The Emergence of Klebsiella pneumoniae with Reduced Susceptibility against Third Generation Cephalosporins and Carbapenems in Lagos Hospitals, Nigeria
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Study Population, Case Definition, Sample Collection and Bacteriology
3.2. Antimicrobial Susceptibility Testing (AST)
3.3. Screening of Extended-Spectrum Beta-Lactamase (ESBL)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjbar, R.; Fatahian Kelishadrokhi, A.; Chehelgerdi, M. Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infect. Drug Resist. 2019, 12, 603–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossolini, G.M. Extensively drug-resistant carbapenemase-producing Enterobacteriaceae: An emerging challenge for clinicians and healthcare systems. J. Intern. Med. 2015, 277, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Brink, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef]
- Uzoamaka, M.; Ngozi, O.; Johnbull, O.S.; Martin, O. Bacterial Etiology of lower respiratory tract infections and their antimicrobial susceptibility. Am. J. Med. Sci. 2017, 354, 471–475. [Google Scholar] [CrossRef]
- Brown, B.; Dada-Adegbola, H.; Trippe, C.; Olopade, O. Prevalence and etiology of bacteremia in febrile children with sickle cell disease at a Nigeria tertiary hospital. Mediterr. J. Hematol. Infect. Dis. 2017, 9, e2017039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akindolire, A.E.; Tongo, O.; Dada-Adegbola, H.; Akinyinka, O. Etiology of early-onset septicemia among neonates at the University College Hospital, Ibadan, Nigeria. J. Infect. Dev. Ctries 2016, 10, 1338–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbolu, D.O.; Piddock, L.J.V.; Webber, M.A. Opening Pandora’s box: High-level resistance to antibiotics of last resort in Gram-negative bacteria from Nigeria. J. Glob. Antimicrob. Resist. 2020, 21, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.; Sani, Y.; Saleh, Q.; Saleh, A.; Hakeem, G. Phenotypic detection of extended-spectrum beta-lactamase and carbapenemase co-producing clinical isolates from two tertiary hospitals in Kano, northwest Nigeria. Ethiop. J. Health Sci. 2017, 27, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Vachvanichsanong, P.; McNeil, E.B.; Dissaneewate, P. Extended-spectrum beta-lactamase Escherichia coli and Klebsiella pneumoniae urinary tract infections. Epidemiol. Infect. 2020, 149, e12. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, H.; Xu, Y.; Zhu, H.; Yu, X.; Xu, J. Community-acquired Klebsiella pneumoniae central nervous system infection after acute suppurative otitis. IDCases 2021, 23, e01016. [Google Scholar] [CrossRef]
- Antony, S.; Ravichandran, K.; Kanungo, R. Multidrug-resistant Enterobacteriaceae colonising the gut of adult rural population in South India. Indian J. Med. Microbiol. 2018, 36, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Akinyemi, K.O.; Bamiro, B.S.; Coker, A.O. Salmonellosis in Lagos, Nigeria: Incidence of Plasmodium falciparum-associated co-infection, patterns of antimicrobial resistance, and emergence of reduced susceptibility to fluoroquinolones. J. Health Popul. Nutr. 2007, 25, 351–358. [Google Scholar] [PubMed]
- Olowo-Okere, A.; Ibrahim, Y.K.E.; Nabti, L.Z.; Olayinka, B.O. High prevalence of multidrug-resistant Gram-negative bacterial infections in Northwest Nigeria. Germs 2020, 10, 310–321. [Google Scholar] [CrossRef]
- Ayandele, A.A.; Oladipo, E.K.; Oyebisi, O.; Kaka, M.O. Prevalence of multi-antibiotic resistant Escherichia coli and Klebsiella species obtained from a tertiary medical institution in Oyo State, Nigeria. Qatar Med. J. 2020, 2020, 9. [Google Scholar] [CrossRef]
- Obasi, A.; Nwachukwu, S.; Ugoji, E.; Kohler, C.; Gohler, A.; Balau, V.; Pfeifer, Y.; Steinmetz, I. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae from pharmaceutical wastewaters in South-Western Nigeria. Microb. Drug Resist. 2017, 23, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Olalekan, A.; Onwugamba, F.; Iwalokun, B.; Mellmann, A.; Becker, K.; Schaumburg, F. High proportion of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae among extended-spectrum beta-lactamase producers in Nigerian hospitals. J. Glob. Antimicrob. Resist. 2019. [Google Scholar] [CrossRef]
- Raji, M.A.; Jamal, W.; Ojemhen, O.; Rotimi, V.O. Point-surveillance of antibiotic resistance in Enterobacteriaceae isolates from patients in a Lagos teaching hospital, Nigeria. J. Infect. Public Health 2013, 6, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Hertz, F.B.; Jansaker, F.; Okon, K.O.; Abdulmumin, I.S.; Onah, J.O.; Ladan, J.; Knudsen, J.D. ESBL-production in Escherichia coli and Klebsiella pneumoniae isolates from Nigeria. MicrobiologyOpen 2019, 8, e00816. [Google Scholar] [CrossRef]
- Oduyebo, O.O.; Falayi, O.M.; Oshun, P.; Ettu, A.O. Phenotypic determination of carbapenemase-producing Enterobacteriaceae isolates from clinical specimens at a tertiary hospital in Lagos, Nigeria. Trop. J. Pharm. Res. 2015, 22, 223–227. [Google Scholar] [CrossRef]
- Adesanya, O.A.; Igwe, H.A. Carbapenem-resistant Enterobacteriaceae (CRE) and Gram-negative bacterial infections in south-west Nigeria: A retrospective epidemiological surveillance study. AIMS Public Health 2020, 7, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Karageorgopoulos, D.E.; Nordmann, P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 2011, 6, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Muller-Schulte, E.; Tuo, M.N.; Akoua-Koffi, C.; Schaumburg, F.; Becker, S.L. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Cote d’Ivoire. Int. J. Infect. Dis. 2019, 91, 207–209. [Google Scholar] [CrossRef] [Green Version]
- Founou, L.L.; Founou, R.C.; Allam, M.; Ismail, A.; Djoko, C.F.; Essack, S.Y. Genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae isolated from pigs and abattoir workers in Cameroon. Front. Microbiol. 2018, 9, 188. [Google Scholar] [CrossRef]
- Njeru, J. Emerging carbapenem resistance in ESKAPE organisms in sub-Saharan Africa (SSA) and the way forward. Ger. J. Microbiol. 2021, 1. [Google Scholar] [CrossRef]
- Phillips, I. Cowan and Steel’s manual for the identification of medical bacteria. J. Clin. Pathol. 1993, 46, 975. [Google Scholar] [CrossRef] [Green Version]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing; Nineteenth Informational Supplement; CLSI: Annapolis Junction, MD, USA, 2011. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landman, D.; Salvani, J.K.; Bratu, S.; Quale, J. Evaluation of techniques for detection of carbapenem-resistant Klebsiella pneumoniae in stool surveillance cultures. J. Clin. Microbiol. 2005, 43, 5639–5641. [Google Scholar] [CrossRef] [Green Version]
- Sturenburg, E.; Kuhn, A.; Mack, D.; Laufs, R. A novel extended-spectrum beta-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance. J. Antimicrob. Chemother. 2004, 54, 406–409. [Google Scholar] [CrossRef] [Green Version]
- Pai, H.; Lyu, S.; Lee, J.H.; Kim, J.; Kwon, Y.; Kim, J.W.; Choe, K.W. Survey of extended-spectrum beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae: Prevalence of TEM-52 in Korea. J. Clin. Microbiol. 1999, 37, 1758–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.L.; Wang, M.S.; Cheng, A.C.; Pan, K.C.; Li, C.F.; Deng, S.X. A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World J. Gastroenterol. 2008, 14, 2872–2876. [Google Scholar] [CrossRef] [PubMed]
Parameters | Types and Number of Collected Samples (Positive Sample) | ||||||
---|---|---|---|---|---|---|---|
Urine | Nasal Swab | Wound Swab | Feces | Blood | Total | ||
Hospitals | CPHL | 9 (6) | 11 (4) | 7 (1) | 9 (1) | 6 (1) | 42 (13) |
LASUTH | 10 (5) | 9 (3) | 5 (1) | 2 (0) | 7 (2) | 33 (11) | |
NIMR | 12 (8) | 7 (2) | 3 (1) | 6 (2) | 4 (0) | 32 (13) | |
IPHC | 6 (5) | 3 (1) | 5 (0) | 3 (0) | 3 (0) | 20 (6) | |
Total | 37 (24) | 30 (10) | 20 (3) | 20 (3) | 20 (3) | 127 (43) | |
Age in Year | 0–4 | 6 (3) | 3 (1) | 2 (0) | 3 (0) | 1 (0) | 15 (4) |
5–14 | 11 (7) | 7 (2) | 5 (1) | 2 (0) | 6 (1) | 31 (11) | |
15–30 | 9 (5) | 6 (1) | 7 (2) | 7 (2) | 5 (2) | 34 (12) | |
31–49 | 5(4) | 8 (3) | 4 (0) | 5 (1) | 5 (0) | 27 (8) | |
≥ 50 | 6(5) | 6 (3) | 2 (0) | 3 (0) | 3 (0) | 20 (8) | |
Total | 37 (24) | 30 (10) | 20 (3) | 20 (3) | 20 (3) | 127 (43) | |
Sex | Male | 21 (11) | 13 (7) | 9 (1) | 12 (2) | 11 (2) | 66 (23) |
Female | 16 (13) | 17 (3) | 11 (2) | 8 (1) | 9 (1) | 61 (20) | |
Total | 37 (24) | 30 (10) | 20 (3) | 20 (3) | 20 (3) | 127 (43) |
Antimicrobial Agent | Standard Range | Test Results | ||||
---|---|---|---|---|---|---|
S ≤ (mg/L) | R ≥ (mg/L) | S (%) | R (%) | MIC50 (mg/L) | MIC90 (mg/L) | |
Ciprofloxacin | 0.25 | 0.5 | 72.1 | 27.9 | 0.25 | 1.5 |
Ofloxacin | 0.25 | 0.5 | 44.2 | 55.8 | 0.25 | 0.5 |
Gentamicin | 2 | 4 | 95.3 | 4.7 | 1.5 | 2.0 |
Cefixime | 1 | 2 | 65.1 | 34.9 | 1.0 | 1.5 |
Ceftazidime | 1 | 2 | 53.5 | 46.5 | 1.0 | 1.5 |
Cefuroxime | 8 | 16 | 25.6 | 74.4 | 16 | 16 |
Imipenem | 2 | 8 | 93.0 | 7.0 | 1.0 | 1.5 |
Cotrimozaxole | 2 | 4 | 9.3 | 90.7 | 4.0 | 16 |
Amoxicillin/Clavulanic Acid | 8 | 16 | 100 | 0.0 | 16 | 16 |
Nitrofurantoin | 8 | 16 | 100 | 0.0 | 16 | 16 |
Samples | Samples No. (%) | Positive No. (%) | ESBL+ No. (%) | MDR+ No. (%) | CAB+ No. (%) |
---|---|---|---|---|---|
Urine | 37 (29.2) | 24 (55.8) | 16 (66.7) | 17 (70.8) | 3 (12.5) |
Nasal swab | 30 (23.7) | 10 (23.3) | 7 (70.0) | 4 (40.0) | 0 (0.00) |
Wound swab | 20 (15.7) | 3 (6.98) | 2 (66.7) | 1 (33.3) | 0 (0.00) |
Feces | 20 (15.7) | 3 (6.98) | 2 (66.7) | 2 (66.7) | 0 (0.00) |
Blood | 20 (15.7) | 3 (6.98) | 3 (100) | 3 (100) | 0 (0.00) |
TOTAL | 127 (100) | 43 (34%) | 30 (69.8) | 27 (62.8) | 3 (6.98) |
Sample Types | No. of Isolates | Strains ID | Resistance Pattern |
---|---|---|---|
Urine and Blood | 5 | U12, U36, B37, U38, U42 | CRX-OFL-COT |
Urine | 4 | U10, U23, U30, U43 | CAZ-CRX-OFL-COT |
Feces | 1 | F31 | CXM-OFL-CIP-COT |
Urine | 1 | U7 | CRX-CXM-GEN-OFL-COT |
Urine | 2 | U3, U11 | CAZ-CRX-CXM-OFL-COT |
Urine | 2 | U13, U35 | CAZ-CRX-CXM-IPM-COT |
Blood | 1 | B40 | CRX-CXM-OFL-CIP-COT |
Urine, Wound, and Nasal Swab | 3 | W17, U19, N26 | CAZ-CRX-OFL-CIP-COT-CXM |
Urine | 1 | U18 | CAZ-CRX-OFL-CIP-COT-CXM-IPM |
Urine and Nasal Swab | 2 | U39, N4 | CAZ-OFL-CIP-COT |
Urine, Nasal Swab, Feces, and Blood | 5 | B33, N9, N16, F32, U41 | CAZ-CRX-OFL-CIP-COT |
Total | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinyemi, K.O.; Abegunrin, R.O.; Iwalokun, B.A.; Fakorede, C.O.; Makarewicz, O.; Neubauer, H.; Pletz, M.W.; Wareth, G. The Emergence of Klebsiella pneumoniae with Reduced Susceptibility against Third Generation Cephalosporins and Carbapenems in Lagos Hospitals, Nigeria. Antibiotics 2021, 10, 142. https://doi.org/10.3390/antibiotics10020142
Akinyemi KO, Abegunrin RO, Iwalokun BA, Fakorede CO, Makarewicz O, Neubauer H, Pletz MW, Wareth G. The Emergence of Klebsiella pneumoniae with Reduced Susceptibility against Third Generation Cephalosporins and Carbapenems in Lagos Hospitals, Nigeria. Antibiotics. 2021; 10(2):142. https://doi.org/10.3390/antibiotics10020142
Chicago/Turabian StyleAkinyemi, Kabiru O., Rebecca O. Abegunrin, Bamidele A. Iwalokun, Christopher O. Fakorede, Oliwia Makarewicz, Heinrich Neubauer, Mathias W. Pletz, and Gamal Wareth. 2021. "The Emergence of Klebsiella pneumoniae with Reduced Susceptibility against Third Generation Cephalosporins and Carbapenems in Lagos Hospitals, Nigeria" Antibiotics 10, no. 2: 142. https://doi.org/10.3390/antibiotics10020142
APA StyleAkinyemi, K. O., Abegunrin, R. O., Iwalokun, B. A., Fakorede, C. O., Makarewicz, O., Neubauer, H., Pletz, M. W., & Wareth, G. (2021). The Emergence of Klebsiella pneumoniae with Reduced Susceptibility against Third Generation Cephalosporins and Carbapenems in Lagos Hospitals, Nigeria. Antibiotics, 10(2), 142. https://doi.org/10.3390/antibiotics10020142