Epidemiology and Pattern of Resistance of Gram-Negative Bacteria Isolated from Blood Samples in Hospitalized Patients: A Single Center Retrospective Analysis from Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
7. Limits of the Study
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- D’Onofrio, V.; Salimans, L.; Bedenić, B.; Cartuyvels, R.; Barišić, I.; Gyssens, I.C. The Clinical Impact of Rapid Molecular Microbiological Diagnostics for Pathogen and Resistance Gene Identification in Patients with Sepsis: A Systematic Review. Open Forum Infect. Dis. 2020, 7, ofaa352. [Google Scholar] [CrossRef]
- Banik, A.; Lyngdoh, V.W.; Durairaj, E.; Phukan, A.C.; Kotal, R. Ecology of Bloodstream Infections and Temporal Trends of Their Antibiograms with Respect to Source and Duration of Incubation: A 5-Year Retrospective Observational Analysis. J. Lab. Physicians 2020, 12, 56–67. [Google Scholar] [CrossRef]
- Falconer, K.; Hammond, R.; Gillespie, S.H. Improving the recovery and detection of bloodstream pathogens from blood culture. J. Med. Microbiol. 2020, 69, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Leal, H.F.; Azevedo, J.; Silva, G.E.O.; Amorim, A.M.L.; De Roma, L.R.C.; Arraes, A.C.P.; Gouveia, E.L.; Reis, M.G.; Mendes, A.V.; de Oliveira Silva, M.; et al. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: Epidemiological, clinical and microbiological features. BMC Infect. Dis. 2019, 19, 609. [Google Scholar] [CrossRef] [PubMed]
- Panday, R.S.N.; Wang, S.; Van De Ven, P.M.; Hekker, T.A.M.; Alam, N.; Nanayakkara, P.W.B. Evaluation of blood culture epidemiology and efficiency in a large European teaching hospital. PLoS ONE 2019, 14, e0214052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phua, J.; Ngerng, W.J.; See, K.C.; Tay, C.K.; Kiong, T.; Lim, H.F.; Chew, M.Y.; Yip, H.S.; Tan, A.; Khalizah, H.J.; et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit. Care. 2013, 17, R202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntean, D.; Licker, M.; Horhat, F.; Dumitrașcu, V.; Săndesc, S.; Bedreag, O.; Dugăeșescu, D.; Coșniță, D.A.; Krasta, A.; Bădițoiu, L. Extensively drug-resistant Acinetobacter baumannii and Proteeae association in a Romanian intensive care unit: Risk factors for acquisition. Infect. Drug Resist. 2018, 11, 2187–2197. [Google Scholar] [CrossRef] [Green Version]
- Timsit, J.-F.; Ruppé, E.; Barbier, F.; Tabah, A.; Bassetti, M. Bloodstream infections in critically ill patients: An expert statement. Intensiv. Care Med. 2020, 46, 266–284. [Google Scholar] [CrossRef] [PubMed]
- Kierzkowska, M.; Majewska, A.; Dobrzaniecka, K.; Sawicka-Grzelak, A.; Mlynarczyk, A.; Chmura, A.; Durlik, M.; Deborska-Materkowska, D.; Paczek, L.; Mlynarczyk, G. Blood infections in patients treated at transplantation wards of a clinical hospital in Warsaw. Transpl. Proc. 2014, 46, 2589–2591. [Google Scholar] [CrossRef]
- Delport, J.A.; Strikwerda, A.; Armstrong, A.; Schaus, D.; John, M. Quality of Care Is Improved by Rapid Short Incubation MALDI-ToF Identification from Blood Cultures as Measured by Reduced Length of Stay and Patient Outcomes as Part of a Multi-Disciplinary Approach to Bacteremia in Pediatric Patients. PLoS ONE 2016, 11, e0160618. [Google Scholar] [CrossRef] [PubMed]
- Girmenia, C.; Serrao, A.; Canichella, M. Epidemiology of Carbapenem Resistant Klebsiella pneumoniae Infections in Mediterranean Countries. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016032. [Google Scholar] [CrossRef] [Green Version]
- Muntean, D.; Horhat, F.-G.; Bădițoiu, L.; Dumitrașcu, V.; Bagiu, I.-C.; Horhat, D.-I.; Coșniță, D.A.; Krasta, A.; Dugăeşescu, D.; Licker, M. Multidrug-Resistant Gram-Negative Bacilli: A Retrospective Study of Trends in a Tertiary Healthcare Unit. Medicina 2018, 54, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasciana, T.; Gentile, B.; Aquilina, M.; Ciammaruconi, A.; Mascarella, C.; Anselmo, A.; Fortunato, A.; Fillo, S.; Petralito, G.; Lista, F.; et al. Co-existence of virulence factors and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy. BMC Infect. Dis. 2019, 19, 928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Carlo, P.; Serra, N.; D’Arpa, F.; Agrusa, A.; Gulotta, G.; Fasciana, T.; Rodolico, V.; Giammanco, A.; Sergi, C. The microbiota of the bilio-pancreatic system: A cohort, STROBE-compliant study. Infect. Drug Resist. 2019, 12, 1513–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, N.; Colomba, C.; Di Carlo, P.; Palermo, G.; Fasciana, T.; Giammanco, A.; Novo, G., Jr.; Rea, T.; Marino, M.M.; Argano, V.; et al. Infective Endocarditis: Preliminary Results of a Cohort Study in the Southern Italian Population. Cureus 2020, 12, e8338. [Google Scholar] [CrossRef]
- Iacchini, S.; Sabbatucci, M.; Gagliotti, C.; Rossolini, G.M.; Moro, M.L.; Iannazzo, S.; D’Ancona, F.; Pezzotti, P.; Pantosti, A. Bloodstream infections due to carbapenemase-producing Enterobacteriaceae in Italy: Results from nationwide surveillance, 2014 to 2017. Eurosurveillance 2019, 24, 1800159. [Google Scholar] [CrossRef]
- Sorveglianza Nazionale Delle Batteriemie da Enterobatteri Produttori di Carbapenemasi. Rapporto 2013–2016. Rapporti ISTISAN 17/18. Available online: http://old.iss.it/binary/publ/cont/17_18_web.pdf (accessed on 21 August 2018).
- Clinician Guide for Collecting Cultures|Antibiotic Use|C.D.C.Cdc.gov. 2019. Available online: https://www.cdc.gov/antibiotic-use/healthcare/implementation/clinicianguide.html (accessed on 21 August 2018).
- Hall, K.K.; Lyman, J.A. Updated review of blood culture contamination. Clin. Microbiol. Rev. 2006, 19, 788–802. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf (accessed on 1 September 2021). [CrossRef] [Green Version]
- Agodi, A.; Barchitta, M.; Mura, I.; Pasquarella, C.; Torregrossa, M.V. The commitment of the GISIO-SItI to contrast healthcare-associated infections and the experience of prevalence studies in Sicily. Ann. Ig. 2018, 30, 38–47. [Google Scholar]
- Barchitta, M.; Maugeri, A.; Favara, G.; Riela, P.M.; La Mastra, C.; La Rosa, M.C.; San Lio, R.M.; Gallo, G.; Mura, I.; Agodi, A.; et al. On behalf of the SPIN-UTI Network 1 Cluster analysis identifies patients at risk of catheter-associated urinary tract infections in intensive care units: Findings from the SPIN-UTI Network. J. Hosp. Infect. 2021, 107, 57–63. [Google Scholar] [CrossRef]
- Di Carlo, P.; Gulotta, G.; Casuccio, A.; Pantuso, G.; Raineri, M.; Farulla, C.A. KPC-3 Klebsiella pneumoniae ST258 clone infection in postoperative abdominal surgery patients in an intensive care setting: Analysis of a case series of 30 patients. BMC Anesthesiol. 2013, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vading, M.; Nauclér, P.; Kalin, M.; Giske, C.G. Invasive infection caused by Klebsiella pneumoniae is a disease affecting patients with high comorbidity and associated with high long-term mortality. PLoS ONE 2018, 13, e0195258. [Google Scholar] [CrossRef] [PubMed]
- Brannon, J.R.; Dunigan, T.L.; Beebout, C.J.; Ross, T.; Wiebe, M.A.; Reynolds, W.S.; Hadjifrangiskou, M. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat. Commun. 2020, 11, 2803. [Google Scholar] [CrossRef] [PubMed]
- Wojszel, Z.B.; Toczyńska-Silkiewicz, M. Urinary tract infections in a geriatric sub-acute ward-health correlates and atypical presentations. Eur. Geriatr. Med. 2018, 9, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, N.; Di Carlo, P.; D’Arpa, F.; Battaglia, E.; Fasciana, T.; Gulotta, G.; Maida, C.M.; Rodolico, V.; Giammanco, A.; Sergi, C. Human bile microbiota: A retrospective study focusing on age and gender. J. Infect. Public Health 2021, 14, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Licata, F.; Quirino, A.; Pepe, D.; Matera, G.; Bianco, A.; Collaborative Group. Antimicrobial Resistance in Pathogens Isolated from Blood Cultures: A Two-Year Multicenter Hospital Surveillance Study in Italy. Antibiotics 2020, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Ghodousi, A.; Bonura, C.; Di Carlo, P.; van Leeuwen, W.B.; Mammina, C. Extraintestinal pathogenic Escherichia coli sequence type 131 H30-R and H30-Rx subclones in retail chicken meat, Italy. Int. J. food Microbiol. 2016, 228, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Bonten, M.; Johnson, J.R.; van den Biggelaar, A.H.J.; Georgalis, L.; Geurtsen, J.; de Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia coli Bacteremia: A Systematic Literature Review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef]
- MacKinnon, M.C.; McEwen, S.A.; Pearl, D.L.; Lyytikäinen, O.; Jacobsson, G.; Collignon, P.; Gregson, D.B.; Valiquette, L.; Laupland, K.B. Mortality in Escherichia coli bloodstream infections: A multinational population-based cohort study. BMC Infect. Dis. 2021, 21, 606. [Google Scholar] [CrossRef]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; DiGaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated with Mortality in Consecutive Patients With Bacterial Bloodstream Infection: Impact of M.D.R. and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef]
- Barchitta, M.; Quattrocchi, A.; Maugeri, A.; La Rosa, M.C.; La Mastra, C.; Sessa, L.; Cananzi, P.; Murolo, G.; Oteri, A.; Basile, G.; et al. Antibiotic Consumption and Resistance during a 3-Year Period in Sicily, Southern Italy. Int. J. Environ. Res. Public Health 2019, 16, 2253. [Google Scholar] [CrossRef] [Green Version]
- Di Gaudio, F.; Indelicato, S.; Indelicato, S.; Tricoli, M.R.; Stampone, G.; Bongiorno, D. Improvement of a rapid direct blood culture microbial identi-fication protocol using MALDI-TOF MS and performance comparison with SepsiTyper kit. J. Microbiol. Methods 2018, 155, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Graziano, E.; Berruti, M.; Giacobbe, D.R. The role of fosfomycin for multidrug-resistant gram-negative infections. Curr. Opin Infect. Dis. 2019, 32, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Santella, B.; Folliero, V.; Pirofalo, G.M.; Serretiello, E.; Zannella, C.; Moccia, G.; Santoro, E.; Sanna, G.; Motta, O.; De Caro, F.; et al. Sepsis-A Retrospective Cohort Study of Bloodstream Infections. Antibiotics 2020, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Ayanlade, A.; Sergi, C.M.; Di Carlo, P.; Ayanlade, O.S.; Agbalajobi, D.T. When Climate Turns Nasty, What Are Recent and Future Implications? Ecological and Human Health Review of Climate Change Impacts. Curr. Clim. Chang. Rep. 2020, 6, 55–65. [Google Scholar] [CrossRef]
- Matranga, D.; Maniscalco, L.; Enea, M.; De Luca, D.; Brancato, D.; La Spada, E.; Scorsone, A.; Di Carlo, P. Longitudinal investigation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in older patients in the province of Palermo (Southern Italy) during the early wave of the pandemic. Arch. Med Sci. 2021. [Google Scholar] [CrossRef]
Total (#105) | Males (#69) | Females (#36) | Males vs. Females | |
---|---|---|---|---|
p-Value (Test Type) | ||||
Age | ||||
Mean ± SD | 66.59 ± 15.64 | 65.54 ± 15.66 | 68.61 ± 15.63 | rN, p < 0.0001 (SW) |
Median (IQR) | 71 (58–79) | 70 (55–79) | 73 (62–80) | 0.30 (MW) |
Strain isolates | % (#) | % (#) | % (#) | |
(1) K. pneumoniae | 45.7 (48) | 49.3 (34) | 38.9 (14) | |
(2) E. coli | 19.0 (20) | 14.5 (10) | 27.8 (10) | |
(3) A. baumannii | 18.1 (19) | 20.3(14) | 13.9 (5) | |
(4) P. aeruginosa | 4.8 (5) | 2.9 (2) | 8.3 (3) | |
(5) E. aerogenes | 2.9 (3) | 1.4 (1) | 5.6 (2) | p = 0.44 (Cm) |
(6) E. cloacae | 2.9 (3) | 2.9 (2) | 2.8 (1) | |
(7) C. freundii | 1.9 (2) | 2.9 (2) | 0.0 (0) | |
(8) K. oxytoca | 1.9 (2) | 2.9 (2) | 0.0 (0) | |
(9) S. marcescens | 1.9 (2) | 1.4 (1) | 2.8 (1) | |
(10) P. mirabilis | 0.9 (1) | 1.4 (1) | 0.0 (0) | |
p < 0.0001 * (Cm) | p < 0.0001 * (Cm) | |||
Analysis into groups p-value (test type) | (1) **, p < 0.0001 (Z) (3) **, p = 0.012 (Z) | (1) **, p < 0.0001 (Z) (2) **, p = 0.0019 (Z) |
Isolates (#) | Age Intervals | |||
---|---|---|---|---|
(24–58) (#26) | (58–71) (#24) | (71–79) (#25) | (79–90) (#30) | |
(1) K. pneumoniae (48) | 42.3 (11) | 45.8 (11) | 48.0 (12) | 46.7 (14) |
(2) E. coli (20) | 15.4 (4) | 20.8 (5) | 16.0 (4) | 23.3 (7) |
(3) A. baumannii (19) | 19.2 (5) | 20.8 (5) | 24.0 (6) | 10.0 (3) |
(4) P. aeruginosa (5) | 0.0 (0) | 4.2 (1) | 4.0 (1) | 10.0 (3) |
(5) E. aerogenes (3) | 3.8 (1) | 4.2 (1) | 0.0 (0) | 3.3 (1) |
(6) E. cloacae (3) | 7.7 (2) | 0.0 (0) | 4.0 (1) | 0.0 (0) |
(7) K. oxytoca (2) | 3.8 (1) | 4.2 (1) | 0.0 (0) | 0.0 (0) |
(8) S. marcescens (2) | 0.0 (0) | 0.0 (0) | 4.0 (1) | 3.3 (1) |
(9) C. freundii (2) | 7.7 (2) | 0.0 (0) | 0.0 (0) | 0.0 (0) |
(10) P. mirabilis (1) | 0.0 (0) | 0.0 (0) | 0.0 (0) | 3.3 (1) |
Analysis into groups p-value (test type) | p < 0.0001 * (Cm) | p < 0.0001 * (Cm) | p < 0.0001 * (Cm) | p < 0.0001 * (Cm) |
(1) **, p < 0.0001 (Z) | (1) **, p < 0.0001 (Z) | (1) **, p < 0.0001 (Z) | (1) **, p < 0.0001 (Z) | |
(2) **, p = 0.0433 (Z) | ||||
(6) ***, p = 0.0433 (Z) | ||||
(7) ***, p = 0.0433 (Z) | ||||
(9) ***, p = 0.0433 (Z) |
Isolates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Operative Units | AcB | CiF | EnA | EnC | EsC | KlO | KlP | PrM | PsA | SeM |
(OU) | % (nr.) | % (nr.) | % (nr.) | % (nr.) | % (nr.) | % (nr.) | % (nr.) | % (nr.) | % (nr.) | % (nr.) |
non-ICUs (n = 52) | 7.7 (4/52) | 0.0 (0) | 1.9 (1) | 1.9 (1) | 34.6 (18) | 1.9 (1) | 42.2 (22) | 1.9 (1) | 3.9 (2) | 3.9 (2) |
Percentages defined on a single bacterium | 21.1 (4/19) | 0.0 (0) | 33.3 (1) | 33.3 (1) | 90 (18) | 50 (1) | 45.8 (22) | 100 (1) | 40 (2) | 100 (2) |
ICU (n = 53) | 28.3 (15/53) | 3.8 (2) | 3.8 (2) | 3.8 (2) | 3.8 (2) | 1.9 (1) | 49.1 (26) | 0.0 (0) | 5.7 (3) | 0.0 (0) |
Percentages defined on a single bacterium | 78.9 (15/19) | 100 (2) | 66.7 (2) | 66.7 (2) | 10 (2) | 50 (1) | 54.2 (26) | 0.0 (0) | 60 (3) | 0.0 (0) |
Single bacterium | ||||||||||
ICU vs. non-ICUs | ICU ** | non-ICUs ** | ||||||||
p = 0.0192 | p = 0.5 | p = 1.0 | p = 1.0 | p = 0.0004 | p = 1.0 | p = 0.57 | p = 1.0 | p = 1.0 | p = 0.5 |
Antibiotic Category | Antibiotic | AcB | CiF | EnA | EnC | EsC | KlO | KlP | PrM | PsA | SeM | p-Value (Test) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | % | % | |||
(#) | (#) | (#) | (#) | (#) | (#) | (#) | (#) | (#) | (#) | |||
Amoxicillin clavulanic acid | / | 100 (2/2) | 100 (1/1) | 100 (3/3) | 36.8 (7/19) | 100 (2/2) | 80.4 (37/46) | 100 (1/1) | / | 100 (2/2) | p = 0.0135 * (C) | |
EsC ***, p = 0.0013 (Z) | ||||||||||||
Penicillin | Ampicillin | 100 (5/5) | / | / | / | 100 (6/6) | / | 92.9 (13/14) | / | 100 (1/1) | / | p = 0.83 (C) |
Piperacillin tazobactam | 100 (1/1) | 50 (1/2) | 66.7 (2/3) | 0.0 (0/3) | 20 (4/20) | 100 (2/2) | 80.4 (37/46) | 0.0 (0/1) | 60 (3/5) | 0.0 (0/2) | p = 0.0002 * (C) | |
EnC ***, p = 0.0091 (Z) | ||||||||||||
EsC ***, p = 0.001 (Z) | ||||||||||||
PrM ***, p = 0.0279 (Z) | ||||||||||||
SeM ***, p = 0.0173 (Z) | ||||||||||||
Cephalosporin second generation | Cefoxitin | 100 (7/7) | 100 (2/2) | / | 100 (1/1) | 18.2 (2/11) | 100 (1/1) | 53.3 (16/30) | / | 100 (1/1) | 0.0 (0/1) | p = 0.0166 * (C) |
EsC ***, p = 0.0125 (Z) | ||||||||||||
SeM ***, p = 0.0353 (Z) | ||||||||||||
Cephalosporin third generation | Ceftazidime | / | 50 (1/2) | 66.7 (2/3) | 33.3 (1/3) | 35 (7/20) | 50 (1/2) | 83.3 (40/48) | 100 (1/1) | 50 (2/4) | 0.0 (0/2) | p = 0.0064 * (C) |
EsC ***, p = 0.0084 (Z) | ||||||||||||
SeM ***, p = 0.0087 (Z) | ||||||||||||
Cefotaxime | 100 (9/9) | 50 (1/2) | 66.7 (2/3) | 66.7 (2/3) | 55 (11/20) | 100 (2/2) | 83.3 (40/48) | 100 (1/1) | 100 (2/2) | 0.0 (0/2) | p = 0.0343 * (C) | |
EsC ***, p = 0.0287 (Z) | ||||||||||||
SeM ***, p = 0.0009 (Z) | ||||||||||||
Cephalosporin fourth generation | Cefepime | / | 50 (1/2) | 66.7 (2/3) | 0.0 (0/3) | 10 (2/20) | 50 (1/2) | 76.6 (36/47) | 0.0 (0/1) | 40 (2/5) | 0.0 (0/2) | p < 0.0001* (C) |
KlP **, p = 0.0292 (Z) | ||||||||||||
EnC ***, p = 0.0198 (Z) | ||||||||||||
EsC ***, p = 0.0005 (Z) | ||||||||||||
PrM ***, p = 0.0429 (Z) | ||||||||||||
SeM ***, p = 0.0318 (Z) | ||||||||||||
Fluoroquinolone class | Ciprofloxacin | 89.5 (17/19) | 0.0 (0/2) | 33.3 (1/3) | 0.0 (0/3) | 60 (12/20) | 100 (1/1) | 83.3 (40/48) | 0.0 (0/1) | 50 (2/4) | 0.0 (0/2) | p = 0.0003* (C) |
CiF ***, p = 0.0031 (Z) | ||||||||||||
EnA ***, p = 0.0417 (Z) | ||||||||||||
EnC ***, p = 0.001 (Z) | ||||||||||||
PrM ***, p = 0.0081 (Z) | ||||||||||||
SeM ***, p = 0.0031 (Z) | ||||||||||||
Aminoglycoside | Fosfomycin | 100 (8/8) | 0.0 (0/1) | 66.7 (2/3) | 0.0 (0/3) | 10 (2/20) | 50 (1/2) | 46.8 (22/47) | 100 (1/1) | 100 (2/2) | 0.0 (0/2) | p = 0.0006* (C) |
AcB **, p = 0.0054 (Z) | ||||||||||||
EnC ***, p = 0.041 (Z) | ||||||||||||
EsC ***, p = 0.0051 (Z) | ||||||||||||
Amikacin | 83.3 (10/12) | 0.0 (0/2) | 33.3 (1/3) | 0.0 (0/3) | 0.0 (0/20) | 50 (1/2) | 60.4 (29/48) | 0.0 (0/1) | 50 (2/4) | 0.0 (0/2) | p < 0.0001 * (C) | |
AcB **, p = 0.023 (Z) | ||||||||||||
EnC ***, p = 0.0363 (Z) | ||||||||||||
EsC ***, p = 0.0002 (Z) | ||||||||||||
Gentamicin | 88.9 (16/18) | 50 (1/2) | 0.0 (0/2) | 0.0 (0/3) | 20 (4/20) | 50 (1/2) | 70.8 (34/48) | 0.0 (0/1) | 50 (2/4) | 0.0 (0/2) | p = 0.0001* (C) | |
AcB **, p = 0.023 (Z) | ||||||||||||
EnA ***, p = 0.0206 (Z) | ||||||||||||
EnC ***, p = 0.0113 (Z) | ||||||||||||
EsC ***, p = 0.0014 (Z) | ||||||||||||
PrM ***, p = 0.0318 (Z) | ||||||||||||
SeM ***, p = 0.0206 (Z) | ||||||||||||
Carbapenems | Imipenem | 80 (8/10) | 0.0 (0/1) | 50 (1/2) | 0.0 (0/1) | 0.0 (0/12) | / | 68.4 (13/19) | / | 100 (1/1) | 0.0 (0/1) | p = 0.0024 * (C) |
EsC ***, p = 0.0015 (Z) | ||||||||||||
Meropenem | 83.3 (15/18) | 50 (1/2) | 66.7 (2/3) | 0.0 (0/3) | 0.0 (0/20) | 50 (1/2) | 70.8 (34/48) | 0.0 (0/1) | 25 (1/4) | 0.0 (0/2) | p < 0.0001* (C) | |
AcB **, p = 0.0299 (Z) | ||||||||||||
EnC ***, p = 0.0182 (Z) | ||||||||||||
EsC ***, p < 0.0001 (Z) | ||||||||||||
PrM ***, p = 0.0413 (Z) | ||||||||||||
SeM ***, p = 0.0299 (Z) | ||||||||||||
Ertapenem | 100 (7/7) | 0.0 (0/1) | 50 (1/2) | 0.0 (0/3) | 5 (1/20) | 100 (2/2) | 66.7 (22/33) | 100 (1/1) | 100 (1/1) | 0.0 (0/2) | p < 0.0001* (C) | |
AcB **, p = 0.0261 (Z) | ||||||||||||
EnC ***, p = 0.0268 (Z) | ||||||||||||
EsC ***, p = 0.0005 (Z) | ||||||||||||
SeM ***, p = 0.040 (Z) | ||||||||||||
Folate pathway inhibitors | Trimethoprim-sulfamethoxazole | 88.2 (15/17) | 50 (1/2) | 50 (1/2) | 0.0 (0/2) | 35 (7/20) | 0.0 (0/2) | 23.4 (11/47) | 0.0 (0/1) | 100 (2/2) | 0.0 (0/2) | p = 0.0004* (C) |
AcB **, p = 0.0003 (Z) | ||||||||||||
Glycylcycline class | Tigecycline | 0.0 (0/2) | 0.0 (0/2) | / | 0.0 (0/1) | 5.6 (1/18) | 0.0 (0/2) | 12.8 (5/39) | 100 (1/1) | 100 (2/2) | / | p = 0.0032* (C) |
PsA **, p = 0.0119 (Z) | ||||||||||||
Polymyxin class | Colistin | 6.7 (1/15) | 0.0 (0/2) | 0.0 (0/1) | 0.0 (0/2) | 5.6 (1/18) | 0.0 (0/2) | 15.9 (7/44) | 100 (1/1) | 20 (1/5) | 100 (2/2) | p = 0.0109* (C) SeM **, p = 0.0145 (Z) |
A. baumannii |
p < 0.0001 * (C) |
Colistin ***, p < 0.0001 (Z) |
Tigecycline ***, p = 0.0002 (Z) |
C. freundii |
p = 0.52 (C) |
E. aerogenes |
p = 0.92 (C) |
E. cloacae |
p = 0.0094 * (C) |
Amoxicillin |
clavulanic acid **, p = 0.0039 (Z) |
E. coli |
p < 0.0001 *(C) |
Ampicillin **, p < 0.0001 (Z) |
Cefotaxime **, p = 0.0015 (Z) |
Ciprofloxacin **, p = 0.0002 (Z) |
Amikacin ***, p = 0.0105 (Z) |
Imipenem ***, p = 0.0318 (Z) |
Meropenem ***, p = 0.0105 (Z) |
Ertapenem ***, p = 0.0416 (Z) |
K. oxytoca |
p = 0.33 (C) |
K. pneumoniae |
p < 0.0001* (C) |
Amoxicillin clavulanic acid **, p = 0.021 (Z) |
Ampicillin **, p = 0.0391 (Z) |
Piperacillin tazobactam **, p = 0.021 (Z) |
Cefotaxime **, p = 0.0058 (Z) |
Ceftazidime **, p = 0.0058 (Z) |
Ciprofloxacin **, p = 0.0058 (Z) |
Colistin ***, p < 0.0001 (Z) |
Fosfomycin ***, p = 0.0238 (Z) |
Tigecycline ***, p < 0.0001 (Z) |
Trimethoprim-sulfamethoxazole ***, p < 0.0001 (Z) |
P. mirabilis |
p = 0.37 (C) |
P. aeruginosa |
p = 0.49 (C) |
S. marcescens |
p = 0.0142 * (C) |
Amoxicillin clavulanic acid **, p = 0.0181 (Z) |
Colistin **, p = 0.0181 (Z) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Carlo, P.; Serra, N.; Lo Sauro, S.; Carelli, V.M.; Giarratana, M.; Signorello, J.C.; Lucchesi, A.; Manta, G.; Napolitano, M.S.; Rea, T.; et al. Epidemiology and Pattern of Resistance of Gram-Negative Bacteria Isolated from Blood Samples in Hospitalized Patients: A Single Center Retrospective Analysis from Southern Italy. Antibiotics 2021, 10, 1402. https://doi.org/10.3390/antibiotics10111402
Di Carlo P, Serra N, Lo Sauro S, Carelli VM, Giarratana M, Signorello JC, Lucchesi A, Manta G, Napolitano MS, Rea T, et al. Epidemiology and Pattern of Resistance of Gram-Negative Bacteria Isolated from Blood Samples in Hospitalized Patients: A Single Center Retrospective Analysis from Southern Italy. Antibiotics. 2021; 10(11):1402. https://doi.org/10.3390/antibiotics10111402
Chicago/Turabian StyleDi Carlo, Paola, Nicola Serra, Sofia Lo Sauro, Vincenza Maria Carelli, Maurizio Giarratana, Juan Camilo Signorello, Alessandro Lucchesi, Giuseppe Manta, Maria Santa Napolitano, Teresa Rea, and et al. 2021. "Epidemiology and Pattern of Resistance of Gram-Negative Bacteria Isolated from Blood Samples in Hospitalized Patients: A Single Center Retrospective Analysis from Southern Italy" Antibiotics 10, no. 11: 1402. https://doi.org/10.3390/antibiotics10111402
APA StyleDi Carlo, P., Serra, N., Lo Sauro, S., Carelli, V. M., Giarratana, M., Signorello, J. C., Lucchesi, A., Manta, G., Napolitano, M. S., Rea, T., Cascio, A., Sergi, C. M., Giammanco, A., & Fasciana, T. (2021). Epidemiology and Pattern of Resistance of Gram-Negative Bacteria Isolated from Blood Samples in Hospitalized Patients: A Single Center Retrospective Analysis from Southern Italy. Antibiotics, 10(11), 1402. https://doi.org/10.3390/antibiotics10111402