Toward a New Future for Essential Oils
Conflicts of Interest
References
- Napoli, E.M.; Ruberto, G. Sicilian Aromatic Plants: From Traditional Heritage to A New Agro-Industrial Exploitation. In Spices: Types, Uses and Health Benefits; Kralis, J.F., Ed.; Nova Publishers: New York, NY, USA, 2012; pp. 1–56. [Google Scholar]
- European Pharmacopeia, 6th ed.; Supplement 5.8; European Directorate for the Quality of Medicines and Healthcare: Strasbourg, France, 2007.
- Napoli, E.; Ruberto, G.; Siracusa, L. New tricks for old guys: Recent developments in the chemistry, biochemistry, applications and exploitations of selected species from Lamiaceae family. Chem. Biodivers. 2020, 17, e1900677. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Shanoo, S.; Kannan, R.R.R.; Fawzi, M.M. Chemistry, bioactivities, mode of action and industrial application of essential oils. Trend Food Sci. Technol. 2020, 101, 89–105. [Google Scholar]
- Di Vito, M.; Bellardi, M.G.; Colaizzi, P.; Ruggiero, D.; Mazzucca, C.; Micheli, L.; Sotgiu, S.; Iannuccelli, S.; Michelozzi, M.; Mondello, F.; et al. Hydrolates and gellan: An eco-innovative synergy for safe cleaning of paper artworks. Stud. Conserv. 2017, 63, 1–11. [Google Scholar] [CrossRef]
- Stupar, M.; Grbić, M.L.; Džamić, A.; Unković, N.; Ristić, M.; Jelikić, A.; Vukojević, J. Antifungal activity of selected EOs and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. S. Afr. J. Bot. 2014, 93, 118–124. [Google Scholar] [CrossRef]
- Romano, I.; Granata, G.; Poli, A.; Finore, I.; Napoli, E.; Geraci, C. Inhibition of bacterial growth on marble stone of 18th century by treatment of nanoencapsulated essential oils. Int. Biodeterior. Biodegrad. 2020, 148, 104909. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. EOs as natural biocides in conservation of cultural heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnitzler, P. EOs for the treatment of Herpes simplex virus infections. Chemotherapy 2019, 64, 1–7. [Google Scholar] [CrossRef]
- Leigh-de Rapper, S.; van Vuuren, S.F. Odoriferous therapy: A review identifying EOs against pathogens of the respiratory tract. Chem. Biodivers. 2020, 17, e2000062. [Google Scholar]
- Yuan, R.; Zhang, D.; Yang, J.; Wu, Z.; Luo, C.; Han, L.; Yang, F.; Lin, J.; Yang, M. Review of aromatherapy EOs and their mechanism of action against migraines. J. Ethnopharmacol. 2021, 30, 113326. [Google Scholar] [CrossRef] [PubMed]
- Setzer, W.N. EOs and anxiolytic aromatherapy. Nat. Prod. Commun. 2009, 4, 1305–1316. [Google Scholar] [PubMed] [Green Version]
- Zhang, N.; Yao, L. Anxiolytic effect of EOs and their constituents: A review. J. Agric. Food Chem. 2019, 67, 13790–13808. [Google Scholar] [CrossRef] [PubMed]
- Politi, M.; Menghini, L.; Conti, B.; Bedini, S.; Farina, P.; Cioni, P.L.; Braca, A.; Leo, M. Reconsidering Hydrosols as main products of aromatic plants manufactory: The Lavandin (Lavandula intermedia) case study in Tuscany. Molecules 2020, 25, 2225. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, M.; Bellardi, M.G.; Sanguinetti, M.; Mondello, F.; Girolamo, A.; Barbanti, L.; Garzoli, S.; Sabatino, M.; Ragno, R.; Vitali, A.; et al. Potent in vitro activity of Citrus aurantium EO and Vitis vinifera Hydrolate against gut yeast isolates from irritable bowel syndrome patients-The right mix for potential therapeutic use. Nutrients 2020, 12, 1329. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Nostro, A.; Mandras, N.; Roana, J.; Ginestra, G.; Miceli, N.; Taviano, M.F.; Gelmini, F.; Beretta, G.; Tullio, V. Evaluation of antimicrobial activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial agents. BMC Complementary Med. Ther. 2020, 20, 89. [Google Scholar] [CrossRef]
- Ismail, M.M.; Samir, R.; Saber, F.R.; Ahmed, S.R.; Farag, M.A. Pimenta oil as a potential treatment for Acinetobacter baumannii wound infection: In vitro and in vivo bioassays in relation to its chemical composition. Antibiotics 2020, 9, 679. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Štefániková, J.; Žiarovská, J.; Savitskaya, T.; Grinshpan, D.; Kowalczewski, P.L.; Vukovic, N.; Tvrdá, E. Chemical composition and antimicrobial activity of selected essential oils against Staphylococcus spp. isolated from human semen. Antibiotics 2020, 9, 765. [Google Scholar] [CrossRef]
- Di Vito, M.; Cacaci, M.; Barbanti, L.; Martini, C.; Sanguinetti, M.; Benvenuti, S.; Tosi, G.; Fiorentini, L.; Scozzoli, M.; Bugli, F.; et al. Origanum vulgare essential oil vs. a commercial mixture of essential oils: In vitro effectiveness on Salmonella spp. from poultry and swine intensive livestock. Antibiotics 2020, 9, 763. [Google Scholar] [CrossRef]
- Di Stefano, V.; Schillaci, D.; Cusimano, M.G.; Rishan, M.; Rashan, L. In Vitro antimicrobial activity of Frankincense Oils from Boswellia sacra grown in different locations of the Dhofar region (Oman). Antibiotics 2020, 9, 195. [Google Scholar] [CrossRef] [Green Version]
- Teles, A.M.; Silva-Silva, J.V.; Pereira Fernandes, J.M.; da Silva Calabrese, K.; Abreu-Silva, A.L.; Carvalho Marinho, S.; Nascimento Mouchrek, A.; Mouchrek Filho, V.E.; Almeida-Souza, F. Aniba rosaeodora (Var. amazonica Ducke) essential oil: Chemical composition, antibacterial, antioxidant and antitrypanosomal activity. Antibiotics 2021, 10, 24. [Google Scholar] [CrossRef]
- Ortega-Ramirez, L.A.; Gutiérrez-Pacheco, M.M.; Vargas-Arispuro, I.; González-Aguilar, G.A.; Martínez-Téllez, M.A.; Fernando Ayala-Zavala, J.F. Inhibition of glucosyltransferase activity and glucan production as an antibiofilm mechanism of Lemongrass essential oil against Escherichia coli O157:H7. Antibiotics 2020, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Di Vito, M.; Smolka, A.; Proto, M.R.; Barbanti, L.; Gelmini, F.; Napoli, E.; Bellardi, M.G.; Mattarelli, P.; Beretta, G.; Sanguinetti, M.; et al. Is the antimicrobial activity of hydrolates lower than that ofessential oils? Antibiotics 2021, 10, 88. [Google Scholar] [CrossRef]
- Moumni, M.; Romanazzi, G.; Najar, B.; Pistelli, L.; Ben Amara, H.; Mezriouri, K.; Karous, O.; Chaieb, I.; Allagui, M.B. Antifungal activity and chemical composition of seven essential oils to control the main seedborne fungi of cucurbits. Antibiotics 2021, 10, 104. [Google Scholar] [CrossRef]
- Kisova, Z.; Šoltýsová, A.; Bucková, M.; Beke, G.; Puškárová, A.; Pangallo, D. Studying the gene expression of Penicillium rubens under the effect of eight essential oils. Antibiotics 2020, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Kapustova, M.; Granata, G.; Napoli, E.; Puskarova, A.; Buckova, M.; Pangallo, D.; Geraci, C. Nanoencapsulated essential oils with enhanced antifungal activity for potential application on agri-food, material and environmental fields. Antibiotics 2021, 10, 31. [Google Scholar] [CrossRef]
- Youssef, F.S.; Mamatkhanova, M.A.; Mamadalieva, N.Z.; Zengin, G.; Aripova, S.F.; Alshammari, E.; Ashour, M.L. Chemical profiling and discrimination of essential oils from six Ferula species using GC analyses coupled with chemometrics and evaluation of their antioxidant and enzyme inhibitory potential. Antibiotics 2020, 9, 518. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Moon, J.; Kim, S.; Sowndharajan, K. Morphological, Chemical, and genetic characteristics of Korean native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Antibiotics 2020, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galicia, I.A.; Arras-Acosta, J.A.; Huerta-Jimenez, M.; Renteria-Monterubbio, A.L.; Loya-Olguin, J.L.; Carillo-Lopez, L.M.; Tirado-Gallegos, J.M.; Alarcon-Rojo, A.D. Natural oregano essential oil may replace antibiotics in lamb diets: Effects on meat quality. Antibiotics 2020, 9, 248. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napoli, E.; Di Vito, M. Toward a New Future for Essential Oils. Antibiotics 2021, 10, 207. https://doi.org/10.3390/antibiotics10020207
Napoli E, Di Vito M. Toward a New Future for Essential Oils. Antibiotics. 2021; 10(2):207. https://doi.org/10.3390/antibiotics10020207
Chicago/Turabian StyleNapoli, Edoardo, and Maura Di Vito. 2021. "Toward a New Future for Essential Oils" Antibiotics 10, no. 2: 207. https://doi.org/10.3390/antibiotics10020207
APA StyleNapoli, E., & Di Vito, M. (2021). Toward a New Future for Essential Oils. Antibiotics, 10(2), 207. https://doi.org/10.3390/antibiotics10020207