Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection and Data Extraction
3. Results
3.1. KPCp Description and Population
3.2. Effective Antibiotics
3.2.1. CEFIDEROCOL (FETROJA®)
Antimicrobial Spectrum of Activity and Resistance
Clinical Efficacy, Safety and Tolerability
Posology
PK/PD
3.2.2. Meropenem/Vaborbactam (Vaborem)
Antimicrobial Spectrum of Activity and Resistance
Clinical Efficacy, Safety, and Tolerability
Posology
PK/PD
3.2.3. Ceftazidime–Avibactam (Zavicefta®)
Antimicrobial Spectrum of Activity and Resistance
Clinical Efficacy, Safety and Tolerability
Posology
PK/PD
3.2.4. Imipenem-Cilastatin-Relebactam (Recarbrio®)
Antimicrobial Spectrum of Activity and Resistance
Clinical Efficacy, Safety and Tolerability
Posology
PK/PD
3.2.5. Plazomicin (Zemdri®)
3.2.6. Eravacycline (Xerava®)
Study, Year Published | Study Design | Study Duration | Study Site | Study Population | No. of Patients (ITT Population) | Dose Regimen | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total | UTI | %KPCp | Studied drug | Comparator | Studied drug | Comparator | |||||
CEFIDEROCOL: FETROJA® | Portsmouth et al., 2018 [29] | Phase 2, Double-blind, non-inferiority trial | 2015–2016 | 65 hospitals in 15 countries | Adults with Gram-negative cUTI | 100% | 30% | 300 | 148 | 1-h infusion of cefiderocol (2 g) every 8 h for 7–14 days | 1-h infusion of imipenem/cilastatin (1 g each) every 8 h for 7–14 days |
Bassetti et al., 2021 [26] (CREDIBLE-CR trial) | Phase 3, Randomised, open-label, pathogen-focused, descriptive trial | 2016–2019 | 95 hospitals in 16 countries | Adults with NP, BSI or sepsis, or cUTI and a CR-Gram-negative pathogen | 24% | 26% | 101 | 49 | 3-h infusion of cefiderocol (2 g) every 8 h for 7–14 days | Best available therapy for 7–14 days | |
MEROPENEM/ VABORBACTAM: VABOREM® | Kaye et al., 2018 [37] (TANGO I CR-trial) | Phase 3, multicenter, multinational, randomised clinical trial, double blind trial | 2014–2016 | 60 hospitals in 17 countries | Adults with complicated UTI, stratified by infection type and geographic region | 100% | 11% | 274 | 276 | Meropenem-vaborbactam (2 g/2 g over 3 h | Piperacillin-tazobactam (4 g/0.5 g over 30 min; every 8 h |
Wunderink et al., 2018 [38] (TANGO II CR-trial) | Phase 3, multinational, open-label, randomized controlled trial | 2014–2017 | 27 hospitals in 8 countries | Adults with infections due to confirmed/suspected CRE | 16% | 87% | 32 | 15 | Meropenem–vaborbactam (2 g/2 g over 3 h, q8h for 7–14 days) | BAT (mono/combination therapy with polymyxins, carbapenems, aminoglycosides, tigecycline; or ceftazidime–avibactam alone) | |
CEFTAZIDIME-AVIBACTAM: ZAVICEFTA® | King et al., 2017 [46] | Multicenter, retrospective review | 2015–2016 | 9 health systems in the United States | Adults who received at least 24 h of ceftazidime–avibactam therapy for CRE infection | 28% | 83% | 29 | 21 | Dosis of ceftazidime–avibactam was determined by providers at each site based on manufacturer’s-recommended dosing | Concomitant therapy and prior therapy for CRE infections were recorded |
Carmeli et al., 2016 [51] (REPRISE) | Phase 3; international, randomised, open-label trial | 2013–2014 | Hospitals across 16 countries worldwide | Adults with cUTI or cIAI caused by ceftazidime-resistant Enterobacteriaceae or Pseudomonas aeruginosa. | 92% | 38% | 165 | 168 | Combination of 2000 mg ceftazidime plus 500 mg avibactam, administered via a 2-h intravenous infusion every 8 h | BAT | |
IMIPENEM-CILASTATIN-RELEBACTAM: RECARBRIO® | Motsch et al., 2020 [59] (RESTORE-IMI 1) | Phase 3, Multicenter, Randomized, controlled Double-blind trial | 2015–2017 | 35 hospitals in 17 countries | Adults hospitalized, and requiring intravenous antibacterial treatment for hospital-acquired pneumonia /ventilator-associated pneumonia, cUTIs, or cIAIs caused by imipenem-nonsusceptible, imipenem/relebactam-susceptible, and colistin-susceptible pathogens and lacking clinical improvement on any prior therapy. | 51% | 13% | 21 | 10 | Intravenous IMI/REL (500 mg/250 mg every 6 h) plus colistimethate sodium placebo | Intravenous IMI/REL (500 mg/250 mg every 6 h) plus intravenous colistimethate sodium (loading dose to achieve 300 mg colistin base activity, followed by maintenance doses up to 150 mg colistin base activity, every 12 h) |
Antibiotics and Classes | Action Spectre, PK/PD Data | Posology | AEs | Notes |
---|---|---|---|---|
CEFIDEROCOL (FETCROJA®), a siderophore cephalosporin | -Amber Class A, B, C and D enterobacteriales. Not active against gram-positive aerobic bacteria and anaerobic bacteria -The urinary excretion is ranged from 61.5% to 68.4% unchanged antibiotic product regardless of the dosage | 2 g administered every 8 h with an eGFR superior to 90 mL/min/1.73 m2 between five to ten days | Diarrhea (19%), fever (14%) and vomiting (13%) | it is the only molecule that has activity on all carbapenemases. It brings a benefit in terms of mechanism of action and diversity of sites of action. To use exclusively as a last resort for reasons of preservation. |
MEROPENEM/ VABORBACTAM (VABOREM®), a Carbapenem + non-β-lactam, serine beta-lactamase inhibitor | Aerobic and anaerobic Gram-positive and negative, ESBL and AmpC producing enterobacteriae, Amber Class-A enterobacterial -Urinary excretion of Meropenem and Vaborbactam ranged from 40 to 60% and 75 to 95%respectively. No specific data are available for prostatic diffusion | Meropenem 2 g and vaborbactam 2 g administered every 8 h with an eGFR superior to 50 mmL/min/1.73 m2, between five to ten days | Headache (3.8–21.6%), infusion site phlebitis (42–62.2%), nausea (19.5%), and diarrhea (14.6%) | M/V shows a better safety profile compared to BAT and presents fewer adverse events |
CEFTAZIDIME-AVIBACTAM (Zavicefta®), a third generation cephalosporine + non–β-lactam β-lactamase inhibitor | -Ambler class A, C and some of D enterobacteriales -Urinary excretion is excellent and joins a targeted MIC of 8 mg/L in 94.9% to 99.6% even in case of adjusted dosage for renal impairment. | 2 g/0.5 g in 2 h infusions, administered every 8 h with an eGFR superior to 50 mL/min/1.73 m2, between 5 to 10 days. | Nausea 3%, vomiting 3%, diarrhea 2%, Pyrexia 3%, abdominal pain 2% | Reduces all-cause hospital mortality rate Delay in starting CAZ-AVI may not impact the survival and is a good option for salvage. Latest discoveries indicate that widespread use of CAZ-AVI produced a transformation in epidemiology of carbapenemases from KPCp to metallo-b-lactamases. |
IMIPENEM-CILASTATIN-RELEBACTAM (RECARBRIO®), a Carbapenem + dehydropeptidase inhibitors + non–β-lactam β-lactamase inhibitor | -Amber class A carbapenemases and class C cephalosporinases -Urinary excretion of Relebactam is excellent and ranged from 94.7% to 100% over a 24-h period following single-dose administration. Renal clearance is similar when relebactam is administered with and without imipenem-cilastatin | 2500 mg/500 mg/250 mg (imipenem/cilastatin/relebactam) in 30 min infusions, administered every 6 h with an eGFR superior to 90 mL/min/1.73 m2 | Less nephrotoxicity, headache (7.1%), diarrhea (5.1%), nausea (4.0%) and hypertension (3%) | IMI/REL have not been studied in case of severe urosepsis or suspected prostatitis Nevertheless, expert opinion recommends IMI/REL in cUTI when the therapeutic arsenal is restricted |
4. Discussion
4.1. Cefiderocol (Fetroja®)
4.2. Meropenem/Vaborbactam (Vaborem®)
4.3. Ceftazidime-Avibactam (Zavicefta®)
4.4. Imipenem-Cilastatin-Relebactam (Recarbrio®)
4.5. Perspectives
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Theuretzbacher, U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr. Opin. Microbiol. 2017, 39, 106–112. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- World Health Organization (Ed.) Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; p. 232. [Google Scholar]
- Zilberberg, M.D.; Shorr, A.F. Secular Trends in Gram-Negative Resistance among Urinary Tract Infection Hospitalizations in the United States, 2000–2009. Infect. Control. Hosp. Epidemiol. 2013, 34, 940–946. Available online: https://www.cambridge.org/core/journals/infection-control-and-hospital-epidemiology/article/abs/secular-trends-in-gramnegative-resistance-among-urinary-tract-infection-hospitalizations-in-the-united-states-20002009/71FAEBE6F1CC61C7FC04C9F3511F6B19 (accessed on 21 April 2021). [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Rodriguez-Gómez, J.; Pérez-Nadales, E.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Martinez-Martinez, L.; Rivera, F.; Cano, A.; Castón, J.J.; Robles, J.C.; de la Fuente, C.; et al. Prognosis of urinary tract infection caused by KPC-producing Klebsiella pneumoniae: The impact of inappropriate empirical treatment. J. Infect. 2019, 79, 245–252. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S521–S528. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. Available online: https://pubmed.ncbi.nlm.nih.gov/32102899/ (accessed on 21 September 2021). [CrossRef]
- Alexander, B.T.; Marschall, J.; Tibbetts, R.J.; Neuner, E.A.; Dunne, W.M.; Ritchie, D.J. Treatment and clinical outcomes of urinary tract infections caused by KPC-producing Enterobacteriaceae in a retrospective cohort. Clin. Ther. 2012, 34, 1314–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215 (Suppl. 1), S28–S36. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of β-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Urmi, U.L.; Nahar, S.; Rana, M.; Sultana, F.; Jahan, N.; Hossain, B.; Alam, M.S.; Mosaddek, A.S.M.; McKimm, J.; Rahman, N.A.A.; et al. Genotypic to Phenotypic Resistance Discrepancies Identified Involving β-Lactamase Genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in Uropathogenic Klebsiella pneumoniae. Infect. Drug Resist. 2020, 13, 2863–2875. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.; Bonomo, R.A. Stormy waters ahead: Global emergence of carbapenemases. Front. Microbiol. 2013, 4, 48. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596785/ (accessed on 21 April 2021). [CrossRef] [Green Version]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 2009, 9, 228–236. [Google Scholar] [CrossRef]
- Van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef]
- Pang, F.; Jia, X.-Q.; Zhao, Q.-G.; Zhang, Y. Factors associated to prevalence and treatment of carbapenem-resistant Enterobacteriaceae infections: A seven years retrospective study in three tertiary care hospitals. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 13. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865290/ (accessed on 9 June 2021). [CrossRef] [Green Version]
- Van Duin, D.; Kaye, K.S.; Neuner, E.A.; Bonomo, R.A. Carbapenem-resistant Enterobacteriaceae: A review of treatment and outcomes. Diagn. Microbiol. Infect. Dis. 2013, 75, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Neuner, E.A.; Yeh, J.-Y.; Hall, G.S.; Sekeres, J.; Endimiani, A.; Bonomo, R.A.; Shrestha, N.K.; Fraser, T.G.; van Duin, D. Treatment and Outcomes in Carbapenem-resistant Klebsiella pneumoniae Bloodstream Infections. Diagn. Microbiol. Infect. Dis. 2011, 69, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against a Recent Collection of Clinically Relevant Gram-Negative Bacilli from North America and Europe, Including Carbapenem-Nonsusceptible Isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 2017, 61, e00093-17. Available online: https://pubmed.ncbi.nlm.nih.gov/28630181/ (accessed on 12 June 2021). [CrossRef] [Green Version]
- Domalaon, R.; Idowu, T.; Zhanel, G.G.; Schweizer, F. Antibiotic Hybrids: The Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin. Microbiol. Rev. 2018, 31, e00077-17. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967690/ (accessed on 12 June 2021). [CrossRef] [Green Version]
- Ito-Horiyama, T.; Ishii, Y.; Ito, A.; Sato, T.; Nakamura, R.; Fukuhara, N.; Tsuji, M.; Yamano, Y.; Yamaguchi, K.; Tateda, K. Stability of Novel Siderophore Cephalosporin S-649266 against Clinically Relevant Carbapenemases. Antimicrob. Agents Chemother. 2016, 60, 4384–4386. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. Available online: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30731-3/fulltext (accessed on 12 June 2021). [CrossRef]
- Hsueh, S.-C.; Chao, C.-M.; Wang, C.-Y.; Lai, C.-C.; Chen, C.-H. Clinical efficacy and safety of cefiderocol in the treatment of acute bacterial infections: A systematic review and meta-analysis of randomised controlled trials. J. Glob. Antimicrob. Resist. 2021, 24, 376–382. [Google Scholar] [CrossRef]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Den Nagata, T. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
- Katsube, T.; Echols, R.; Arjona Ferreira, J.C.; Krenz, H.K.; Berg, J.K.; Galloway, C. Cefiderocol, a Siderophore Cephalosporin for Gram-Negative Bacterial Infections: Pharmacokinetics and Safety in Subjects With Renal Impairment. J. Clin. Pharmacol. 2017, 57, 584–591. [Google Scholar] [CrossRef]
- Fetroja (Cefiderocol) Dosing, Indications, Interactions, Adverse Effects, and More. Available online: https://reference.medscape.com/drug/fetroja-cefiderocol-4000008 (accessed on 17 August 2021).
- Saisho, Y.; Katsube, T.; White, S.; Fukase, H.; Shimada, J. Pharmacokinetics, Safety, and Tolerability of Cefiderocol, a Novel Siderophore Cephalosporin for Gram-Negative Bacteria, in Healthy Subjects. Antimicrob. Agents Chemother. 2018, 62, e02163-17. [Google Scholar] [CrossRef] [Green Version]
- FDA. Commissioner O of the FDA Approves New Antibacterial Drug. 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug (accessed on 13 June 2021).
- Baldwin, C.M.; Lyseng-Williamson, K.A.; Keam, S.J. Meropenem: A review of its use in the treatment of serious bacterial infections. Drugs 2008, 68, 803–838. [Google Scholar] [CrossRef]
- Rechenchoski, D.Z.; Dambrozio, A.M.L.; Vivan, A.C.P.; Schuroff, P.A.; Burgos, T.d.N.; Pelisson, M.; Perugini, M.R.E.; Vespero, E.C. Antimicrobial activity evaluation and comparison of methods of susceptibility for Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacter spp. isolates. Braz. J. Microbiol. 2017, 48, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Griffith, D.C.; Dudley, M.N. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e01443-17. [Google Scholar] [CrossRef] [Green Version]
- Kaye, K.S.; Bhowmick, T.; Metallidis, S.; Bleasdale, S.C.; Sagan, O.S.; Stus, V.; Vazquez, J.; Zaitsev, V.; Bidair, M.; Chorvat, E.; et al. Effect of Meropenem-Vaborbactam vs Piperacillin-Tazobactam on Clinical Cure or Improvement and Microbial Eradication in Complicated Urinary Tract Infection: The TANGO I Randomized Clinical Trial. JAMA 2018, 319, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.S.; Pogue, J.M.; Mills, J.P.; Kaye, K.S. Meropenem-vaborbactam: A new weapon in the war against infections due to resistant Gram-negative bacteria. Future Microbiol. 2018, 13, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Cheon, E. Meropenem-vaborbactam for the treatment of complicated urinary tract infections including acute pyelonephritis. Expert Opin. Pharmacother. 2018, 19, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Burgos, R.M.; Biagi, M.J.; Rodvold, K.A.; Danziger, L.H. Pharmacokinetic evaluation of meropenem and vaborbactam for the treatment of urinary tract infection. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Vabomere (Meropenem/Vaborbactam) Dosing, Indications, Interactions, Adverse Effects, and More. Available online: https://reference.medscape.com/drug/vabomere-meropenem-vaborbactam-1000130 (accessed on 19 October 2021).
- Trang, M.; Griffith, D.C.; Bhavnani, S.M.; Loutit, J.S.; Dudley, M.N.; Ambrose, P.G.; Rubino, C.M. Population Pharmacokinetics of Meropenem and Vaborbactam Based on Data from Noninfected Subjects and Infected Patients. Antimicrob. Agents Chemother. 2021, 65, e0260620. [Google Scholar] [CrossRef]
- Lahiri, S.D.; Mangani, S.; Durand-Reville, T.; Benvenuti, M.; De Luca, F.; Sanyal, G.; Docquier, J.D. Structural Insight into Potent Broad-Spectrum Inhibition with Reversible Recyclization Mechanism: Avibactam in Complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-Lactamases. Antimicrob. Agents Chemother. 2013, 57, 2496–2505. [Google Scholar] [CrossRef] [Green Version]
- Wagenlehner, F.M.; Sobel, J.D.; Newell, P.; Armstrong, J.; Huang, X.; Stone, G.G.; Yates, K.; Gasink, L.B. Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program. Clin. Infect. Dis. 2016, 63, 754–762. [Google Scholar] [CrossRef] [Green Version]
- King, M.; Heil, E.; Kuriakose, S.; Bias, T.; Huang, V.; El-Beyrouty, C.; McCoy, D.; Hiles, J.; Richards, L.; Gardner, J.; et al. Multicenter Study of Outcomes with Ceftazidime-Avibactam in Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2017, 61, e00449-17. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase–producing K. pneumoniae. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Duin, D.; Lok, J.J.; Earley, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; et al. Colistin Versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. Clin. Infect. Dis. 2018, 66, 163–171. Available online: https://academic.oup.com/cid/article/66/2/163/4103289?login=true (accessed on 28 July 2021). [CrossRef] [Green Version]
- Leone, S.; Cascella, M.; Pezone, I.; Fiore, M. New antibiotics for the treatment of serious infections in intensive care unit patients. Curr. Med. Res. Opin. 2019, 35, 1331–1334. [Google Scholar] [CrossRef]
- Fiore, M.; Alfieri, A.; Di Franco, S.; Pace, M.C.; Simeon, V.; Ingoglia, G.; Cortegiani, A. Ceftazidime-Avibactam Combination Therapy Compared to Ceftazidime-Avibactam Monotherapy for the Treatment of Severe Infections Due to Carbapenem-Resistant Pathogens: A Systematic Review and Network Meta-Analysis. Antibiotics 2020, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar]
- Kongnakorn, T.; Wagenlehner, F.; Falcone, M.; Tichy, E.; Di Virgilio, R.; Baillon-Plot, N.; Charbonneau, C. Cost-effectiveness analysis of ceftazidime/avibactam compared to imipenem as empirical treatment for complicated urinary tract infections. Int. J. Antimicrob. Agents 2019, 54, 633–641. Available online: https://www.sciencedirect.com/science/article/pii/S092485791930161X?via%3Dihub (accessed on 28 July 2021). [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Bartzavali, C.; Lambropoulou, A.; Solomou, A.; Tsiata, E.; Anastassiou, E.D.; Fligou, F.; Marangos, M.; Spiliopoulou, I.; Christofidou, M. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam. J. Antimicrob. Chemother. 2019, 74, 2051–2054. [Google Scholar] [CrossRef] [PubMed]
- VIDAL. ZAVICEFTA 2 g/0.5 g pdre p sol diluer p perf. Available online: https://www.vidal.fr/medicaments/zavicefta-2-g-0-5-g-pdre-p-sol-diluer-p-perf-172057.html (accessed on 28 July 2021).
- Das, S.; Li, J.; Riccobene, T.; Carrothers, T.J.; Newell, P.; Melnick, D.; Critchley, I.A.; Stone, G.G.; Nichols, W.W. Dose Selection and Validation for Ceftazidime-Avibactam in Adults with Complicated Intra-abdominal Infections, Complicated Urinary Tract Infections, and Nosocomial Pneumonia. Antimicrob. Agents Chemother. 2019, 63, e02187-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M.; Warner, M.; Mushtaq, S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2013, 68, 2286–2290. Available online: https://academic.oup.com/jac/article/68/10/2286/715291?login=true (accessed on 29 July 2021). [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Lob, S.H.; Hackel, M.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program). Antimicrob. Agents Chemother. 2017, 61, e02209-16. [Google Scholar] [CrossRef] [Green Version]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M., Jr.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. Available online: https://pubmed.ncbi.nlm.nih.gov/31400759/ (accessed on 29 July 2021). [CrossRef] [Green Version]
- Sims, M.; Mariyanovski, V.; McLeroth, P.; Akers, W.; Lee, Y.-C.; Brown, M.L.; Du, J.; Pedley, A.; Kartsonis, N.A.; Paschke, A. Prospective, randomized, double-blind, Phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J. Antimicrob. Chemother. 2017, 72, 2616–2626. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, S.G.; Leegwater, E.; Wilms, E.B.; van Nieuwkoop, C. Evaluating imipenem + cilastatin + relebactam for the treatment of complicated urinary tract infections. Expert Opin. Pharmacother. 2020, 21, 1805–1811. [Google Scholar] [CrossRef]
- VIDAL. RECARBRIO: Association Fixe D’imipénem, de Cilastatine et D’un Nouvel Antibiotique, le Rélébactamcited. Available online: https://www.vidal.fr/actualites/26443-recarbrio-association-fixe-d-imipenem-de-cilastatine-et-d-un-nouvel-antibiotique-le-relebactam.html (accessed on 29 July 2021).
- Rhee, E.G.; Rizk, M.L.; Calder, N.; Nefliu, M.; Warrington, S.J.; Schwartz, M.S.; Mangin, E.; Boundy, K.; Bhagunde, P.; Colon-Gonzalez, F.; et al. Pharmacokinetics, Safety, and Tolerability of Single and Multiple Doses of Relebactam, a β-Lactamase Inhibitor, in Combination with Imipenem and Cilastatin in Healthy Participants. Antimicrob. Agents Chemother. 2018, 62, e00280-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilinskaya, A.; Linder, K.E.; Kuti, J.L. Plazomicin: An intravenous aminoglycoside antibacterial for the treatment of complicated urinary tract infections. Expert Rev. Anti-Infect. Ther. 2020, 18, 705–720. [Google Scholar] [CrossRef] [PubMed]
- McKinnell, J.A.; Dwyer, J.P.; Talbot, G.H.; Connolly, L.E.; Friedland, I.; Smith, A.; Jubb, A.M.; Serio, A.W.; Krause, K.M.; Daikos, G.L. Plazomicin for Infections Caused by Carbapenem-Resistant Enterobacteriaceae. N. Engl. J. Med. 2019, 380, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Rex, J.; Outterson, K. Plazomicin EU Marketing Application is Withdrawn: Near Zero Market Value of Newly Approved Antibacterials. AMR.Solutions. 2020. Available online: https://amr.solutions/2020/07/11/plazomicin-eu-marketing-application-is-withdrawn-near-zero-market-value-of-newly-approved-antibacterials/ (accessed on 30 July 2021).
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Walkty, A.; Gin, A.S.; et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs 2016, 76, 567–588. Available online: https://pubmed.ncbi.nlm.nih.gov/26863149/ (accessed on 30 July 2021). [CrossRef]
- Mahieu, R.; Dubée, V. Nouveaux antibiotiques. In Réanimation; Elsevier: Amsterdam, The Netherlands, 2020; Available online: https://www.elsevier.com/fr-fr/connect/aru/nouveaux-antibiotiques (accessed on 18 August 2021).
- Yang, S.-K.; Yusoff, K.; Thomas, W.; Akseer, R.; Alhosani, M.S.; Abushelaibi, A.; Lai, K.S. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Sci. Rep. 2020, 10, 819. [Google Scholar] [CrossRef]
- Trong Le, N.; Viet Ho, D.; Quoc Doan, T.; Tuan Le, A.; Raal, A.; Usai, D.; Madeddu, S.; Marchetti, M.; Usai, M.; Rappelli, P.; et al. In vitro Antimicrobial Activity of Essential Oil Extracted from Leaves of Leoheo domatiophorus Chaowasku, D.T. Ngo and H.T. Le in Vietnam. Plants 2020, 9, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maugat, S.; Berger-carbonne, A. Antibiotiques et Résistance Bactérienne: Une Menace Mondiale, Des Conséquences Individuelles; ANSM: Paris, France, 2019; p. 24. [Google Scholar]
- Klein, E.Y.; Boeckel, T.P.V.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chapelle, C.; Gaborit, B.; Dumont, R.; Dinh, A.; Vallée, M. Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review. Antibiotics 2021, 10, 1332. https://doi.org/10.3390/antibiotics10111332
Chapelle C, Gaborit B, Dumont R, Dinh A, Vallée M. Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review. Antibiotics. 2021; 10(11):1332. https://doi.org/10.3390/antibiotics10111332
Chicago/Turabian StyleChapelle, Caroline, Benjamin Gaborit, Raphaëlle Dumont, Aurélien Dinh, and Maxime Vallée. 2021. "Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review" Antibiotics 10, no. 11: 1332. https://doi.org/10.3390/antibiotics10111332
APA StyleChapelle, C., Gaborit, B., Dumont, R., Dinh, A., & Vallée, M. (2021). Treatment of UTIs Due to Klebsiella pneumoniae Carbapenemase-Producers: How to Use New Antibiotic Drugs? A Narrative Review. Antibiotics, 10(11), 1332. https://doi.org/10.3390/antibiotics10111332