic-mediated carotid arterial thrombosis |
ENR | enoyl-acyl-carrier protein reductase |
FLIPR | fluorescent imaging plate reader |
FST | forced swim test |
HD | Huntington’s disease |
HFF | human foreskin fibroblast |
IGF-1R | insulin like growth factor I receptor |
IL-6 | interleukin-6 |
IP | interstitial pneumonia |
KB | binding affinity |
LPS | lipopolysaccharide |
MenG | demethylmenaquinone methyltranferase |
MERS | Swine flu |
Ebola | Middle East respiratory syndrome |
MES | maximal electroshock |
MIC | minimum inhibitory concentration |
MMV | Medicines for Malaria Venture |
MRSA | methicillin-resistant S. aureus |
MSSA | methicillin-sensitive S. aureus |
NTDs | neglected tropical diseases |
NTS | newly transformed schistosomula |
PGR | plant growth regulator |
PA | platelet aggregation |
PD | Parkinson’s disease |
PZQ | praziquantel |
SARS | severe acute respiratory syndrome |
SARS-CoV | respiratory syndrome coronavirus |
SARS-CoV-2 | respiratory syndrome coronavirus 2 |
scPTZ | subcutaneous pentylenetetrazole |
sEH | soluble epoxide hydrolase |
Sps | bacterial signal peptidase I enzyme |
TB | tuberculosis |
TCC | triclocarban |
TRPV1 | transient receptor potential vanilloid 1 |
TST | tail suspension test |
Vdss | volume of distribution |
VLA-4 | very late antigen-4 |
VRSA | vancomycin-resistant S. aureus |
WNV | West Nile virus |
YFV | Yellow fever virus |
ZIKV | Zika virus virus |
References
- World Health Organization. Tackling Antimicrobial Resistance; Eurohealth (Lond); WHO: Geneva, Switzerland, 2020; Volume 26. [Google Scholar]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, I.J.D.S.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem. 2020. [Google Scholar] [CrossRef]
- Reperant, L.A.; Osterhaus, A. Aids, Avian flu, SARS, MERS, Ebola, Zika… What next? Vaccine 2017, 35, 4470–4474. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280. [Google Scholar] [CrossRef] [Green Version]
- Pascarella, G.; Strumia, A.; Piliego, C.; Bruno, F.; Del Buono, R.; Costa, F.; Scarlata, S.; Agrò, F.E. COVID-19 diagnosis and management: A comprehensive review. J. Intern. Med. 2020, 288, 192–206. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Sibuyi, N.R.S.; Adewale, O.B.; Bakare, O.O.; Akanbi, M.O.; Klein, A.; Madiehe, A.M.; Meyer, M. Understanding the epidemiology, pathophysiology, diagnosis and management of SARS-CoV-2. J. Intern. Med. Res. 2020, 48, 0300060520949077. [Google Scholar] [CrossRef]
- Wise, J. Covid-19: New coronavirus variant is identified in UK. BMJ 2020, 371, m4857. [Google Scholar] [CrossRef]
- Mokhtari, T.; Hassani, F.; Ghaffari, N.; Ebrahimi, B.; Yarahmadi, A.; Hassanzadeh, G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J. Mol. Histol. 2020, 51, 613–628. [Google Scholar] [CrossRef]
- Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and multiorgan response. Curr. Probl. Cardiol. 2020, 45, 100618. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef]
- Ginsburg, A.S.; Klugman, K.P. COVID-19 pneumonia and the appropriate use of antibiotics. Lancet Glob. Health 2020, 8, e1453–e1454. [Google Scholar] [CrossRef]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Garuti, L.; Roberti, M.; Bottegoni, G.; Ferraro, M. Diaryl urea: A privileged structure in anticancer agents. Curr. Med. Chem. 2016, 23, 1528–1548. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Iacopetta, D.; Sinicropi, M.S.; Franchini, C. Diarylureas as antitumor agents. Appl. Sci. 2021, 11, 374. [Google Scholar] [CrossRef]
- Sikka, P.; Sahu, J.K.; Mishra, A.K.; Hashim, S.R. Role of Aryl Urea Containing Compounds in Medicinal Chemistry. Med. Chem. 2015, 5, 479–483. [Google Scholar] [CrossRef]
- Asif, M. Short notes on diaryl ureas derivatives. J. Adv. Res. Biochem. Pharmacol. 2018, 1, 38–41. [Google Scholar]
- Gemma, S.; Federico, S.; Brogi, S.; Brindisi, M.; Butini, S.; Campiani, G. Dealing with schistosomiasis: Current drug discovery strategies. In Annual Reports in Medicinal Chemistry; Elsevier: Amsterdam, The Netherland, 2019; Volume 53, pp. 107–138. ISBN 9780128198667. [Google Scholar]
- Wu, J.; Wang, C.; Leas, D.; Vargas, M.; White, K.L.; Shackleford, D.M.; Chen, G.; Sanford, A.G.; Hemsley, R.M.; Davis, P.H.; et al. Progress in antischistosomal N,N′-diaryl urea SAR. Bioorg. Med. Chem. Lett. 2018, 28, 244–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Anderson, M.; Weisman, J.L.; Lu, M.; Choy, C.J.; Boyd, V.A.; Price, J.; Siga, M.; Clark, J.; Connelly, M.; et al. Evaluation of diarylureas for activity against Plasmodium falciparum. ACS Med. Chem. Lett. 2010, 1, 460–465. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Lai, A.; Qiao, J.X.; Wang, T.C.; Hua, J.; Price, L.A.; Shen, H.; Chen, X.; Wong, P.; et al. Discovery of 4-aryl-7-hydroxyindoline-based P2Y1 antagonists as novel antiplatelet agents. J. Med. Chem. 2014, 57, 6150–6164. [Google Scholar] [CrossRef]
- Dighe, S.N.; Dua, K.; Chellappan, D.K.; Katavic, P.L.; Collet, T.A. Recent update on anti-dengue drug discovery. Eur. J. Med. Chem. 2019, 176, 431–455. [Google Scholar] [CrossRef]
- Nguyen, T.; German, N.; Decker, A.M.; Langston, T.L.; Gamage, T.F.; Farquhar, C.E.; Li, J.-X.; Wiley, J.L.; Thomas, B.F.; Zhang, Y. Novel diarylurea based allosteric modulators of the cannabinoid CB1 receptor: Evaluation of importance of 6-pyrrolidinylpyridinyl substitution. J. Med. Chem. 2017, 60, 7410–7424. [Google Scholar] [CrossRef] [PubMed]
- Witherington, J.; Blaney, E.L.; Bordas, V.; Elliott, R.L.; Gaiba, A.; Garton, N.; Green, P.M.; Naylor, A.; Smith, D.G.; Spalding, D.J.; et al. Pyridone derivatives as potent, orally bioavailable VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett. 2006, 16, 5538–5541. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Bu, Y.; Wang, Y.; Nie, M.; Zhang, D.; Zhai, X. Design, Synthesis and Structure–Activity Relationships of Novel Diaryl Urea Derivatives as Potential EGFR Inhibitors. Molecules 2016, 21, 1572. [Google Scholar] [CrossRef] [Green Version]
- Catalano, A. COVID-19: Could Irisin Become the Handyman Myokine of the 21st Century? Coronaviruses 2020, 1, 32–41. [Google Scholar] [CrossRef]
- Rapkiewicz, A.V.; Mai, X.; Carsons, S.E.; Pittaluga, S.; Kleiner, D.E.; Berger, J.S.; Thomas, S.; Adler, N.M.; Charytan, D.M.; Gasmi, B.; et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. E Clin. Med. 2020, 24, 100434. [Google Scholar] [CrossRef]
- Mazza, M.G.; Lorenzo, R.D.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020, 89, 594–600. [Google Scholar] [CrossRef]
- Phillips, N.; Park, I.-W.; Robinson, J.R.; Jones, H.P. The perfect storm: COVID-19 health disparities in US blacks. J. Racial Ethn. Health Disparities 2020, 1–8. [Google Scholar] [CrossRef]
- Patini, R.; Mangino, G.; Martellacci, L.; Quaranta, G.; Masucci, L.; Gallenzi, P. The effect of different antibiotic regimens on bacterial resistance: A systematic review. Antibiotics 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017, 137, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Bergman, Å.; Heindel, J.J.; Jobling, S.; Kidd, K.A.; Zoeller, R.T. The State-of-the-Science of Endocrine Disrupting Chemicals, World Health Organization and United Nations Environment Programme Report–2012; UNEP/WHO: Geneva, Switzerland, 2013; Available online: www.who.int/ceh/publications/endocrine/en/index.html (accessed on 18 January 2021).
- Liu, J.; Qiu, H.; Morisseau, C.; Hwang, S.H.; Tsai, H.; Ulu, A.; Chiamvimonvat, N.; Hammock, B.D. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model. Toxicol. Appl. Pharmacol. 2011, 255, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Zhang, W.; Ren, J.; Li, W.; Zhou, L.; Cui, Y.; Chen, H.; Yu, W.; Zhuang, X.; Zhang, Z.; et al. Metabonomics indicates inhibition of fatty acid synthesis, beta-oxidation, and tricarboxylic acid cycle in triclocarban-induced cardiac metabolic alterations in male mice. J. Agric. Food Chem. 2018, 66, 1533–1542. [Google Scholar] [CrossRef]
- Geer, L.A.; Pycke, B.F.G.; Waxenbaum, J.; Sherer, D.M.; Abulafia, O.; Halden, R.U. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. J. Hazard. Mater. 2017, 323, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Teng, Y.; Wang, D.; Han, K.; Wang, H.; Kang, L. The fate of triclocarban in activated sludge and its influence on biological wastewater treatment system. J. Environ. Manag. 2020, 276, 111237. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Liang, B.; Kong, D.; Li, X.; Wang, A. Fate, risk and removal of triclocarban: A critical review. J. Hazard. Mater. 2020, 387, 121944. [Google Scholar] [CrossRef]
- Batra, S.; Tusi, Z.; Madapa, S. Medicinal chemistry of ureido derivatives as anti-infectives. Anti-Infect. Agents Med. Chem. (Former Curr. Med. Chem. Anti-Infect. Agents) 2006, 5, 135–160. [Google Scholar] [CrossRef]
- Macsics, R.; Hackl, M.W.; Fetzer, C.; Mostert, D.; Bender, J.; Layer, F.; Sieber, S.A. Comparative Target Analysis of Chlorinated Biphenyl Antimicrobials Highlights MenG as Molecular Target of Triclocarban. Appl. Environ. Microbiol. 2020. [Google Scholar] [CrossRef]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.N. Schistosomiasis. Nat. Rev. Dis. Primers 2018, 4, 13. [Google Scholar] [CrossRef]
- Herricks, J.R.; Hotez, P.J.; Wanga, V.; Coffeng, L.E.; Haagsma, J.A.; Basanez, M.G.; Buckle, G.; Budke, C.M.; Carabin, H.; Fevre, E.M.; et al. The global burden of disease study 2013: What does it mean for the NTDs? PLoS Negl. Trop. Dis. 2017, 11, e0005424. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.H., Jr.; Binder, S.; King, C.H.; Knopp, S.; Rollinson, D.; Person, B.; Webster, B.; Allan, F.; Utzinger, J.; Ame, S.M.; et al. SCORE operational research on moving toward interruption of schistosomiasis transmission. Am. J. Trop. Med. Hyg. 2020, 103 (Suppl. 1), 58–65. [Google Scholar] [CrossRef]
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis-from immunopathology to vaccines. Semin. Immunopathol. 2020, 42, 355–371. [Google Scholar] [CrossRef]
- Mäder, P.; Rennar, G.A.; Ventura, A.M.P.; Grevelding, C.G.; Schlitzer, M. Chemotherapy for fighting schistosomiasis: Past, present and future. ChemMedChem 2018, 13, 2374–2389. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P. Recent progress in the development of liver fluke and blood fluke vaccines. Vaccines 2020, 8, 553. [Google Scholar] [CrossRef] [PubMed]
- Dang, N.L.; Hughes, T.B.; Taramelli, D. Open source drug discovery with the Malaria Box compound collection for neglected diseases and beyond. PLoS Pathog. 2016, 12, e1005763. [Google Scholar]
- Ingram-Sieber, K.; Cowan, N.; Panic, G.; Vargas, M.; Mansour, N.R.; Bickle, Q.D.; Wells, T.N.C.; Spangenberg, T.; Keiser, J. Orally active antischistosomal early leads identified from the open access Malaria Box. PLoS Negl. Trop. Dis. 2014, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, N.; Dätwyler, P.; Ernst, B.; Wang, C.; Vennerstro, J.L.; Spangenberg, T.; Keiser, J. Activities of N,N’-diarylurea MMV665852 analogs against Schistosoma mansoni. Antimicrob. Agents Chemother. 2015, 59, 1935–1941. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Liu, F.; Chen, J.; Li, Y.; Cui, J.; Qiao, C. Antischistosomal activity of N,N′-arylurea analogs against Schistosoma japonicum. Bioorg. Med. Chem. Lett. 2016, 26, 1386–1390. [Google Scholar] [CrossRef]
- Cole, S.; Codling, I.D.; Parr, W.; Zabel, T. Guidelines for Managing Water Quality Impacts within UK European Marine Sites; UK Marine SACs Project; WRc Swindon Frankland Road Blagrove Swindon: Wiltshire, UK, 1999; Volume 88. [Google Scholar]
- Tomlin CDS. The Pesticide Manua, 10th ed.; Royal Society of Chemistry: Cambridge, UK; British Crop Protection Council: London, UK, 1995. [Google Scholar]
- Lee, J.; Hong, S.; Kim, T.; Lee, C.; An, S.A.; Kwon, B.O.; Lee, S.; Moon, H.-B.; Giesy, J.-P.; Khim, J.S. Multiple bioassays and targeted and nontargeted analyses to characterize potential toxicological effects associated with sediments of masan bay: Focusing on AhR-mediated potency. Environ. Sci. Technol. 2020, 54, 4443–4454. [Google Scholar] [CrossRef]
- Chiaia-Hernández, A.C.; Scheringer, M.; Müller, A.; Stieger, G.; Wächter, D.; Keller, A.; Pintado-Herrera, M.G.; Lara-Martin, P.A.; Bucheli, T.D.; Hollender, J. Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments. Sci. Total Environ. 2020, 740, 140181. [Google Scholar] [CrossRef]
- Cowan, N.; Keiser, J. Repurposing of anticancer drugs: In vitro and in vivo activities against Schistosoma mansoni. Parasite Vect. 2015, 8, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Pujol, E.; Blanco-Cabra, N.; Julián, E.; Leiva, R.; Torrents, E.; Vázquez, S. Pentafluorosulfanyl-containing triclocarban analogs with potent antimicrobial activity. Molecules 2018, 23, 2853. [Google Scholar] [CrossRef] [Green Version]
- Le, P.; Kunold, E.; Macsics, R.; Rox, K.; Jennings, M.C.; Ugur, I.; Reinecke, M.; Chaves-Moreno, D.; Hackl, M.W.; Fetzer, C.; et al. Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat. Chem. 2020, 12, 145–158. [Google Scholar] [CrossRef]
- Roberts, J.L.; Tavallai, M.; Nourbakhsh, A.; Fidanza, A.; Cruz-Luna, T.; Smith, E.; Siembida, P.; Plamondon, P.; Cycon, K.A.; Doern, C.D.; et al. GRP78/Dna K is a target for Nexavar/Stivarga/Votrient in the treatment of human malignancies, viral infections and bacterial diseases. J. Cell. Physiol. 2015, 230, 2552–2578. [Google Scholar] [CrossRef]
- Chang, H.C.; Huang, Y.T.; Chen, C.S.; Chen, Y.W.; Huang, Y.T.; Su, J.C.; Teng, L.J.; Shiau, C.W.; Chiu, H.C. In vitro and in vivo activity of a novel sorafenib derivative SC5005 against MRSA. J. Antimicrob. Chemother. 2016, 71, 449–459. [Google Scholar] [CrossRef]
- Francisco, G.D.; Li, Z.; Albright, J.D.; Eudy, N.H.; Katz, A.H.; Petersen, P.J.; Labthavikul, P.; Singh, G.; Yang, Y.; Rasmussen, B.A.; et al. Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg. Med. Chem. Lett. 2004, 14, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Jukič, M.; Hrast, M.; Patin, D.; Ogorevc, E.; Barreteau, H.; Gobec, S. Virtual screening approach and biochemical evaluation on MurB. Chem. Data Collect. 2019, 24, 100276. [Google Scholar] [CrossRef]
- Hassan, M.A.; Sayed, G.H.; El-Nagar, A.M.; Hussien, A.M. A convenient synthesis of some diarylurea and thiourea derivatives as antimicrobial compounds. Chem. Process Eng. Res. 2014, 25, 1–11. [Google Scholar]
- Kim, W.; Zou, G.; Pan, W.; Fricke, N.; Faizi, H.A.; Kim, S.M.; Khader, R.; Li, S.; Lee, K.; Escorba, L.; et al. The neutrally charged diarylurea compound PQ401 kills antibiotic-resistant and antibiotic-tolerant Staphylococcus aureus. mBio 2020, 11, 603. [Google Scholar] [CrossRef]
- Sarveswari, S.; Vijayakumar, V. A Facile Synthesis of diaylureas and their antimicrobial evaluation. Chiang Mai J. Sci. 2018, 45, 997–1007. [Google Scholar]
- Pozzi, C.; Ferrari, S.; Cortesi, D.; Luciani, R.; Stroud, R.M.; Catalano, A.; Costi, M.P.; Mangani, S. The structure of Enterococcus faecalis thymidylate synthase provides clues about folate bacterial metabolism. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 1232–1241. [Google Scholar] [CrossRef]
- Gezegen, H.; Hepokur, C.; Tutar, U.; Ceylan, M. Synthesis and Biological Evaluation of Novel 1-(4-(Hydroxy(1-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)phenyl)-3-phenylurea Derivatives. Chem. Biodivers. 2017, 14, e1700223. [Google Scholar] [CrossRef]
- Ceramella, J.; Mariconda, A.; Rosano, C.; Iacopetta, D.; Caruso, A.; Longo, P.; Sinicropi, M.S.; Saturnino, C. α–ω Alkenyl-bis-S-guanidine thiourea dihydrobromide affects HeLa cell growth hampering tubulin polymerization. ChemMedChem 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Eissa, I.H.; Mohammad, H.; Qassem, O.A.; Younis, W.; Abdelghany, T.M.; Elshafeey, A.; Moustafa, M.M.A.R.; Seleem, M.N.; Mayhoub, A.S. Diphenylurea derivatives for combating methicillin- and vancomycin-resistant Staphylococcus aureus. Eur. J. Med. Chem. 2017, 130, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, H.; Younis, W.; Ezzat, H.G.; Peters, C.E.; AbdelKhalek, A.; Cooper, B.; Pogliano, K.; Pogliano, J.; Mayhoub, A.S.; Seleem, M.N. Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 2017, 12, e0182821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhayaya, R.S.; Kulkarni, G.M.; Vasireddy, N.R.; Vandavasi, J.K.; Dixit, S.S.; Sharma, V. Chattapadhayaya, Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2009, 17, 4681–4692. [Google Scholar] [CrossRef]
- Velappan, A.B.; Raja, M.R.C.; Datta, D.; Tsai, Y.T.; Halloum, I.; Wan, B.; Kremer, L.; Gramajo, H.; Franzblau, S.G.; Mahapatra, S.K.; et al. Attenuation of Mycobacterium species through direct and macrophage mediated pathway by unsymmetrical diaryl urea. Eur. J. Med. Chem. 2017, 125, 825–841. [Google Scholar] [CrossRef] [Green Version]
- Kocyigit-Kaymakcioglu, B.; Celen, A.O.; Tabanca, N.; Ali, A.; Khan, S.I.; Khan, I.A.; Wedge, D.E. Synthesis and biological activity of substituted urea and thiourea derivatives containing 1,2,4-triazole moieties. Molecules 2013, 18, 3562–3576. [Google Scholar] [CrossRef] [Green Version]
- Caruso, A.; Ceramella, J.; Iacopetta, D.; Saturnino, C.; Mauro, M.V.; Bruno, R.; Aquaro, S.; Sinicropi, M.S. Carbazole Derivatives as Antiviral Agents: An Overview. Molecules 2019, 24, 1912. [Google Scholar] [CrossRef] [Green Version]
- Micewicz, E.D.; Khachatoorian, R.; French, S.W.; Ruchala, P. Identification of novel small-molecule inhibitors of Zika virus infection. Bioorg. Med. Chem. Lett. 2018, 28, 452–458. [Google Scholar] [CrossRef]
- Khachatoorian, R.; Micewicz, E.D.; Micewicz, A.; French, S.W.; Ruchala, P. Optimization of 1, 3-disubstituted urea-based inhibitors of Zika virus infection. Bioorg. Med. Chem. Lett. 2019, 29, 126626. [Google Scholar] [CrossRef]
- Benmansour, F.; Trist, I.; Coutard, B.; Decroly, E.; Querat, G.; Brancale, A.; Barral, K. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design. Eur. J. Med. Chem. 2017, 125, 865–880. [Google Scholar] [CrossRef]
- Jiang, S.; Prigge, S.T.; Wei, L.; Gao, Y.E.; Hudson, T.H.; Gerena, L.; Dame, J.B.; Kyle, D.E. New class of small non peptidyl compounds blocks plasmodium falciparum development in vitro by inhibiting plasmepsins. Antimicrob. Agents Chemother. 2001, 45, 2577–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.W.; Sarantakis, D.; Terpinski, J.; Kumar, T.S.; Tsai, H.C.; Kuo, M.; Ager, A.L.; Jacobs Jr, W.R.; Schiehser, G.A.; Ekins, S.; et al. Novel diaryl ureas with efficacy in a mouse model of malaria. Bioorg. Med. Chem. Lett. 2013, 23, 1022–1025. [Google Scholar] [CrossRef] [Green Version]
- Obukowicz, M.G.; Welsch, D.J.; Salsgiver, W.J.; Martin-Berger, C.L.; Chinn, K.S.; Duffin, K.L.; Raz, A.; Needlemann, P. Novel, selective Δ6 or Δ5 fatty acid desaturase inhibitors as antiinflammatory agents in mice. J. Pharmacol. Exp. Ther. 1998, 287, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Miyahisa, I.; Suzuki, H.; Mizukami, A.; Tanaka, Y.; Ono, M.; Hixon, M.S.; Matsui, J. T-3364366 targets the desaturase domain of delta-5 desaturase with nanomolar potency and a multihour residence time. ACS Med. Chem. Lett. 2016, 7, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Kamble, V.M. Synthesis, anti-inflammatory and antimicrobial evaluation of novel 1-acetyl-3,5-diaryl-4,5-dihydro(1H)pyrazole derivatives bearing urea, thiourea and sulfonamide moieties. Bioorg. Med. Chem. Lett. 2012, 22, 6611–6615. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, K.P.; Darshini, N.; Vidhya, S.L.; Mallesha, N. Synthesis and SAR studies of potent H+/K+-ATPase and anti-inflammatory activities of symmetrical and unsymmetrical urea analogues. Med. Chem. Res. 2017, 26, 1675–1681. [Google Scholar] [CrossRef]
- Pietronigro, E.; Zenaro, E.; Della Bianca, V.; Dusi, S.; Terrabuio, E.; Iannoto, G.; Slanzi, A.; Gasemi, S.; Nagarajan, R.; Piacentino, G.; et al. Blockade of α4 integrins reduces leukocyte–endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer’s disease. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Taooka, Y.; Ohe, M.; Tada, M.; Sutani, A.; Isobe, T. Up-regulated integrinα4β1 on systemic lymphocytes and serum IL-17 A in interstitial pneumonia. Clin. Respir. J. 2016, 10, 722–730. [Google Scholar] [CrossRef]
- Manfredi, A.; Luppi, F.; Cassone, G.; Vacchi, C.; Salvarani, C.; Sebastiani, M. Pathogenesis and treatment of idiopathic and rheumatoid arthritis-related interstitial pneumonia. The possible lesson from COVID-19 pneumonia. Exp. Rev. Clin. Immunol. 2020, 16, 751–770. [Google Scholar] [CrossRef]
- Astles, P.C.; Clark, D.E.; Collis, A.J.; Cox, P.J.; Eastwood, P.R.; Harris, N.V.; Lai, J.Y.Q.; Morley, A.D.; Porter, B. Substituted Anilines. U.S. Patent 6,479,519, 12 November 2002. [Google Scholar]
- Witherington, J.; Bordas, V.; Gaiba, A.; Green, P.M.; Naylor, A.; Parr, N.; Smith, D.G.; Takle, A.K.; Ward, R.W. Pyridone derivatives as potent and selective VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett. 2006, 16, 2256–2259. [Google Scholar] [CrossRef]
- Hernandez-Cervantes, R.; Mendez-Diaz, M.; Prospero-Garcia, O.; Morales-Montor, J. Immunoregulatory role of cannabinoids during infectious disease. Neuroimmunomodulation 2017, 24, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Horswill, J.G.; Bali, U.; Shaaban, S.; Keily, J.F.; Jeevaratnam, P.; Babbs, A.J.; Reynet, C.; Wong Kai In, P. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br. J. Pharmacol. 2009, 152, 805–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, L.; Fu, B.-Q.Q.B.; Duddupudi, A.L.; Liao, Y.-H.H.; Immadi, S.S.; Kendall, D.A.; Lu, D. Pyrimidinyl biphenylureas: Identification of new lead compounds as allosteric modulators of the cannabinoid receptor CB1. J. Med. Chem. 2017, 60, 1089–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dopart, R.; Immadi, S.S.; Lu, D.; Kendall, D.A. Structural optimization of the diarylurea PSNCBAM-1, an allosteric modulator of Cannabinoid receptor 1. Curr. Ther. Res. 2020, 92, 100574. [Google Scholar] [CrossRef] [PubMed]
- Sriram, K.; Insel, P.A. Inflammation and thrombosis in COVID-19 pathophysiology: Proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.; Turdi, H.; Herpin, T.F.; Roberge, J.Y.; Liu, Y.; Schnur, D.M.; Poss, M.A.; Rehfuss, R.; Hua, J.; Wu, Q.; et al. Discovery of 2-(phenoxyaryl)-3-phenylureas as small molecule P2Y1 antagonists. J. Med. Chem. 2013, 56, 1704–1714. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, Z.-G.; Zhang, K.; Kiselev, E.; Crane, S.; Wang, J.; Paoletta, S.; Yi, C.; Ma, L.; Zhang, W.; et al. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 2015, 520, 317–321. [Google Scholar] [CrossRef]
- Wang, T.C.; Qiao, J.X.; Clark, C.G.; Jua, J.; Price, L.A.; Wu, Q.; Chang, M.; Zheng, J.; Huang, C.S.; Everlof, G.; et al. Discovery of diarylurea P2Y1 antagonists with improved aqueous solubility. Bioorg. Med. Chem. Lett. 2013, 23, 3239–3243. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, L.; Wang, L.; Chen, H.; Qiu, Y.; Wang, J.; Yang, H.; Liu, J.; Liu, H. Design, synthesis, and biological evaluation of 2-(phenoxyaryl)-3-urea derivatives as novel P2Y1 receptor antagonists. Eur. J. Med. Chem. 2018, 158, 302–310. [Google Scholar] [CrossRef]
- Qiao, J.X.; Wang, T.C.; Ruel, R.; Thibeault, C.; L’Heureux, A.; Schumacher, W.A.; Spronk, S.A.; Hiebert, S.; Bouthillier, G.; Lloyd, J.; et al. Conformationally constrained orthoanilino diaryl ureas, discovery of 1-(2-(10-neopentylspiro[indoline-3,40-piperidine]-1-yl)phenyl)-3-(4-(trifluoro-methoxy) phenyl)urea, a potent, selective, and bioavailable P2Y1 antagonist. J. Med. Chem. 2013, 56, 9275–9295. [Google Scholar] [CrossRef]
- Jeon, Y.T.; Yang, W.; Qiao, J.X.; Li, L.; Ruel, R.; Thibeault, C.; Hiebert, S.; Wang, T.C.; Wang, Y.; Liu, Y.; et al. Identification of 1-{2-[4-chloro-1′-(2,2-dimethylpropyl)-7-hydroxy-1,2-dihydrospiro[indole-3,4′-piperidine]-1-yl]phenyl}-3-{5-chloro-[1,3]thiazolo [5,4-b]pyridin-2-yl}urea, a potent, efficacious and orally bioavailable P2Y1 antagonist as an antiplatelet agent. Bioorg. Med. Chem. Lett. 2014, 24, 1294–1298. [Google Scholar] [PubMed]
- Qiao, J.X.; Wang, T.C.; Hiebert, S.; Hu, C.H.; Schumacher, W.A.; Spronk, S.A.; Clark, C.G.; Han, Y.; Hua, J.; Price, L.A.; et al. 4-Benzothiazole-7-hydroxyindolinyl diaryl ureas are potent P2Y1 antagonists with favorable pharmacokinetics: Low clearance and small volume of distribution. ChemMedChem 2014, 9, 2327–2343. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Kumari, S.; Tiwari, M. Design and synthesis of some new 1-phenyl-3/4-[4-(aryl/heteroaryl/alkyl-piperazine1-yl)-phenyl-ureas as potent anticonvulsant and antidepressant agents. Arch. Pharmacal Res. 2016, 39, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, V.; Rohacs, T. TRPV1: A target for rational drug design. Pharmaceuticals 2016, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Pearce, L.V.; Zhang, Y.; Xing, C.; Herold, B.K.; Ma, S.; Hu, Z.; Turcios, N.A.; Yang, P.; Tong, Q.; et al. Multi-functional diarylurea small molecule inhibitors of TRPV1 with therapeutic potential for neuroinflammation. AAPS J. 2016, 18, 898–913. [Google Scholar] [CrossRef] [Green Version]
- Kurt, B.Z.; Gazioglu, I.; Basile, L.; Sonmez, F.; Ginex, T.; Kucukislamoglu, M.; Guccione, S. Potential of aryl–urea–benzofuranylthiazoles hybrids as multitasking agents in Alzheimer’s disease. Eur. J. Med. Chem. 2015, 102, 80–92. [Google Scholar] [CrossRef]
Structure | Compd | Activity | Ref |
---|---|---|---|
Antiparasitic agents | |||
MMV665852 | IC50 = 4.7 µM (S. mansoni NTS) IC50 = 0.8 µM (adult S. mansoni) IC50 = 4.4 µM (juvenile S. japonicum) IC50 = 2.2 µM (adult S. japonicum) | [47] [49] | |
Triclocarban (TCC) | IC50 = 0.07 µM (S. mansoni NTS) IC50 = 0.4 µM (adult S. mansoni) | [48] | |
1 | IC50 = 1.3 µM (S. mansoni NTS) IC50 = 0.7 µM (adult S. mansoni) | [48] | |
2 | IC50 = 0.2 µM (adult S. mansoni) | [48] | |
3 | IC50 = 3.6 µM (adult S. mansoni) | [48] | |
4 | IC50 = 7.0 µM (adult S. mansoni) | [48] | |
5 | IC50 = 2.5 µM (juvenile S. japonicum) IC50 = 1.5 µM (adult S. japonicum) | [49] | |
6 (Flucofuron) | IC50 = 2.8 µM (juvenile S. japonicum) IC50 = 1.5 µM (adult S. japonicum) | [49] | |
7 | IC50 = 0.15 µM (S. mansoni NTS) IC50 = 0.19 µM (adult S. mansoni) | [19] | |
Sorafenib (BAY-43-9006) | IC50 = 4.1 µM (S. mansoni NTS) IC50 = 1.1 µM (adult S. mansoni) | [54] | |
Regorafenib (BAY-73-4506) | IC50 = 6.9 µM (S. mansoni NTS) IC50 = 1.0 µM (adult S. mansoni) | [54] |
Structure | Compd | Activity | Ref |
---|---|---|---|
Antibacterial activity | |||
8 | MIC50 = 0.05 µg/mL (S. aureus ATCC 12600 and MRSA) | [55] | |
PK150 | MIC = 0.3 µM (S. aureus NCTC 8325) | [56] | |
Sorafenib (BAY-43-9006) | MIC = 3 µM (S. aureus NCTC 8325) | [56] | |
Regorafenib (BAY-73-4506) | MIC = 3 µM (S. aureus NCTC 8325) | [56] | |
Triclocarban (TCC) | MIC50 = 0.5 µg/mL (S. aureus) | [55] | |
6 (Flucofuron) | MIC = 0.25 mg/L (S. aureus NCTC 8325; ATCC 12598 and S. epidermidis ATCC 12228; 35984) | [58] | |
9 | MIC = 0.5‒8.0 µg/mL (different gram-positive bacteria) | [59] | |
10 | Inhibition zones = 14.0 mm Gram (+) B. subtilis NCTC-10400 and Gram (‒) P. aeruginosa ATCC 10145 and E. coli ATCC 23282 | [61] | |
PQ401 | MIC = 4 µg/mL (different S. aureus) MBC = 4 g/mL (S. aureus VRS1 strains) | [62] | |
11 | Inhibition zone = 23 mm, at a concentration of 200 µg/mL (P. mirabilis ATCC 19181) | [63] | |
12 | Inhibition zone = 24 mm, at a concentration of 200 µg/mL (P. mirabilis ATCC 19181) | [63] | |
13 | MIC = 31.3 µg/mL (S. boydii ATCC 9905; E. faecalis ATCC 29212; B. cereus ATCC 10987; K. pneumoniae ATCC 10031) | [65] | |
14 | MIC = 31.3 µg/mL (S. boydii ATCC 9905; E. faecalis ATCC 29212; B. cereus ATCC 10987; K. pneumoniae ATCC 10031) | [65] | |
15 | MIC = 10 µg/mL (MRSA NRS123) | [67] | |
16 | MIC = 8 µg/mL (MRSA NRS123) | [67] | |
17 | MIC = 10 µg/mL (MRSA NRS123) | [67] | |
18 | MIC = 2‒4 µg/mL (various MRSA) | [67,68] | |
19 | MIC = 2‒4 µg/mL (various MRSA) | [68] | |
20 | MIC = 6.25 µg/mL (M. tuberculosis H37Rv) | [69] | |
21 | MIC = 3.125 µg/mL (M. tuberculosis H37Rv) | [69] | |
22 | MIC = 6.0 µg/mL (M. tuberculosis pathogenic strain H37Rv) MIC = 2.0 µg/mL (M. tuberculosis nonpathogenic strain mc26030) | [70] | |
23 | MIC = 5.2 µg/mL (M. tuberculosis pathogenic strain H37Rv) MIC = 1.0 µg/mL (M. tuberculosis nonpathogenic strain mc26030) | [70] | |
Antifungal activity | |||
24 | Inhibition, at 30 μM, of the growth of P. obscurans by 80% and P. viticola and 100%, after 120 h exposure | [71] |
Structure | Compd | Ref | |
---|---|---|---|
Antiviral agents Inhibitors of Zika virus infection | |||
ASN 07115851 | IC50 = 160.3 nM (by viral plaque assay and A549 human lung carcinoma cell line) | [73] | |
ASN 07115873 | IC50 = 189.2 pM (by viral plaque assay and A549 human lung carcinoma cell line) | [73] | |
ASN 07115881 | IC50 = 317.7 pM (by viral plaque assay and A549 human lung carcinoma cell line) | [73] | |
ASN 07115927 | IC50 = 26.9 nM (by viral plaque assay and A549 human lung carcinoma cell line) | [73] | |
25 | IC50 = 85.1 pM (by viral plaque assay and A549 human lung carcinoma cell line) | [74] | |
DENV | |||
26 | IC50 = 91 µM (DENV N7-MTase assay) IC50 = 51 µM (WNV 2′-O-MTase assay) | [75] | |
27 | IC50 = 110 µM (DENV N7-MTase assay) IC50 = 71 µM (WNV 2′-O-MTase assay) | [75] | |
Antimalarial agents | |||
MMV665852 | EC50 = 1160 nM (P. falciparum) | [47] | |
WR268961 | IC50 = 0.03‒0.16 µg/mL (P. falciparum W2 and D6) | [76] | |
PQ401 | EC50 = 0.053 μM (P. falciparum 3D7 and K1) | [20] | |
28 | EC50 = 0.32 μM (P. falciparum 3D7) | [20] | |
29 | EC50 = 0.031 μM (P. falciparum 3D7) EC50 = 0.11 μM (P. falciparum K1) | [20] | |
30 | EC50 = 0.016 μM) (P. falciparum 3D7) EC50 = 0.079 μM (P. falciparum K1) | [20] | |
31 | EC50 = 0.037 µM (P. falciparum 3D7) EC50 = 0.055 µM (P. falciparum Dd2) | [77] |
Structure | Compd | Ref | |
---|---|---|---|
Anti-inflammatory and antiulcer agents | |||
CP-214339 | IC50 = 0.13 µM (Δ5-desaturase inhibitor in rodents) | [78,79] | |
32 | 85% inhibition TNF-α; 93% inhibition IL-6 | [80] | |
33 | 58% inhibition TNF-α; 75% inhibition IL-6 | [80] | |
34 | 61% inhibition TNF-α; 80% inhibition IL-6 | [80] | |
35 | IC50 = 18.4 µg/mL (proton pump inhibition) | [81] | |
36 | IC50 = 20.3 µg/mL (anti-inflammatory activity in human blood) | [81] | |
Integrine antagonists | |||
37 | pKi = 7.2 (VLA-4 antagonist) | [85] | |
38 | pKi = 9.1 (VLA-4 antagonist) | [85] | |
39 | pKi = 8.7 (VLA-4 antagonist) | [86] | |
40 | pKi = 9.3 (VLA-4 antagonist) | [86] | |
Allosteric Modulators of CB1 | |||
PSNCBAM-1 | CB1 agonist | [88] | |
41 | CB1 agonist | [89] | |
42 | CB1 agonist | [89] | |
LDK1317 | CB1 agonist | [90] | |
LDK1321 | CB1 agonist | [90] | |
Antiplatelet agents | |||
BPTU | Ki = 6 nM (P2Y1 receptor) IC50 = 0.28 µM (P2Y1 receptor) | [92] [95] | |
43 | EC50 = 2 µM (ECAT) Ki = 17 nM (P2Y1 receptor) | [94] | |
44 | Ki = 30 nM (P2Y1 receptor) | [94] | |
45 | IC50 = 0.21 µM (P2Y1 receptor) | [95] | |
46 | IC50 = 12.52 µM (P2Y1 receptor) | [95] | |
47 | IC50 = 7.19 µM (P2Y1 receptor) | [95] | |
48 | Ki = 4.3 nM (P2Y1 receptor); IC50 = 2,5 nM (P2Y1 FLIPR) | [96] | |
49 | Ki = 7.9 nM (P2Y1 receptor); IC50 = 0.12 nM (P2Y1 FLIPR); IC50 = 0.13 µM (ADP-induced PA assay) | [97] | |
50 | Ki = 4.0 nM (P2Y1 receptor); IC50 = 0.22 nM (P2Y1 FLIPR); IC50 = 0.17 µM (ADP-induced PA assay) | [98] | |
51 | Ki = 12.9 nM (P2Y1 receptor); IC50 = 0.22 nM (P2Y1 FLIPR); IC50 = 0.41 µM (ADP-induced PA assay) | [98] | |
Antiepileptic | |||
52 | ED50 = 28.5 mg/kg (MES induced seizures) | [99] | |
Agents for neuroinflammation | |||
53 | Ki = 0.47 µM (TRPV1 capsaicin antagonism) | [101] | |
54 | Ki = 0.49 µM (TRPV1 capsaicin antagonism); Ki = 1.39 μM (CB2) | [101] | |
55 | Ki = 0.56 µM (TRPV1 capsaicin antagonism) | [101] | |
56 | Binding prediction to CXCR2 (homology model) | [101] | |
AChE and BuChE inhibitors | |||
57 | IC50 = 3.85 µM (AChE) IC50 = 9.25 µM (BuChE) | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalano, A.; Iacopetta, D.; Pellegrino, M.; Aquaro, S.; Franchini, C.; Sinicropi, M.S. Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics 2021, 10, 92. https://doi.org/10.3390/antibiotics10010092
Catalano A, Iacopetta D, Pellegrino M, Aquaro S, Franchini C, Sinicropi MS. Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics. 2021; 10(1):92. https://doi.org/10.3390/antibiotics10010092
Chicago/Turabian StyleCatalano, Alessia, Domenico Iacopetta, Michele Pellegrino, Stefano Aquaro, Carlo Franchini, and Maria Stefania Sinicropi. 2021. "Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics" Antibiotics 10, no. 1: 92. https://doi.org/10.3390/antibiotics10010092
APA StyleCatalano, A., Iacopetta, D., Pellegrino, M., Aquaro, S., Franchini, C., & Sinicropi, M. S. (2021). Diarylureas: Repositioning from Antitumor to Antimicrobials or Multi-Target Agents against New Pandemics. Antibiotics, 10(1), 92. https://doi.org/10.3390/antibiotics10010092