Characteristics of Carbapenem-Resistant Gram-Negative Bacilli in Patients with Ventilator-Associated Pneumonia
Abstract
:1. Introduction
2. Results
2.1. Identification of the Bacterial Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. Phenotypic Carbapenemase Detection
2.4. Detection of Carbapenem Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Specimen Collection
4.2. Identification of the Recovered Bacterial Isolates
4.3. Antimicrobial Susceptibility Testing
4.4. Phenotypic Carbapenemase Detection
4.5. Molecular Testing for Carbapenemase Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Cui, C.; Zhou, S.; Chen, M.; Wu, H.; Jin, R.; Chen, X. Impact of multicenter unified enhanced environmental cleaning and disinfection measures on nosocomial infections among patients in intensive care units. J. Int. Med. Res. 2020, 48. [Google Scholar] [CrossRef]
- He, Q.; Wang, W.; Zhu, S.; Wang, M.; Kang, Y.; Zhang, R.; Zou, K.; Zong, Z.; Sun, X. The epidemiology and clinical outcomes of ventilator-associated events among 20,769 mechanically ventilated patients at intensive care units: An observational study. Crit. Care 2021, 25, 44. [Google Scholar] [CrossRef]
- Paveenkittiporn, W.; Lyman, M.; Biedron, C.; Chea, N.; Bunthi, C.; Kolwaite, A.; Janejai, N. Molecular epidemiology of carbapenem-resistant Enterobacterales in Thailand, 2016–2018. Antimicrob. Resist. Infect. Control 2021, 10, 136. [Google Scholar] [CrossRef]
- Yan, W.J.; Jing, N.; Wang, S.M.; Xu, J.H.; Yuan, Y.H.; Zhang, Q.; Li, A.L.; Chen, L.H.; Zhang, J.F.; Ma, B.; et al. Molecular characterization of carbapenem-resistant Enterobacteriaceae and emergence of tigecycline non-susceptible strains in the Henan province in China: A multicentrer study. J. Med. Microbiol. 2021, 70, 001325. [Google Scholar] [CrossRef] [PubMed]
- Kois, A.K.; Nicolau, D.P.; Kuti, J.L. Unresolved issues in the identification and treatment of carbapenem-resistant Gram-negative organisms. Curr. Opin. Infect. Dis. 2020, 33, 482–494. [Google Scholar] [CrossRef]
- Shugart, A.; Mahon, G.; Huang, J.Y.; Karlsson, M.; Valley, A.; Lasure, M.; Gross, A.; Pattee, B.; Vaeth, E.; Brooks, R.; et al. Carbapenemase production among less-common Enterobacterales genera: 10 US sites, 2018. JAC-Antimicrob. Resist. 2021, 3. [Google Scholar] [CrossRef] [PubMed]
- Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 18 October 2021).
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [Green Version]
- Sękowska, A.; Bogiel, T.; Kaczmarek, A. Evaluation of the usefulness of selected methods for the detection of carbapenemases in Klebsiella strains. J. Med. Microbiol. 2020, 69, 792–796. [Google Scholar] [CrossRef]
- Fang, L.; Lu, X.; Xu, H.; Ma, X.; Chen, Y.; Liu, Y.; Hong, G.; Liang, X. Epidemiology and risk factors for carbapenem-resistant Enterobacteriaceae colonisation and infections: Case-controlled study from an academic medical center in a southern area of China. Pathog. Dis. 2019, 77. [Google Scholar] [CrossRef] [PubMed]
- Bouganim, R.; Dykman, L.; Fakeh, O.; Motro, Y.; Oren, R.; Daniel, C.; Lazarovitch, T.; Zaidenstein, R.; Moran-Gilad, J.; Marchaim, D. The Clinical and Molecular Epidemiology of Noncarbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae: A Case-Case-Control Matched Analysis. Open Forum Infect. Dis. 2020, 7, ofaa299. [Google Scholar] [CrossRef]
- Eatemadi, A.; Al Risi, E.; Kasliwal, A.; Al Záabi, A.; Moradzadegan, H.; Aslani, Z. A Proposed Evidence-Based Local Guideline for Definition of Multidrug-Resistant (MDR), Extensively Drug-Resistant (XDR) and Pan Drug-Resistant (PDR) Bacteria by the Microbiology Laboratory. Int. J. Curr. Sci. Res. Rev. 2021, 4. [Google Scholar] [CrossRef]
- Rea-Neto, A.; Youssef, N.C.; Tuche, F.; Brunkhorst, F.; Ranieri, V.M.; Reinhart, K.; Sakr, Y. Diagnosis of ventilator-associated pneumonia: A systematic review of the literature. Crit. Care 2008, 12, R56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotb, S.; Lyman, M.; Ismail, G.; El Fattah, M.A.; Girgis, S.A.; Etman, A.; Hafez, S.; El-Kholy, J.; Zaki, M.E.S.; Rashed, H.-A.G.; et al. Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare–associated Infections Surveillance Data, 2011–2017. Antimicrob. Resist. Infect. Control 2020, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, E.; Halby, H.; Ali, M.; El-Baky, R.; Waly, N. Spreading of NDMI-Producing Klebsiella Pneumoniae in Different Wards at Assiut University Hospital. Am. J. Infect. Dis. Microbiol. 2020, 8, 24–28. [Google Scholar]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Jánvári, L.; Tóth, Á.; Terhes, G.; Burián, K. Detection of VIM, NDM and OXA-48 producing carbapenem resistant Enterobacterales among clinical isolates in Southern Hungary. Acta Microbiol. Immunol. Hung. 2020, 67, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Rezai, M.S.; Ahangarkani, F.; Rafiei, A.; Hajalibeig, A.; Bagheri-Nesami, M. Extended-Spectrum Beta-Lactamases Producing Pseudomonas aeruginosa Isolated from Patients with Ventilator Associated Nosocomial Infection. Arch. Clin. Infect. Dis. 2018, 13. [Google Scholar] [CrossRef]
- Khairy, R.M.M.; Mahmoud, M.S.; Shady, R.R.; Esmail, M.A.M. Multidrug-resistant Klebsiella pneumoniae in hospital-acquired infections: Concomitant analysis of antimicrobial resistant strains. Int. J. Clin. Pract. 2019, 74, e13463. [Google Scholar] [CrossRef]
- Alebel, M.; Mekonnen, F.; Mulu, W. Extended-Spectrum β-Lactamase and Carbapenemase Producing Gram-Negative Bacilli Infections Among Patients in Intensive Care Units of Felegehiwot Referral Hospital: A Prospective Cross-Sectional Study. Infect. Drug Resist. 2021, 14, 391–405. [Google Scholar] [CrossRef]
- Aziz, R.; Al-jubori, S. Genetic Elements Responsible for Extreme Drug Resistance (Xdr) in Klebsiella Pnumoniae Var Pnumoniae Isolated from Clinical Samples of Iraqi Patients. World J. Pharm. Res. 2016, 5, 1–23. [Google Scholar] [CrossRef]
- Mirzaei, B.; Bazgir, Z.N.; Goli, H.R.; Iranpour, F.; Mohammadi, F.; Babaei, R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res. Notes 2020, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Kaluba, C.K.; Samutela, M.T.; Kapesa, C.; Muma, J.B.; Hang’Ombe, B.M.; Hachaambwa, L.; Mukomena, P.; Yamba, K. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter species at a large tertiary referral hospital in Lusaka, Zambia. Sci. Afr. 2021, 13, e00908. [Google Scholar] [CrossRef]
- Park, Y.; Choi, Q.; Kwon, G.C.; Koo, S.H. Molecular epidemiology and mechanisms of tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae isolates. J. Clin. Lab. Anal. 2020, 34, e23506. [Google Scholar] [CrossRef] [PubMed]
- El-Domany, R.A.; El-Banna, T.; Sonbol, F.; Abu-Sayedahmed, S.H. Co-existence of NDM-1 and OXA-48 genes in Carbapenem Resistant Klebsiella pneumoniae clinical isolates in Kafrelsheikh, Egypt. Afr. Health Sci. 2021, 21, 489–496. [Google Scholar] [CrossRef]
- Pierce, V.M.; Simner, P.J.; Lonsway, D.R.; Roe-Carpenter, D.E.; Johnson, J.K.; Brasso, W.B.; Bobenchik, A.M.; Lockett, Z.C.; Charnot-Katsikas, A.; Ferraro, M.J.; et al. Modified Carbapenem Inactivation Method for Phenotypic Detection of Carbapenemase Production among Enterobacteriaceae. J. Clin. Microbiol. 2017, 55, 2321–2333. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Creighton, J.; Ikram, R.; Werno, A. Comparison of the performance of three variations of the Carbapenem Inactivation Method (CIM, modified CIM [mCIM] and in-house method (iCIM)) for the detection of carbapenemase-producing Enterobacterales and non-fermenters. J. Glob. Antimicrob. Resist. 2020, 21, 78–82. [Google Scholar] [CrossRef]
- Elbadawi, H.S.; Elhag, K.M.; Mahgoub, E.; Altayb, H.N.; Ntoumi, F.; Elton, L.; McHugh, T.D.; Tembo, J.; Ippolito, G.; Osman, A.Y.; et al. Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BMC Microbiol. 2021, 21, 136. [Google Scholar] [CrossRef]
- Tawfick, M.M.; Alshareef, W.A.; Bendary, H.A.; Elmahalawy, H.; Abdulall, A.K. The emergence of carbapenemase blaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1251–1259. [Google Scholar] [CrossRef]
- Ghaith, D.M.; Zafer, M.M.; Said, H.M.; Elanwary, S.; Elsaban, S.; Al-Agamy, M.H.; Bohol, M.F.F.; Bendary, M.M.; Al-Qahtani, A.; Al-Ahdal, M.N. Genetic diversity of carbapenem-resistant Klebsiella Pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 39, 583–591. [Google Scholar] [CrossRef]
- El-rehewy, M.; Saboor, E.; Afifi, N.; Ibrahim, M.; Qayed, S. Detection and Characterization of Nosocomial Carbapenem- Resistant Gram-Negative Bacilli from Assiut University Hospitals. Egypt. J. Med. Microbiol. 2016, 25, 9–17. [Google Scholar] [CrossRef]
- Dahab, R.; Ibrahim, A.M.; Altayb, H.N. Phenotypic and genotypic detection of carbapenemase enzymes producing gram-negative bacilli isolated from patients in Khartoum State. F1000Research 2017, 6, 1656. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Verma, S.; Venkatesh, V.; Gupta, P.; Tripathi, P.; Agarwal, A.; Siddiqui, S.S.; Arshad, Z.; Prakash, V. Emergence of blaNDM-1 and blaVIM producing Gram-negative bacilli in ventilator-associated pneumonia at AMR Surveillance Regional Reference Laboratory in India. PLoS ONE 2021, 16, e0256308. [Google Scholar] [CrossRef]
- Alizadeh, H.; Khodavandi, A.; Alizadeh, F.; Bahador, N. Molecular Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Isolates Producing blaVIM, blaNDM, and blaIMP in Clinical Centers in Isfahan, Iran. Jundishapur J. Microbiol. 2021, 14. [Google Scholar] [CrossRef]
- Han, R.; Shi, Q.; Wu, S.; Yin, D.; Peng, M.; Dong, D.; Zheng, Y.; Guo, Y.; Zhang, R.; Hu, F.; et al. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated from Adult and Children Patients in China. Front. Cell. Infect. Microbiol. 2020, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Azimi, L.; Fallah, F.; Karimi, A.; Shirdoust, M.; Azimi, T.; Sedighi, I.S.; Rahbar, M.; Armin, S. Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran. Iran. J. Basic Med. Sci. 2020, 23, 1396–1400. [Google Scholar] [CrossRef]
- Slimene, K.; El Salabi, A.A.; Dziri, O.; Mabrouk, A.; Miniaoui, D.; Gharsa, H.; Shokri, S.A.; Alhubge, A.M.; Achour, W.; Rolain, J.-M.; et al. High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Microb. Drug Resist. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jawhar, W.; AlRashed, M.; Somily, A.; AlBarra, A. Molecular characterization of Carbapenem-resistance genes among Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates in Riyadh. Pharmacophore 2020, 11, 56–61. [Google Scholar]
- Elbrolosy, A.M.; Labeeb, A.Z.; Hassan, D. New Delhi metallo-β-lactamase-producing Acinetobacter isolates among late-onset VAP patients: Multidrug-resistant pathogen and poor outcome. Infect. Drug Resist. 2019, 12, 373–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwu-Jaja, C.J.; Jaca, A.; Jaja, I.F.; Jordan, P.; Bhengu, P.; Iwu, C.D.; Okeibunor, J.; Karamagi, H.; Tumusiime, P.; Fuller, W.; et al. Preventing and managing antimicrobial resistance in the African region: A scoping review protocol. PLoS ONE 2021, 16, e0254737. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility, 29th ed.; CLSI Guideline M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Trung, N.T.; Hien, T.T.T.; Huyen, T.T.T.; Quyen, D.T.; Binh, M.T.; Hoan, P.Q.; Meyer, C.G.; Velavan, T.P.; Song, L.H. Simple multiplex PCR assays to detect common pathogens and associated genes encoding for acquired extended spectrum betalactamases (ESBL) or carbapenemases from surgical site specimens in Vietnam. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 23. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.-J.; Liu, H.-Y.; Duan, G.-C.; Zhao, Y.-X.; Chen, S.-Y.; Yang, H.-Y.; Xi, Y.-L. Emergence and mechanism of carbapenem-resistant Escherichia coli in Henan, China, 2014. J. Infect. Public Health 2017, 11, 347–351. [Google Scholar] [CrossRef]
- Wendel, A.F.; MacKenzie, C.R. Characterization of a Novel Metallo-β-Lactamase Variant, GIM-2, from a Clinical Isolate of Enterobacter cloacae in Germany. Antimicrob. Agents Chemother. 2014, 59, 1824–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antimicrobial Agent | K. pneumoniae n = 29 | K. oxytoca n = 1 | E. coli n = 3 | P. vulgaris n = 3 | P. aeruginosa n = 10 | A. baumannii n = 4 |
---|---|---|---|---|---|---|
Ampicillin | 100% | 100% | 100% | 100% | 100% | 100% |
Cefaclor | 100% | 100% | 100% | 100% | 100% | 100% |
Ceftriaxone | 100% | 100% | 66.7% | 66.7% | 100% | 100% |
Imipenem | 89.6% | 100% | 100% | 66.7% | 100% | 50% |
Meropenem | 96.5% | 100% | 100% | 100% | 100% | 100% |
Ciprofloxcin | 100% | 100% | 100% | 100% | 100% | 100% |
Norfloxacin | 100% | 100% | 100% | 100% | 100% | 100% |
Tobramycins | 100% | 100% | 100% | 100% | 100% | 100% |
Antimicrobial Agent | K. pneumoniae n = 3 | E. coli n = 2 | P. vulgaris n = 1 | P. aeruginosa n = 1 |
---|---|---|---|---|
Ampicillin | 100% | 100% | 100% | 100% |
Cefaclor | 100% | 100% | 100% | 100% |
Ceftriaxone | 33.3% | 100% | 100% | 0% |
Imipenem | 66.7% | 0% | 0% | 0% |
Meropenem | 66.7% | 100% | 0% | 100% |
Ciprofloxacin | 66.7% | 100% | 0% | 0% |
Norfloxacin | 33.3% | 100% | 0% | 0% |
Tobramycins | 0% | 50% | 0% | 0% |
Disc Diffusion | Kappa Agreement | p-Value | ||
---|---|---|---|---|
Susceptible (n = 11) | Resistance (n = 46) | |||
E-test | ||||
Susceptible (n = 21) | 10 (17.5%) | 11 (19.3%) | 0.498 | <0.001 ^ |
Resistance (n = 36) | 1 (1.8%) | 35 (61.4%) | ||
mCIM | ||||
Susceptible (n = 14) | 7 (12.3%) | 7 (12.3%) | 0.439 | 0.001 ^ |
Resistance (n = 43) | 4 (7.0%) | 39 (68.4%) |
Klebsiella | Escherichia | Proteus | Pseudomonas | Acinetobacter | All Strains | |
---|---|---|---|---|---|---|
NDM | 30 (90.9%) | 5 (100%) | 3 (75%) | 10 (90.9%) | 3 (75%) | 51 (89.5%) |
VIM | 2 (6.1%) | 0 | 0 | 6 (54.5%) | 0 | 8 (14%) |
SPM | 8 (24.2%) | 0 | 0 | 2 (18.2%) | 0 | 10 (17.5%) |
IMP | 3 (9.1%) | 1 (20%) | 0 | 0 | 2 (50%) | 6 (10.5%) |
GIM | 2 (6.1%) | 0 | 0 | 0 | 0 | 2 (3.5%) |
Klebsiella | Escherichia | Protus | Pseudomonas | Acinetobacter | |
---|---|---|---|---|---|
NDM | 26 (92.9%) | 3 (100%) | 2 (100%) | 7 (100%) | 2 (66.7%) |
VIM | 2 (7.1%) | 0 | 0 | 6 (85.7%) | 0 |
SPM | 7 (25.0%) | 0 | 0 | 2 (28.6%) | 0 |
IMP | 3 (10.7%) | 1 (33.3%) | 0 | 0 | 2 (66.7%) |
GIM | 2 (7.1%) | 0 | 0 | 0 | 0 |
Klebsiella | Escherichia | Proteus | Pseudomonas | Acinetobacter | |
---|---|---|---|---|---|
NDM | 20 (90.9%) | 2 (100%) | 2 (66.7%) | 7 (100%) | 2 (100%) |
VIM | 2 (9.1%)) | 0 | 0 | 6 (85.7%) | 0 |
SPM | 7 (31.8%) | 0 | 0 | 2 (28.6%) | 0 |
IMP | 2 (9.1%) | 0 | 0 | 0 | 1 (50%) |
GIM | 1 (4.5%) | 0 | 0 | 0 | 0 |
Genotypic | PCR Genes | Kappa Agreement | p-Value | ||
---|---|---|---|---|---|
Phenotypic | Negative (Susceptible) (n = 5) | Positive (Resistant) (n = 52) | |||
E-test | |||||
Susceptible (n = 21) | 4 (7%) | 17 (29.8%) | 0.193 | 0.036 ^ | |
Resistance (n = 36) | 1 (1.8%) | 35 (61.4%) | |||
mCIM (Meropenem) | |||||
Susceptible (n = 21) | 2 (3.5%) | 19 (33.3%) | 0.004 | 0.878 | |
Resistance (n = 36) | 3 (5.3%) | 33 (57.9%) | |||
mCIM (Imipenem) | |||||
Susceptible (n = 14) | 3 (5.3%) | 11 (19.3%) | 0.040 | 0.054 | |
Resistance (n = 43) | 2 (3.5%) | 41 (71.9%) | |||
Disc diffusion (Meropenem) | |||||
Susceptible (n = 3) | 2 (3.5%) | 1 (1.8%) | 0.465 | <0.001 ^ | |
Resistance (n = 54) | 3 (5.3%) | 51 (89.5%) | |||
Disc diffusion (Imipenem) | |||||
Susceptible (n = 11) | 4 (7%) | 7 (12.3%) | 0.431 | <0.001 ^ | |
Resistance (n = 46) | 1 (1.8%) | 45 (78.9%) |
Amplicon Size (bp). | Nucleotide Sequence (5’-3’) | Primers |
---|---|---|
F (-CGAAAGTCAGGCTGTGTTGCGC-) | ||
200 | R (-GACCGCCCAGATCCTCAACTG-) | blaNDM |
F (-TCT ACA TGA CCG CGT CTG TC-) | ||
747 | R (-TGT GCT TTG ACA ACG TTC GC-) | blaVIM |
F (-CTGGCAGGGATCGCTCACTC -) | ||
604 | R (-GGTTTCCGATCAGCCACCTCTCA-) | blaSPM |
F (-TGAGCAAGTTATCTGTATTC-) | ||
740 | R (-TTAGTTGCTTGGTTTTGATG-) | blaIMP |
F (-TCCAGAACCTTGACCGAACG-) | ||
1062 | R (-GCCACTCATAGAGCATCGCA-) | blaGIM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.; Daef, E.; Nafie, A.; Shaban, L.; Ibrahim, M. Characteristics of Carbapenem-Resistant Gram-Negative Bacilli in Patients with Ventilator-Associated Pneumonia. Antibiotics 2021, 10, 1325. https://doi.org/10.3390/antibiotics10111325
Mohamed A, Daef E, Nafie A, Shaban L, Ibrahim M. Characteristics of Carbapenem-Resistant Gram-Negative Bacilli in Patients with Ventilator-Associated Pneumonia. Antibiotics. 2021; 10(11):1325. https://doi.org/10.3390/antibiotics10111325
Chicago/Turabian StyleMohamed, Amira, Enas Daef, Amany Nafie, Lamia Shaban, and Maggie Ibrahim. 2021. "Characteristics of Carbapenem-Resistant Gram-Negative Bacilli in Patients with Ventilator-Associated Pneumonia" Antibiotics 10, no. 11: 1325. https://doi.org/10.3390/antibiotics10111325
APA StyleMohamed, A., Daef, E., Nafie, A., Shaban, L., & Ibrahim, M. (2021). Characteristics of Carbapenem-Resistant Gram-Negative Bacilli in Patients with Ventilator-Associated Pneumonia. Antibiotics, 10(11), 1325. https://doi.org/10.3390/antibiotics10111325