In Vitro Efficacy of Flomoxef against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Associated with Urinary Tract Infections in Malaysia
Abstract
:1. Introduction
2. Results
2.1. Patient’s Demographics and Bacterial Strain Antimicrobial Susceptibility
2.2. β-Lactam Resistance in E. coli
2.3. β-Lactam Resistance in K. pneumoniae
2.4. ESBL Genes Detected in E. coli and K. pneumoniae Strains
2.5. Flomoxef Activity in ESBL-Producing E. coli and K. pneumoniae
3. Discussion
4. Materials and Methods
4.1. Study Site and Patient Data Collection
4.2. Bacterial Strains Collection
4.3. Broth Microdilution Assays
4.4. Detection of β-Lactamase-Encoding Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foxman, B. Urinary Tract Infection. In Women and Health, 2nd ed.; Goldman, M.B., Troisi, R., Rexrode, K.M., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 553–564. [Google Scholar]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health (MOH) Malaysia. National Antimicrobial Guideline 2019; Pharmaceutical Services Programme, MOH: Petaling Jaya, Malaysia, 2019.
- Ronald, A. The etiology of urinary tract infection: Traditional and emerging pathogens. Am. J. Med. 2002, 113, 14–19. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.G.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Genet. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- McLellan, L.K.; Hunstad, D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol. Med. 2016, 22, 946–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.M.; Lowder, J.L. Diagnosis and treatment of urinary tract infections across age groups. Am. J. Obstet. Gynecol. 2018, 219, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 24, S44–S51. [Google Scholar] [CrossRef]
- National Surveillance of Antimicrobial Resistance, Malaysia. Institute of Medical Research, Kuala Lumpur. Available online: https://www.imr.gov.my/MyOHAR/index.php/site/archive_rpt (accessed on 22 September 2020).
- Fazlul, M.K.K.; Rashid, S.S.; Nazmul, M.H.M.; Zaidul, I.S.M.; Baharudin, R.; Ramli, A.N.M. A clinical update on antibiotic resistance Gram-negative bacteria in Malaysia–A review. J. Int. Pharm. Res. 2019, 45, 270–283. [Google Scholar]
- Kawamoto, I.; Miyauchi, M. β-Lactams and Other Antimicrobial Agents. In Antibiotics; Kawamoto, I., Ed.; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Sato, H.; Narita, A.; Suzuki, H.; Mastumoto, K.; Nakanishi, Y.; Nakazawa, S.; Niino, K.; Nakada, Y. The study of flomoxef in the pediatric field. Jpn. J. Antibiot. 1987, 40, 1349–1363. [Google Scholar]
- Yokoyama, T.; Kodama, T.; Takesue, Y.; Fujimoto, M.; Hiyama, E.; Ichikawa, T. Studies on antibacterial activity of flomoxef and its distribution to serum and intraperitoneal exudate in surgery. Jpn. J. Antibiot. 1987, 40, 1809–1819. [Google Scholar]
- Kanegae, H.; Yamada, H.; Yamaguchi, T.; Kuroki, S.; Katoh, O. Clinical studies on flomoxef in respiratory tract infections. Jpn. J. Antibiot. 1987, 40, 1803–1808. [Google Scholar]
- Matsumura, Y.; Yamamoto, M.; Nagao, M.; Komori, T.; Fujita, N.; Hayashi, A.; Shimizu, T.; Watanabe, H.; Doi, S.; Tanaka, M.; et al. Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-β-lactamase-producing Escherichia coli bacteremia. Antimicrob. Agents Chemother. 2015, 59, 5107–5113. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, M.; Yamada, Y.; Matsuo, K.; Komiya, Y.; Uchiyama, M.; Nagata, N.; Takata, T.; Jimi, S.; Imakyure, O. Change in the antimicrobial resistance profile of extended-spectrum β-lactamase-producing Escherichia coli. J. Clin. Med. Res. 2019, 11, 635–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takesue, Y.; Kusachi, S.; Mikamo, H.; Sato, J.; Watanabe, A.; Kiyota, H.; Iwata, S.; Kaku, M.; Hanaki, H.; Sumiyama, S.; et al. Antimicrobial susceptibility of common pathogens isolated from postoperative intra-abdominal infections in Japan. J. Infect. Chemother. 2018, 24, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Lee, S.S.; Song, W.; Kim, H.-S.; Uh, Y. In vitro activity of flomoxef against extended-spectrum β-lactamase–producing Escherichia coli and Klebsiella pneumoniae in Korea. Diagn. Microbiol. Infect. Dis. 2019, 94, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Su, L.-H.; Tang, Y.-F.; Liu, J.-W. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: A retrospective study and laboratory analysis of the isolates. J. Antimicrob. Chemother. 2006, 58, 1074–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Zhang, H.; Cheng, J.; Xu, Z.; Xu, Y.-C.; Cao, B.; Kong, H.; Ni, Y.; Yu, Y.; Sun, Z.; et al. In vitro activity of flomoxef and comparators against Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis producing extended-spectrum β-lactamases in China. Int. J. Antimicrob. Agents 2015, 45, 485–490. [Google Scholar] [CrossRef]
- Horie, A.; Nariai, A.; Katou, F.; Abe, Y.; Saito, Y.; Koike, D.; Hirade, T.; Ito, T.; Wakuri, M.; Fukuma, A. Increased community-acquired upper urinary tract infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in children and the efficacy of flomoxef and cefmetazole. Clin. Exp. Nephrol. 2019, 23, 1306–1314. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; Inan-Erdogan, I.; Fukuchi, K.; Wakabayashi, H.; Ogawa, Y.; Hibino, S.; Sakurai, S.; Matsuhashi, K.; Watanabe, Y.; Hashimoto, K.; et al. Efficacy of non-carbapenem antibiotics for pediatric patients with first febrile urinary tract infection due to extended-spectrum beta-lactamase-producing Escherichia coli. J. Infect. Chemother. 2017, 23, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.L.; Tong, S.-F.; Khoo, E.; Lee, V.; Zailinawati, A.H.; Mimi, O.; Chen, W.S.; Nordin, S. Antibiotics for URTI and UTI–prescribing in Malaysian primary care settings. Aust. Fam. Physician 2011, 40, 325–329. [Google Scholar] [PubMed]
- Ab Rahman, N.; Teng, C.L.; Sivasampu, S. Antibiotic prescribing in public and private practice: A cross-sectional study in primary care clinics in Malaysia. BMC Infect. Dis. 2016, 16, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaiskos, I.; Giamarellou, H. Carbapenem-sparing strategies for ESBL producers: When and how. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Su, L.H.; Chen, F.J.; Tang, Y.F.; Li, C.C.; Chien, C.C.; Liu, J.W. Comparative effectiveness of flomoxef versus car-bapenems in the treatment of bacteraemia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae with emphasis on minimum inhibitory concentration of flomoxef: A retrospective study. Int. J. Antimicrob. Agents 2015, 46, 610–615. [Google Scholar]
- Yang, C.C.; Li, S.H.; Chuang, F.R.; Chen, C.H.; Lee, C.H.; Chen, J.B.; Wu, C.H.; Lee, C.T. Discrepancy between effects of carbapenems and flomoxef in treating nosocomial hemodialysis access-related bacteremia secondary to extended spectrum beta-lactamase producing Klebsiella pneumoniae in patients on maintenance hemodialysis. BMC Infect. Dis. 2012, 12, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsen, S.M.Y.; Hamzah, H.A.; Al-Deen, M.M.I.; Baharudin, R. Antimicrobial susceptibility of Klebsiella pneumoniae and Escherichia coli with extended-spectrum β-lactamase associated genes in Hospital Tengku Ampuan Afzan, Kuantan, Pahang. Malays. J. Med Sci. 2016, 23, 14–20. [Google Scholar]
- Ho, W.S.; Balan, G.; Puthucheary, S.; Kong, B.H.; Lim, K.T.; Tan, L.K.; Koh, X.P.; Yeo, C.C.; Thong, K.L. Prevalence and characterization of multi-drug-resistant and extended-spectrum beta-lactamase-producing Escherichia coli from pediatric wards of a Malaysian hospital. Microb. Drug Resist. 2012, 18, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Mobasseri, G.; Thong, K.L.; Rajasekaram, G.; Teh, C.S.J. Molecular characterization of extended-spectrum β-lactamase-producing Klebsiella pneumoniae from a Malaysian hospital. Braz. J. Microbiol. 2019, 51, 189–195. [Google Scholar] [CrossRef]
- Mobasseri, G.; Teh, C.S.J.; Toung, O.P.; Thong, K.L. The emergence of colistin-resistant Klebsiella pneumoniae strains from swine in Malaysia. J. Glob. Antimicrob. Resist. 2019, 17, 227–232. [Google Scholar] [CrossRef]
- Jacoby, G.A.; Medeiros, A.A. More extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 1991, 35, 1697–1704. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 2015, 22, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Cag, Y.; Caskurlu, H.; Fan, Y.; Cao, B.; Vahaboglu, H. Resistance mechanisms. Ann. Transl. Med. 2016, 4, 326. [Google Scholar] [CrossRef] [Green Version]
- Munier, G.K.; Johnson, C.L.; Snyder, J.W.; Moland, E.S.; Hanson, N.D.; Thomson, K.S. Positive extended-spectrum-β-lactamase (ESBL) screening results may be due to ampC β-lactamases more often than to ESBLs. J. Clin. Microbiol. 2010, 48, 673–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robberts, F.J.L.; Kohner, P.C.; Patel, R. Unreliable extended-spectrum β-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates. J. Clin. Microbiol. 2009, 47, 358–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.D.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, R.Y.C.; So, C.L.; Law, W.F.; Wu, R.S.S. A sensitive and versatile multiplex PCR system for the rapid detection of enter-otoxigenic (ETEC), enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) strains of Escherichia coli. Mar. Pollut. Bull. 1999, 38, 1207–1215. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Suppl. M100; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2020. [Google Scholar]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Eckert, C.; Gautier, V.; Saladin-Allard, M.; Hidri, N.; Verdet, C.; Ouldhocine, Z.; Barnaud, G.; Delisle, F.; Rossier, A.; Lambert, T.; et al. Dissemination of CTX-M-Type β-Lactamases among clinical isolates of Enterobacteriaceae in Paris, France. Antimicrob. Agents Chemother. 2004, 48, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
Antibiotic | E. coli (n) (%) | K. pneumoniae * (n) (%) |
---|---|---|
Cefuroxime | 50 (100) | 49 (98) |
Ciprofloxacin | 35 (70) | 20 (40) |
Nitrofurantoin | 1 (2) | 20 (40) |
Trimethoprim-sulfamethoxazole | 38 (76) | 20 (45) |
Antimicrobial Agent | MIC Range (µg/mL) | MIC50 (µg/mL) | MIC90 (µg/mL) | Susceptibility Phenotype a (n) (%) | ||
---|---|---|---|---|---|---|
S | I | R | ||||
Ampicillin | 128–> 256 | >256 | >256 | 0 (0) | 0 (0) | 50 (100) |
Penicillin-G | >64 | >64 | >64 | 0 (0) | 0 (0) | 50 (100) |
Piperacillin | ≥128 | >128 | >128 | 0 (0) | 0 (0) | 50 (100) |
Ticarcillin | >128 | >128 | >128 | 0 (0) | 0 (0) | 50 (100) |
Amoxicillin-clavulanate | 8–> 64 | 32 | >64 | 6 (12) | 6 (12) | 38 (76) |
Ceftazidime-clavulanate | 1–128 | 8 | 32 | NA | NA | NA |
Cefotaxime-clavulanate | ≤0.125–64 | 8 | 32 | NA | NA | NA |
Ticarcillin-clavulanate | 8–> 128 | 128 | >128 | 2 (4) | 19 (38) | 29 (58) |
Piperacillin-tazobactam | 4–> 128 | 64 | >128 | 4 (8) | 22 (44) | 24 (48) |
Cefmetazole | 1–> 64 | 4 | 64 | 43 (86) | 1 (2) | 6 (12) |
Cefoxitin | 2–> 64 | 8 | >64 | 29 (58) | 10 (20) | 11 (12) |
Ceftazidime | 8–> 256 | 64 | 256 | 0 (0) | 1 (2) | 49 (98) |
Cefoperazone | ≥64 | >64 | >64 | 0 (0) | 0 (0) | 50 (100) |
Ceftriaxone | 32–> 64 | >64 | >64 | 0 (0) | 0 (0) | 50 (100) |
Cefotaxime | 4–> 256 | 256 | >256 | 0 (0) | 0 (0) | 50 (100) |
Cefepime | ≤0.125–> 256 | >256 | >256 | 4 (8) | 2 (4) | 44 (88) |
Imipenem | ≤0.03–0.25 | ≤0.03 | 0.06 | 50 (100) | 0 (0) | 0 (0) |
Meropenem | ≤0.03–0.125 | 0.06 | 0.125 | 50 (100) | 0 (0) | 0 (0) |
Flomoxef b | ≤0.125–> 64 | 0.5 | 32 | 44 (88) | 5 (10) | 1 (2) |
AMR Profiles * | No. (%) of Strains |
---|---|
AMP, PCG, PIP, TIC, AMC, TIM, TZP, CMZ, FOX, CAZ, CFP, CRO, CTX, FEP | 3 (6) |
AMP, PCG, PIP, TIC, AMC, TIM, TZP, FOX, CAZ, CFP, CRO, CTX, FEP | 2 (4) |
AMP, PCG, PIP, TIC, AMC, TZP, CMZ, FOX, CAZ, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, AMC, TIM, CMZ, FOX, CAZ, CFP, CRO, CTX | 1 (2) |
AMP, PCG, PIP, TIC, AMC, TIM, FOX, CAZ, CFP, CRO, CTX, FEP | 2 (4) |
AMP, PCG, PIP, TIC, AMC, TIM, TZP, CAZ, CFP, CRO, CTX, FEP | 13 (26) |
AMP, PCG, PIP, TIC, AMC, TIM, TZP, FOX, CAZ, CFP, CRO, CTX | 1 (2) |
AMP, PCG, PIP, TIC, AMC, CMZ, FOX, CAZ, CFP, CRO, CTX | 1 (2) |
AMP, PCG, PIP, TIC, AMC, TIM, CAZ, CFP, CRO, CTX, FEP | 5 (10) |
AMP, PCG, PIP, TIC, AMC, TZP, CAZ, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, AMC, CAZ, CFP, CRO, CTX, FEP | 6 (12) |
AMP, PCG, PIP, TIC, AMC, TIM, CAZ, CFP, CRO, CTX | 1 (2) |
AMP, PCG, PIP, TIC, TIM, CAZ, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, TZP, CAZ, CFP, CRO, CTX, FEP | 3 (6) |
AMP, PCG, PIP, TIC, AMC, CAZ, CFP, CRO, CTX | 1 (2) |
AMP, PCG, PIP, TIC, CAZ, CFP, CRO, CTX, FEP | 7 (14) |
AMP, PCG, PIP, TIC, CFP, CRO, CTX | 1 (2) |
Antimicrobial Agent | MIC Range (µg/mL) | MIC50 (µg/mL) | MIC90 (µg/mL) | Susceptibility Phenotype a (n) (%) | ||
---|---|---|---|---|---|---|
S | I | R | ||||
Ampicillin | >256 | >256 | >256 | 0 (0) | 0 (0) | 50 (100) |
Penicillin-G | >64 | >64 | >64 | 0 (0) | 0 (0) | 50 (100) |
Piperacillin | >128 | >128 | >128 | 0 (0) | 0 (0) | 50 (100) |
Ticarcillin | >128 | >128 | >128 | 0 (0) | 0 (0) | 50 (100) |
Amoxicillin-clavulanate | 4–> 64 | 64 | >64 | 7 (14) | 3 (6) | 40 (80) |
Ceftazidime-clavulanate | 2–256 | 16 | 64 | NA | NA | NA |
Cefotaxime-clavulanate | 0.25–256 | 16 | 64 | NA | NA | NA |
Ticarcillin-clavulanate | 32–> 128 | 128 | >128 | 0 (0) | 12 (24) | 38 (76) |
Piperacillin-tazobactam | 4–> 128 | 64 | >128 | 8 (16) | 17 (34) | 25 (50) |
Cefmetazole | 0.25–> 64 | 2 | 16 | 45 (90) | 2 (4) | 3 (6) |
Cefoxitin | 2–> 64 | 8 | 32 | 31 (62) | 9 (18) | 10 (20) |
Ceftazidime | 8–> 256 | 64 | 256 | 0 (0) | 4 (8) | 46 (92) |
Cefoperazone | ≥ 64 | >64 | >64 | 0 (0) | 0 (0) | 50 (100) |
Ceftriaxone | > 64 | >64 | >64 | 0 (0) | 0 (0) | 50 (100) |
Cefotaxime | 32–> 256 | >256 | >256 | 0 (0) | 0 (0) | 50 (100) |
Cefepime | 64–> 256 | >256 | >256 | 0 (0) | 0 (0) | 50 (100) |
Imipenem | 0.25–1 | 1 | 1 | 50 (100) | 0 (0) | 0 (0) |
Meropenem | <0.03–0.5 | 0.06 | 0.125 | 50 (100) | 0 (0) | 0 (0) |
Flomoxef b | 0.06–> 64 | 1 | 8 | 45 (90) | 3 (6) | 2 (4) |
AMR Profile * | No. (%) of Strains |
---|---|
AMP, PCG, PIP, TIC, AMC, TIM, CMZ, FOX, CAZ, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, AMC, TIM, TZP, FOX, CAZ, CFP, CRO, CTX, FEP | 4 (8) |
AMP, PCG, PIP, TIC, AMC, TIM, FOX, CAZ, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, AMC, TIM, TZP, CAZ, CFP, CRO, CTX, FEP | 16 (32) |
AMP, PCG, PIP, TIC, AMC, TZP, FOX, CAZ, CFP, CRO, CTX, FEP | 2 (4) |
AMP, PCG, PIP, TIC, TIM, CMZ, FOX, CAZ, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, TIM, TZP, CMZ, FOX, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, AMC, TIM, CAZ, CFP, CRO, CTX, FEP | 8 (16) |
AMP, PCG, PIP, TIC, AMC, TIM, TZP, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, TIM, TZP, CAZ, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, AMC, CAZ, CFP, CRO, CTX, FEP | 5 (10) |
AMP, PCG, PIP, TIC, AMC, TIM, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, TIM, CAZ, CFP, CRO, CTX, FEP | 3 (6) |
AMP, PCG, PIP, TIC, AMC, CFP, CRO, CTX, FEP | 1 (2) |
AMP, PCG, PIP, TIC, CAZ, CFP, CRO, CTX, FEP | 4 (8) |
ESBL Gene Profiles | K. pneumoniae(n) (%) | E. coli(n) (%) |
---|---|---|
blaCTX-M, blaTEM, blaSHV | 34 (68) | 0 (0) |
blaCTX-M, blaSHV | 6 (12) | 0 (0) |
blaCTX-M, blaTEM | 3 (6) | 17 (34) |
blaCTX-M | 1 (2) | 12 (24) |
blaSHV | 6 (6) | 0 (0) |
blaTEM | 0 (0) | 10 (20) |
None | 0 (0) | 11 (22) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoi, S.T.; Teh, C.S.J.; Chong, C.W.; Abdul Jabar, K.; Tan, S.C.; Yu, L.H.; Leong, K.C.; Tee, L.H.; AbuBakar, S. In Vitro Efficacy of Flomoxef against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Associated with Urinary Tract Infections in Malaysia. Antibiotics 2021, 10, 181. https://doi.org/10.3390/antibiotics10020181
Ngoi ST, Teh CSJ, Chong CW, Abdul Jabar K, Tan SC, Yu LH, Leong KC, Tee LH, AbuBakar S. In Vitro Efficacy of Flomoxef against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Associated with Urinary Tract Infections in Malaysia. Antibiotics. 2021; 10(2):181. https://doi.org/10.3390/antibiotics10020181
Chicago/Turabian StyleNgoi, Soo Tein, Cindy Shuan Ju Teh, Chun Wie Chong, Kartini Abdul Jabar, Shiang Chiet Tan, Lean Huat Yu, Kin Chong Leong, Loong Hua Tee, and Sazaly AbuBakar. 2021. "In Vitro Efficacy of Flomoxef against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Associated with Urinary Tract Infections in Malaysia" Antibiotics 10, no. 2: 181. https://doi.org/10.3390/antibiotics10020181
APA StyleNgoi, S. T., Teh, C. S. J., Chong, C. W., Abdul Jabar, K., Tan, S. C., Yu, L. H., Leong, K. C., Tee, L. H., & AbuBakar, S. (2021). In Vitro Efficacy of Flomoxef against Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Associated with Urinary Tract Infections in Malaysia. Antibiotics, 10(2), 181. https://doi.org/10.3390/antibiotics10020181