Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action
Abstract
:1. Introduction
2. Results and Discussion
2.1. Iron Oxide Preparation and Electrodecoration with Copper Nanoparticles
2.2. Morphological and Spectroscopic Characterization
2.3. Magnetic Characterization of the Bare Magnetic Particles
2.4. Magnetic Hyperthermia of Electrodecorated Particles
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Binns, C. Frontiers of Nanoscience | Nanomagnetism: Fundamentals and Applications; Palmer, R.E., Ed.; Elsevier: Oxford, UK, 2014; ISBN 978-0-08-098353-0. [Google Scholar]
- Kolen’Ko, Y.V.; Bañobre-López, M.; Rodríguez-Abreu, C.; Carbó-Argibay, E.; Sailsman, A.; Piñeiro-Redondo, Y.; Cerqueira, M.F.; Petrovykh, D.Y.; Kovnir, K.; Lebedev, O.I.; et al. Large-Scale Synthesis of Colloidal Fe3O4 Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia. J. Phys. Chem. C 2014, 118, 8691–8701. [Google Scholar] [CrossRef]
- Salvador, M.; Moyano, A.; Martínez-García, J.C.; Blanco-López, M.C.; Rivas, M. Synthesis of Superparamagnetic Iron Oxide Nanoparticles: SWOT Analysis Towards Their Conjugation to Biomolecules for Molecular Recognition Applications. J. Nanosci. Nanotechnol. 2019, 19, 4839–4856. [Google Scholar] [CrossRef]
- Allafchian, A.R.; Hosseini, S.S. Antibacterial magnetic nanoparticles for therapeutics: A review. IET Nanobiotechnology 2019, 13, 786–799. [Google Scholar] [CrossRef]
- Bañobre-López, M.; Teijeiro, A.; Rivas, J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pr. Oncol. Radiother. 2013, 18, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef]
- Cortajarena, A.L.; Ortega, D.; Ocampo, S.M.; Gonzalez-García, A.; Couleaud, P.; Miranda, R.; Belda-Iniesta, C.; Ayuso-Sacido, A. Engineering Iron Oxide Nanoparticles for Clinical Settings. Nanobiomedicine 2014, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochelle, M.; Cornell, U.S. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed.; Completely Revised and Extended Edition; Wiley-Vch: Weinheim, Germany, 2006; ISBN 978-3-527-60644-3. [Google Scholar]
- Dormann, J.L.; Fiorani, D.; Tronc, E. Magnetic Relaxation in Fine-Particle Systems. Adv. Chem. Phys. 1997, 283, 283–494. [Google Scholar]
- Fiorani, D.; Peddis, D. Understanding dynamics of interacting magnetic nanoparticles: From the weak interaction regime to the collective superspin glass state. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2014; Volume 521, p. 012006. [Google Scholar]
- Mangayayam, M.; Kiwi, J.; Giannakis, S.; Pulgarin, C.; Zivkovic, I.; Magrez, A.; Rtimi, S. FeOx magnetization enhancing E. coli inactivation by orders of magnitude on Ag-TiO2 nanotubes under sunlight. Appl. Catal. B Environ. 2017, 202, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldöfner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.A.; Jordan, A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperth. 2005, 21, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Thiesen, B.; Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 2008, 24, 467–474. [Google Scholar] [CrossRef]
- Moise, S.; Céspedes, E.; Soukup, D.; Byrne, J.M.; El Haj, A.J.; Telling, N.D. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci. Rep. 2017, 7, 39922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scialabba, C.; Puleio, R.; Peddis, D.; Varvaro, G.; Calandra, P.; Cassata, G.; Cicero, L.; Licciardi, M.; Giammona, G. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 2017, 10, 3212–3227. [Google Scholar] [CrossRef]
- Guthi, J.S.; Yang, S.-G.; Huang, G.; Li, S.; Khemtong, C.; Kessinger, C.W.; Peyton, M.; Minna, J.D.; Brown, K.C.; Gao, J. MRI-Visible Micellar Nanomedicine for Targeted Drug Delivery to Lung Cancer Cells. Mol. Pharm. 2009, 7, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Veiseh, O.; Gunn, J.; Fang, C.; Hansen, S.; Lee, D.; Sze, R.; Ellenbogen, R.G.; Olson, J.; Zhang, M. In Vivo MRI Detection of Gliomas by Chlorotoxin-Conjugated Superparamagnetic Nanoprobes. Small 2008, 4, 372–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Barahona, I.; Gutiérrez, L.; Veintemillas-Verdaguer, S.; Pellico, J.; Morales, P.; Catala, M.; Del Pozo, M.A.; Ruiz-Cabello, J.; Herranz, F. Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging. ACS Omega 2019, 4, 2719–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakhjavan, B.; Tahir, M.N.; Natalio, F.; Gao, H.; Schneider, K.; Schladt, T.; Ament, I.; Branscheid, R.; Weber, S.; Kolb, U.; et al. Phase separated Cu@Fe3O4 heterodimer nanoparticles from organometallic reactants. J. Mater. Chem. 2011, 21, 8605–8611. [Google Scholar] [CrossRef]
- Céspedes, E.; Byrne, J.M.; Farrow, N.; Moise, S.; Coker, V.S.; Bencsik, M.; Lloyd, J.R.; Telling, N.D. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications. Nanoscale 2014, 6, 12958–12970. [Google Scholar] [CrossRef]
- Li, W.; Wei, W.; Wu, X.; Zhao, Y.; Dai, H. The antibacterial and antibiofilm activities of mesoporous hollow Fe3O4 nanoparticles in an alternating magnetic field. Biomater. Sci. 2020, 8, 4492–4507. [Google Scholar] [CrossRef]
- Demirbas, A.; Kislakci, E.; Karaagac, Z.; Onal, I.; Ildiz, N.; Ocsoy, I. Preparation of biocompatible and stable iron oxide nanoparticles using anthocyanin integrated hydrothermal method and their antimicrobial and antioxidant properties. Mater. Res. Express 2019, 6, 125011. [Google Scholar] [CrossRef]
- Ge, Y.; Shen, W.; Wang, X.; Feng, H.; Feng, L. Synthesis and bactericidal action of Fe3O4/AgO bifunctional magnetic-bactericidal nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2019, 563, 160–169. [Google Scholar] [CrossRef]
- Park, S.B.; White, S.B.; Steadman, C.S.; Pechan, T.; Pechanova, O.; Clemente, H.J.; Thirumalai, R.V.K.G.; Willard, S.T.; Ryan, P.L.; Feugang, J.M. Silver-coated magnetic nanocomposites induce growth inhibition and protein changes in foodborne bacteria. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.A.; Allafchian, A.R.; Karimzadeh, F.; Nasiri, F. Synthesis and characterization of magnetite/Alyssum homolocarpum seed gum/Ag nanocomposite and determination of its antibacterial activity. Int. J. Biol. Macromol. 2019, 139, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, S.; Sohrabnezhad, S.; Ghafourian, S. Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity. J. Solid State Chem. 2016, 244, 160–163. [Google Scholar] [CrossRef]
- Rajabi, S.K.; Sohrabnezhad, S. Enhancing the antimicrobial properties copper oxide shell with the magnetic mesoporous core-shell. J. Chem. Health Risks 2019, 9, 225–234. [Google Scholar] [CrossRef]
- Nardi, T.; Rtimi, S.; Pulgarin, C.; Leterrier, Y. Antibacterial surfaces based on functionally graded photocatalytic Fe3O4@TiO2 core-shell nanoparticle/epoxy composites. RSC Adv. 2015, 5, 105416–105421. [Google Scholar] [CrossRef] [Green Version]
- AbuTaha, N.; Hezam, A.; Almekhlafi, F.A.; Saeed, A.M.N.; Namratha, K.; Byrappa, K. Rational design of Ag-ZnO-Fe3O4 nanocomposite with promising antimicrobial activity under LED light illumination. Appl. Surf. Sci. 2020, 527, 146893. [Google Scholar] [CrossRef]
- Maoa, K.; Zhua, Y.; Zhanga, X.; Ronga, J.; Qiu, F.; Chenb, H.; Xua, J.; Yanga, D.; Zhanga, T. Effective loading of well-doped ZnO/Ag3PO4 nanohybrids on magnetic core via one step for promoting its photocatalytic antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125187. [Google Scholar] [CrossRef]
- Mirsadeghi, S.; Zandavar, H.; Yousefi, M.; Rajabi, H.R.; Pourmortazavi, S.M. Green-photodegradation of model pharmaceutical contaminations over biogenic Fe3O4/Au nanocomposite and antimicrobial activity. J. Environ. Manag. 2020, 270, 110831. [Google Scholar] [CrossRef]
- Medina-Ramirez, I.; De León-Macias, C.E.D.; Herreraa, G.P.-; Segoviab, R.G.-; Zapien, J.A.; Rodríguez-López, J.L. Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe3O4 photocatalytic magnetic materials. Ceram. Int. 2020, 46, 8979–8994. [Google Scholar] [CrossRef]
- Cioffi, N.; Torsi, L.; DiTaranto, N.; Tantillo, G.; Ghibelli, L.; Sabbatini, L.; Bleve-Zacheo, T.; D’Alessio, M.; Zambonin, A.P.G.; Traversa, E. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chem. Mater. 2005, 17, 5255–5262. [Google Scholar] [CrossRef]
- Cioffi, N.; Ditaranto, N.; Sabbatini, L.; Torsi, L.; Zambonin, P.G. Nanomaterials for Controlled Metal Release and Process for Their Production. European Patent Application EP EP2123797B1, 29 April 2008. [Google Scholar]
- Cioffi, N.; Torsi, A.D.A.; DiTaranto, N.; Sabbatini, L.; Zambonin, P.G.; Tantillo, G.; Ghibelli, L.; D’Alessio, M.; Bleve-Zacheo, T.; Traversa, E. Antifungal activity of polymer-based copper nanocomposite coatings. Appl. Phys. Lett. 2004, 85, 2417–2419. [Google Scholar] [CrossRef]
- Izzi, M.; Sportelli, M.C.; DiTaranto, N.; Picca, R.A.; Innocenti, M.; Sabbatini, L.; Cioffi, N. Pros and Cons of Sacrificial Anode Electrolysis for the Preparation of Transition Metal Colloids: A Review. ChemElectroChem 2019, 7, 386–394. [Google Scholar] [CrossRef]
- Reetz, M.T.; Quaiser, S.A. A New Method for the Preparation of Nanostructured Metal Clusters. Angew. Chem. Int. Ed. 1995, 34, 2240–2241. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.; Gerson, A.; Smart, R.S. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Minati, L.; Micheli, V.; Rossi, B.; Migliaresi, C.; Dalbosco, L.; Bao, G.; Hou, S.; Speranza, G. Application of factor analysis to XPS valence band of superparamagnetic iron oxide nanoparticles. Appl. Surf. Sci. 2011, 257, 10863–10868. [Google Scholar] [CrossRef]
- Temesghen, W.; Sherwood, P.M.A. Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides, with spectral interpretation by cluster and band structure calculations. Anal. Bioanal. Chem. 2002, 373, 601–608. [Google Scholar] [CrossRef]
- Lad, R.J.; Henrich, V.E. Photoemission study of the valence-band electronic structure in FexO, Fe3O4, and α-Fe2O3 single crystals. Phys. Rev. B 1989, 39, 13478–13485. [Google Scholar] [CrossRef]
- Li, P.; Jing, H.; Xu, J.; Wu, C.; Peng, H.; Lu, J.; Lu, F. High-efficiency synergistic conversion of CO2 to methanol using Fe2O3 nanotubes modified with double-layer Cu2O spheres. Nanoscale 2014, 6, 11380–11386. [Google Scholar] [CrossRef]
- Wang, J.-C.; Zhang, L.; Fang, W.-X.; Ren, J.; Li, Y.-Y.; Yao, H.-C.; Wang, J.-S.; Li, Z. Enhanced Photoreduction CO2 Activity over Direct Z-Scheme α-Fe2O3/Cu2O Heterostructures under Visible Light Irradiation. ACS Appl. Mater. Interfaces 2015, 7, 8631–8639. [Google Scholar] [CrossRef] [PubMed]
- Allan, H. Morrish the Physical Principles of Magnetism | Wiley; Wiley-IEEE Press: Piscataway, NJ, USA, 2001; ISBN 978-0-780-36029-7. [Google Scholar]
- Livesey, K.L.; Ruta, S.; Anderson, N.R.; Baldomir, D.; Chantrell, R.; Serantes, D. Beyond the blocking model to fit nanoparticle ZFC/FC magnetisation curves. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peddis, D.; Joensson, P.F.; Laureti, S.; Varvaro, G. Magnetic Interactions: A Tool to Modify the Magnetic Properties of Materials Based on Nanoparticles. In Frontiers of Nanoscience; Elsevier: Amsterdam, The Netherlands, 2015; Volume 46, pp. 129–188. [Google Scholar] [CrossRef]
- Zeng, H.; Sun, S.; Vedantam, T.S.; Liu, J.P.; Dai, Z.-R.; Wang, Z.L. Exchange-coupled FePt nanoparticle assembly. Appl. Phys. Lett. 2002, 80, 2583–2585. [Google Scholar] [CrossRef]
- Zélis, P.M.; Pasquevich, G.A.; Stewart, S.; Van Raap, M.B.F.; Aphesteguy, J.; Bruvera, I.J.; Laborde, C.; Pianciola, B.; Jacobo, S.E.; Sánchez, F.H. Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications. J. Phys. D Appl. Phys. 2013, 46, 125006. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Longano, D.; Bonerba, E.; Tantillo, G.; Torsi, L.; Sabbatini, L.; Cioffi, N.; Cioffi, N. Electrochemical Preparation of Synergistic Nanoantimicrobials. Molecules 2019, 25, 49. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, N.; DiTaranto, N.; Torsi, L.; Picca, R.A.; De Giglio, E.; Sabbatini, L.; Novello, L.; Tantillo, G.; Bleve-Zacheo, T.; Zambonin, P.G. Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal. Bioanal. Chem. 2005, 382, 1912–1918. [Google Scholar] [CrossRef]
- Sarcina, L.; García-Manrique, P.; Gutiérrez, G.; Cioffi, N.; Cioffi, N.; Matos, M.; Blanco-López, M.C. Cu Nanoparticle-Loaded Nanovesicles with Antibiofilm Properties. Part I: Synthesis of New Hybrid Nanostructures. Nanomaterials 2020, 10, 1542. [Google Scholar] [CrossRef]
- Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, A.M. Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloy. Compd. 2020, 816, 152548. [Google Scholar] [CrossRef]
- Piñeiro-Redondo, Y.; Vargas-Osorio, Z.; Bañobre-López, M.; Kolen’Ko, Y.V.; Lopez-Quintela, M.A.; Rivas, J.; Kolen’Ko, Y.V.; López-Quintela, M.A. Relevant Parameters for Magnetic Hyperthermia in Biological Applications: Agglomeration, Concentration, and Viscosity. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Ahn, T.; Kim, J.H.; Yang, H.-M.; Lee, J.W. Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method. J. Phys. Chem. C 2012, 116, 6069–6076. [Google Scholar] [CrossRef]
Sample | % Fe | % Cu | % O | %Oox | O/Fe | % C | % N | % Cl |
---|---|---|---|---|---|---|---|---|
Fe3O4 | 22 ± 2 | -- | 55 ± 2 | 44 ± 1 | 1.9 ± 0.2 | 23 ± 3 | -- | -- |
Cu@Fe3O4 | 11.0 ± 0.7 | 12 ± 1 | 35 ± 10 | 21 ± 3 | 2.0 ± 0.6 | 33 ± 4 | 0.8 ± 0.3 | 0.5 ± 0.5 |
Sample | Concentration (mg/L) | SAR (W/g) |
---|---|---|
Fe3O4 | 21.6 | 41.89 |
Cu@Fe3O4 | 20 | 16.32 |
Cu@Fe3O4 | 10 | 27.93 |
Sample 1 | Copper Release (mg/L) |
Storage time t = 3 days | 425 ± 5 |
MH t = 30 min | 1500 ± 5 |
Sample 1 | Copper Release (mg/L) |
Storage time t = 5 days | 780 ± 5 |
MH t = 30 min | 1490 ± 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchianò, V.; Salvador, M.; Moyano, A.; Gutiérrez, G.; Matos, M.; Yáñez-Vilar, S.; Piñeiro, Y.; Rivas, J.; Martínez-García, J.C.; Peddis, D.; et al. Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action. Antibiotics 2021, 10, 119. https://doi.org/10.3390/antibiotics10020119
Marchianò V, Salvador M, Moyano A, Gutiérrez G, Matos M, Yáñez-Vilar S, Piñeiro Y, Rivas J, Martínez-García JC, Peddis D, et al. Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action. Antibiotics. 2021; 10(2):119. https://doi.org/10.3390/antibiotics10020119
Chicago/Turabian StyleMarchianò, Verdiana, Maria Salvador, Amanda Moyano, Gemma Gutiérrez, María Matos, Susana Yáñez-Vilar, Yolanda Piñeiro, José Rivas, José C. Martínez-García, Davide Peddis, and et al. 2021. "Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action" Antibiotics 10, no. 2: 119. https://doi.org/10.3390/antibiotics10020119
APA StyleMarchianò, V., Salvador, M., Moyano, A., Gutiérrez, G., Matos, M., Yáñez-Vilar, S., Piñeiro, Y., Rivas, J., Martínez-García, J. C., Peddis, D., Blanco-López, M. C., Rivas, M., Ditaranto, N., & Cioffi, N. (2021). Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action. Antibiotics, 10(2), 119. https://doi.org/10.3390/antibiotics10020119