Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections?
Abstract
:1. Introduction
2. Antimicrobial Mechanism of Action of Copper-Containing Surfaces
2.1. Generation of ROS by Copper Ions through a Fenton-Like Reaction
2.2. Membrane Damages
2.3. Protein Damages
2.4. DNA Damages
3. In Vitro Antibacterial Activity of Copper and Brass Alloys
3.1. Vegetative Forms
Bacterial Species | Copper Alloy (% Cu) | Efficacy a | References | |
---|---|---|---|---|
Exposure Time | ||||
Short (≤1 h) | Long (>1 h) | |||
S. aureus | C26,000 (70) | 98.8–100 | ND–100 | [67,68] |
MRSA | C24,000 (80) C26,000 (70) NP (62–63) | 74–100 6.7–97.3 6.7–99.85 | 84.1–100 ND–100 ND–100 | [54,55,57,58,61,64,66] |
E. faecalis | C26,000 (70) C28,000 (60) | ~20 to 50 ~20 | 100 100 | [28] |
E. faecium | C26,000 (70) C28,000 (60) | ~20 to 84 ~20 | 99.99–100 99.94–99.99 | [28] |
VRE | NP (62.5) | 99.92 | ND | [61] |
C. difficile (vegetative cells and spores) | C26,000 (70) | 36.9 | 68.4 | [63] |
A. baumannii | C26,000 (70) | 0–98.3 | 98.1–100 | [60,68] |
MDR/XDR A. baumannii | C27,400 (63.2) NP (62–63) | 0–99.85 20–99.95 | 0–99.94 ND–100 | [55,57,58,60,61] |
XDR A. lwoffii | C27,400 (63.2) | 91.63 | 58.36 | [60] |
A. pittii | C27,400 (63.2) | 68.89 | 99.79 | [60] |
MDR Enterobacter spp. | NP (62.5–63) | 26–99.34 | ND–100 | [57,58,61] |
E. coli | C21,000 (95) C23,000 (85) C26,000 (70) C28,000 (60) C83,300 (93) C83,600 (85) C85,700 (61) | >90 100 96.3–100 65.5–99.99 33.3–86.7 33.3 33.3 | 100 100 97.2–100 76.5–100 100 99.97–100 99.97–99.99 | [27,52,53,66] |
MDR E. coli | NP (62.5-63) | 0–99.44 | ND–98.4 | [57,58,61] |
K. pneumoniae | C26,000 (70) C28,000 (60) NP (62) | 100 99.86–100 100 | 100 100 100 | [27,55] |
MDR K. pneumoniae | NP (62.5–63) | 39.3–99.77 | ND–73.2 | [57,58,61] |
P. aeruginosa | C26,000 (70) NP (62) | 15.6–77.5 5.4 | 96.9–100 100 | [55] |
MDR P. aeruginosa | NP (62.5–63) | ND-100 | 97.2–100 | [57,58,61] |
3.2. Sporulated Forms
3.3. Factors Influencing the Antibacterial Effectiveness of Copper Alloys
- Surface structure
- Surface oxidization
- Temperature and RH
- Wet or dry inoculum/exposure
- Presence of organic compounds
- International Organization for Standardization (ISO) 22196:2011 [86]
- Environmental Protection Agency (EPA) protocols [90]
- Association Française de NORmalisation (AFNOR) NF S90–700 [91]
4. Field Demonstration of the Antimicrobial Efficacy of Copper and Brass Alloys
4.1. Reduction of the Global Bacterial Bioburden on Hospital Surfaces
4.2. Reduction in Global Bacterial Bioburden on Ancillary Surfaces
4.3. Reduction in Specific Bacterial Groups
4.4. Brass Alloys to Reduce Hospital Acquired Infections?
Setting (Country)/Study Design | Location (Alloy/Cu material vs. Control Material) | Patient Numbers | Study Length | Evaluation Criteria | Main Outcomes | Reference |
---|---|---|---|---|---|---|
Intensive Care Units in 3 hospitals (United States)/ Prospective, intention-to-treat | 4 common (not specified vs. not specified): - Bed rails - Overbed tables - IV poles - Arms of visitor chairs 2 variables (depending on the hospital) | 320 controls vs. 294 tests | July 2010–June 2011 | HAI and/or colonization by MRSA/VRE frequencies | HAIs + MRSA/VRE colonization significantly reduced (p = 0.02) HAIs alone significantly reduced (p = 0.013) | [101] |
1 adult Intensive Care Unit (Chile)/ Prospective | 3 (99% Cu coating vs. not specified): - Bed rails - Overbed tables - IV poles | 217 controls vs. 223 tests | May 2011–May 2012 | HAI frequency | No significant difference | [113] |
2 pediatric intensive care units (Chile)/Prospective, intention-to-treat, non-randomized, controlled | - Bed rails/bed rail levers (62% Cu brass/85% Cu brass vs. polypropylene/not specified) - IV poles (Not specified vs. not specified) - Faucet handles (73% Cu brass vs. stainless steel) - Surface of healthcare workstation (62% Cu brass/85% Cu brass vs. not specified) | 254 controls vs. 261 tests | November 2012–November 2013 | HAI incidence rates | No significant difference | [114] |
1 long-term care facility (France)/Prospective, longitudinal, observational pilot study | Door handles (90% Cu copper alloy vs. polyvinylchloride) Handrails & grab bars (70% Cu copper alloy vs. wood) | 289 controls vs. 267 tests | February 2015–June, 2016 | Relative risk of HAIs during outbreaks | No significant difference | [115] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choucri, J.; Zanotto, F.; Grassi, V.; Balbo, A.; Ebn Touhami, M.; Mansouri, I.; Monticelli, C. Corrosion behavior of different brass alloys for drinking water distribution systems. Metals 2019, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Laws, K.J.; Crosby, C.; Sridhar, A.; Conway, P.; Koloadin, L.S.; Zhao, M.; Aron-Dine, S.; Bassman, L.C. High entropy brasses and bronzes—Microstructure, phase evolution and properties. J. Alloys Compd. 2015, 650, 949–961. [Google Scholar] [CrossRef]
- Red Brass vs. Yellow Brass: What Are the Differences? Available online: https://www.rocheindustry.com/red-brass-vs-yellow-brass (accessed on 8 December 2020).
- Nagase, T.; Shibata, A.; Matsumuro, M.; Takemura, M.; Semboshi, S. Alloy design and fabrication of ingots in Cu-Zn-Mn-Ni-Sn high-entropy and Cu-Zn-Mn-Ni medium-entropy brasses. Mat. Design 2019, 181, 107900. [Google Scholar] [CrossRef]
- Thornton, C.P. Of Brass and Bronze in Prehistoric Southwest Asia. In Metals and Mines: Studies in Archaeometallurgy; La Niece, S., Hook, D., Craddock, P.T., Eds.; Archetype Publications: London, UK, 2007; pp. 123–135. [Google Scholar]
- Craddock, P.T. The composition of the copper alloys used by the Greek, Etruscan and Roman civilizations. J. Archaeol. Sci. 1978, 5, 1–16. [Google Scholar] [CrossRef]
- Dawson, W.R. The Egyptian Medical Papyri. In Diseases in Antiquity; Brothwell, D., Sandison, A.T., Eds.; Thomas, C.C.: Springfield, IL, USA, 1967; pp. 98–114. [Google Scholar]
- Borkow, G.; Gabbay, J. Copper as a biocidal tool. Curr. Med. Chem. 2005, 12, 2163–2175. [Google Scholar] [CrossRef] [Green Version]
- Sudha, V.P.; Ganesan, S.; Pazhani, G.; Ramamurthy, T.; Nair, G.; Venkatasubramanian, P. Storing drinking-water in Copper pots kills contaminating diarrhoeagenic bacteria. J. Health Popul. Nutr. 2012, 30, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.; Chhibber, S.; Reed, R.H. Inactivation of Escherichia coli and coliform bacteria in traditional brass and earthernware water storage vessels. Ant. Van. Leeuwen. 2005, 88, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Andrei, A.; Öztürk, Y.; Khalfaoui-Hassani, B.; Rauch, J.; Marckmann, D.; Trasnea, P.-I.; Daldal, F.; Koch, H.-G. Cu homeostasis in bacteria: The Ins and Outs. Membranes 2020, 10, 242. [Google Scholar] [CrossRef]
- Giachino, A.; Waldron, K.J. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol. Microbiol. 2020, 114, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Mikolay, A.; Huggett, S.; Tikana, L.; Grass, G.; Braun, J.; Nies, D.H. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl. Microbiol. Biotechnol. 2010, 87, 1875–1879. [Google Scholar] [CrossRef]
- Kuhn, P.J. Doorknobs: A source of nosocomial infection? Diagn. Med. 1983, 6, 62–63. [Google Scholar]
- Dick, R.J.; Wray, J.A.; Johnston, H.N. A Literature and Technology Search on the Bacteriostatic and Sanitizing Properties of Copper and Copper Alloy Surfaces; Phase 1 Final Report, INCRA Project No. 212; Battelle Columbus Laboratories: Columbus, OH, USA, 1973. [Google Scholar]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2010, 77, 1541–1547. [Google Scholar] [CrossRef] [Green Version]
- Mathews, S.; Hans, M.; Mücklich, F.; Solioz, M. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl. Environ. Microbiol. 2013, 79, 2605–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Chang, W.; Li, C.; Lou, H. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces. FEMS Yeast Res. 2016, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Solioz, M. Copper Toxicity. In Copper and Bacteria; Solioz, M., Ed.; Springer: Cham, Switzerland, 2018; pp. 11–19. [Google Scholar] [CrossRef]
- Molteni, C.; Abicht, H.K.; Solioz, M. Killing of bacteria by copper surfaces involves dissolved copper. Appl. Environ. Microbiol. 2010, 76, 4099–4101. [Google Scholar] [CrossRef] [Green Version]
- Santo, C.E.; Taudte, N.; Nies, D.H.; Grass, G. Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl. Environ. Microbiol. 2007, 74, 977–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnes, S.L.; Keevil, C.W. Lack of involvement of Fenton chemistry in death of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus and destruction of their genomes on wet or dry copper alloy surfaces. Appl. Environ. Microbiol. 2016, 82, 2132–2136. [Google Scholar] [CrossRef] [Green Version]
- Hong, R.; Kang, T.Y.; Michels, C.A.; Gadura, N. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 1776–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San, K.; Long, J.; Michels, C.A.; Gadura, N. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis. Microbiologyopen 2015, 4, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Santo, C.E.; Lam, E.W.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol. 2010, 77, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Santo, C.E.; Quaranta, D.; Grass, G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 2012, 1, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Warnes, S.L.; Caves, V.; Keevil, C.W. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ. Microbiol. 2011, 14, 1730–1743. [Google Scholar] [CrossRef] [PubMed]
- Warnes, S.L.; Green, S.M.; Michels, H.T.; Keevil, C.W. Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl. Environ. Microbiol. 2010, 76, 5390–5401. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, R.; Santo, C.E.; Madayiputhiya, N.; Grass, G. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. BioMetals 2011, 24, 429–444. [Google Scholar] [CrossRef]
- Macomber, L.; Imlay, J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 8344–8349. [Google Scholar] [CrossRef] [Green Version]
- Quaranta, D.; Krans, T.; Santo, C.E.; Elowsky, C.G.; Domaille, D.W.; Chang, C.J.; Grass, G. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl. Environ. Microbiol. 2010, 77, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Warnes, S.L.; Keevil, C.W. Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl. Environ. Microbiol. 2011, 77, 6049–6059. [Google Scholar] [CrossRef] [Green Version]
- Mathews, S.; Kumar, R.; Solioz, M. Copper reduction and contact killing of bacteria by iron surfaces. Appl. Environ. Microbiol. 2015, 81, 6399–6403. [Google Scholar] [CrossRef] [Green Version]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Hein, C.; Mücklich, F.; Solioz, M. Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters. Biointerphases 2017, 12, 020301. [Google Scholar] [CrossRef] [Green Version]
- Elguindi, J.; Moffitt, S.; Hasman, H.; Andrade, C.; Raghavan, S.; Rensing, C. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria. Appl. Microbiol. Biotechnol. 2010, 89, 1963–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalecki, A.G.; Crawford, C.L.; Wolschendorf, F. Copper and antibiotics: Discovery, modes of action, and opportunities for medicinal applications. Adv. Microb. Physiol. 2017, 70, 193–260. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Genet. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Macomber, L.; Rensing, C.; Imlay, J.A. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J. Bacteriol. 2006, 189, 1616–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleichert, P.; Santo, C.E.; Hanczaruk, M.; Meyer, H.; Grass, G. Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. BioMetals 2014, 27, 1179–1189. [Google Scholar] [CrossRef]
- Cui, Z.; Ibrahim, M.; Yang, C.; Fang, Y.; Annam, H.; Li, B.; Wang, Y.; Xie, G.-L.; Sun, G. Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact. Molecules 2014, 19, 9975–9985. [Google Scholar] [CrossRef] [Green Version]
- Weaver, L.; Noyce, J.; Michels, H.; Keevil, C. Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 2010, 109, 2200–2205. [Google Scholar] [CrossRef]
- Nishibori, A.; Kusaka, J.; Hara, H.; Umeda, M.; Matsumoto, K. Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J. Bacteriol. 2005, 187, 2163–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, D.; Kang, E.-T.; Neoh, K.G. Antimicrobial copper-based materials and coatings: Potential multifaceted biomedical applications. ACS Appl. Mater. Interfaces 2020, 12, 21159–21182. [Google Scholar] [CrossRef]
- Chillappagari, S.; Seubert, A.; Trip, H.; Kuipers, O.P.; Marahiel, M.A.; Miethke, M. Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J. Bacteriol. 2010, 192, 2512–2524. [Google Scholar] [CrossRef] [Green Version]
- Fung, D.K.C.; Lau, W.Y.; Chan, W.T.; Yan, A. Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis. J. Bacteriol. 2013, 195, 4556–4568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkeshelashvili, L.K.; McBride, T.; Spence, K.; A Loeb, L. Mutation spectrum of copper-induced DNA damage. J. Biol. Chem. 1991, 266, 6401–6406. [Google Scholar] [CrossRef]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [Green Version]
- Sjollema, J.; Zaat, S.A.; Fontaine, V.; Ramstedt, M.; Luginbuehl, R.; Thevissen, K.; Li, J.; Van Der Mei, H.C.; Busscher, H.J. In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomater. 2018, 70, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Faúndez, G.; Troncoso, M.; Navarrete, P.; Figueroa, G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilks, S.; Michels, H.; Keevil, C. The survival of Escherichia coli O157 on a range of metal surfaces. Int. J. Food Microbiol. 2005, 105, 445–454. [Google Scholar] [CrossRef]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl. Environ. Microbiol. 2006, 72, 4239–4244. [Google Scholar] [CrossRef] [Green Version]
- Noyce, J.; Michels, H.; Keevil, C. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J. Hosp. Infect. 2006, 63, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Mehtar, S.; Wiid, I.; Todorov, S. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study. J. Hosp. Infect. 2008, 68, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.W.J.; Fielder, M.D.; Kelly, A.F.; Morgan, M.; Kenny, J.; Naughton, D.P. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann. Microbiol. 2009, 59, 151–156. [Google Scholar] [CrossRef]
- Souli, M.; Galani, I.; Plachouras, D.; Panagea, T.; Armaganidis, A.; Petrikkos, G.; Giamarellou, H. Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J. Antimicrob. Chemother. 2012, 68, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Eser, O.K.; Ergin, A.; Hasçelik, G. Antimicrobial activity of copper alloys against invasive multidrug-resistant nosocomial pathogens. Curr. Microbiol. 2015, 71, 291–295. [Google Scholar] [CrossRef]
- Różańska, A.; Chmielarczyk, A.; Romaniszyn, D.; Bulanda, M.; Walkowicz, M.; Osuch, P.; Knych, T. Antibiotic resistance, ability to form biofilm and susceptibility to copper alloys of selected staphylococcal strains isolated from touch surfaces in Polish hospital wards. Antimicrob. Resist. Infect. Control. 2017, 6, 1–12. [Google Scholar] [CrossRef]
- Różańska, A.; Chmielarczyk, A.; Romaniszyn, D.; Majka, G.; Bulanda, M. Antimicrobial effect of copper alloys on Acinetobacter species isolated from infections and hospital environment. Antimicrob. Resist. Infect. Control. 2018, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Dauvergne, E.; Lacquemant, C.; Adjidé, C.; Mullié, C. Validation of a worst-case scenario method adapted to the healthcare environment for testing the antibacterial effect of brass surfaces and implementation on hospital antibiotic-resistant strains. Antibiotics. 2020, 9, 245. [Google Scholar] [CrossRef]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.G.J.; Hobman, J.L. Metal resistance and its association with antibiotic resistance. Adv. Microb. Physiol. 2017, 70, 261–313. [Google Scholar] [CrossRef]
- Weaver, L.; Michels, H.T.; Keevil, C.W. Survival of Clostridium difficile on copper and steel: Futuristic options for hospital hygiene. J. Hosp. Infect. 2008, 68, 145–151. [Google Scholar] [CrossRef]
- Michels, H.T.; Noyce, J.O.; Keevil, C.W. Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett. Appl. Microbiol. 2009, 49, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Elguindi, J.; Wagner, J.; Rensing, C. Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J. Appl. Microbiol. 2009, 106, 1448–1455. [Google Scholar] [CrossRef] [Green Version]
- Michels, H.T.; Anderson, D.G. Antimicrobial Regulatory Efficacy Testing of Solid Copper Alloy Surfaces in the USA. In Metal Ions in Biology and Medicine; Collery, P., Maymard, I., Theophanides, T., Khassanova, L., Collery, T., Eds.; John Libbey Eurotext: Paris, France, 2008; Volume 10, pp. 185–190. [Google Scholar]
- Ojeil, M.; Jermann, C.; Holah, J.; Denyer, S.; Maillard, J.-Y. Evaluation of new in vitro efficacy test for antimicrobial surface activity reflecting UK hospital conditions. J. Hosp. Infect. 2013, 85, 274–281. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.; Wesgate, R.; Rubiano, M.; Holah, J.; Denyer, S.; Jermann, C.; Maillard, J.-Y. Impact of a dry inoculum deposition on the efficacy of copper-based antimicrobial surfaces. J. Hosp. Infect. 2020, 106, 465–472. [Google Scholar] [CrossRef]
- Wheeldon, L.J.; Worthington, T.; Lambert, P.A.; Hilton, A.C.; Lowden, C.J.; Elliott, T.S.J. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: The germination theory. J. Antimicrob. Chemother. 2008, 62, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Bleichert, P.; Bütof, L.; Rückert, C.; Herzberg, M.; Francisco, R.; Morais, P.V.; Grass, G.; Kalinowski, J.; Nies, D.H. Mutant strains of Escherichia coli and Methicillin-resistant Staphylococcus aureus obtained by laboratory selection to survive on metallic copper surfaces. Appl. Environ. Microbiol. 2020, 87, 1788–1820. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, F.; O’Neill, A.; Ivask, A.; Jenssen, H.; Inkinen, J.; Kahru, A.; Ahonen, M.; Schreiber, F. Selection of resistance by antimicrobial coatings in the healthcare setting. J. Hosp. Infect. 2020, 106, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Thummeepak, R.; Pooalai, R.; Harrison, C.; Gannon, L.; Thanwisai, A.; Chantratita, N.; Millard, A.D.; Sitthisak, S. Essential gene clusters involved in copper tolerance identified in Acinetobacter baumannii clinical and environmental isolates. Pathogens 2020, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Andrade, L.N.; Siqueira, T.E.S.; Martinez, R.; Darini, A.L.C. Multidrug-resistant CTX-M-(15, 9, 2)- and KPC-2-producing Enterobacter hormaechei and Enterobacter asburiae isolates possessed a set of acquired heavy metal tolerance genes including a chromosomal sil operon (for acquired silver resistance). Front. Microbiol. 2018, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Arredondo-Alonso, S.; Top, J.; McNally, A.; Puranen, S.; Pesonen, M.; Pensar, J.; Marttinen, P.; Braat, J.C.; Rogers, M.R.C.; Van Schaik, W.; et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 2020, 11, 03284–03319. [Google Scholar] [CrossRef] [Green Version]
- Bryce, E.A.; Velapatino, B.; Khorami, H.A.; Donnelly-Pierce, T.; Wong, T.; Dixon, R.; Asselin, E. In vitro evaluation of antimicrobial efficacy and durability of three copper surfaces used in healthcare. Biointerphases 2020, 15, 011005. [Google Scholar] [CrossRef] [PubMed]
- Horn, H.; Niemeyer, B. Aerosol disinfection of bacterial spores by peracetic acid on antibacterial surfaces and other technical materials. Am. J. Infect. Control. 2020, 48, 1200–1203. [Google Scholar] [CrossRef]
- Shafaghi, R.; Mostaghimi, J.; Pershin, V.; Ringuette, M. Sporicidal efficacy of thermal-sprayed copper alloy coating. Can. J. Microbiol. 2017, 63, 384–391. [Google Scholar] [CrossRef]
- Zhu, L.; Elguindi, J.; Rensing, C.; Ravishankar, S. Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol. 2012, 30, 303–310. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.; Liu, C.; Wang, H.; Ren, B.; Yang, K.; Zhang, E. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater. Sci. Eng. C 2014, 35, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Elguindi, J.; Alwathnani, H.A.; Rensing, C. Rapid inactivation of Cronobacter sakazakii on copper alloys following periods of desiccation stress. World J. Microbiol. Biotechnol. 2012, 28, 1837–1841. [Google Scholar] [CrossRef]
- Champagne, V.K.; Helfritch, D.J. A demonstration of the antimicrobial effectiveness of various copper surfaces. J. Biol. Eng. 2013, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiger, M.; Solioz, M.; Edongué, H.; Arzt, E.; Schneider, A.S. Surface structure influences contact killing of bacteria by copper. Microbiologyopen 2014, 3, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.; Mathews, S.; Mücklich, F.; Solioz, M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 2016, 11, 018902. [Google Scholar] [CrossRef]
- Hans, M.; Erbe, A.; Mathews, S.; Chen, Y.; Solioz, M.; Mücklich, F. Role of copper oxides in contact killing of bacteria. Langmuir 2013, 29, 16160–16166. [Google Scholar] [CrossRef] [PubMed]
- International Standard Organization. ISO 22196:2011 Measurement of Antibacterial Activity on Plastics and other Non-Porous Surfaces. 2016. Available online: http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/44/54431.html (accessed on 4 October 2018).
- Kotay, S.M.; Donlan, R.M.; Ganim, C.; Barry, K.; Christensen, B.E.; Mathers, A.J. Droplet rather than aerosol-mediated dispersion is the primary mechanism of bacterial transmission from contaminated hand-washing sink traps. Appl. Environ. Microbiol. 2019, 18, 1049–1056. [Google Scholar] [CrossRef] [Green Version]
- Santo, C.E.; Morais, P.V.; Grass, G. Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl. Environ. Microbiol. 2010, 76, 1341–1348. [Google Scholar] [CrossRef] [Green Version]
- Airey, P.; Verran, J. Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J. Hosp. Infect. 2007, 67, 271–277. [Google Scholar] [CrossRef]
- Różańska, A.; Chmielarczyk, A.; Romaniszyn, D.; Sroka-Oleksiak, A.; Bulanda, M.; Walkowicz, M.; Osuch, P.; Knych, T. Antimicrobial properties of selected copper alloys on Staphylococcus aureus and Escherichia coli in different simulations of environmental conditions: With vs. without organic contamination. Int. J. Environ. Res. Public Health 2017, 14, 813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency. Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer. 2008. Available online: https://www.copperalloystewardship.com/sites/default/files/upload/medialibrary/files/pdfs/us/epa_sanitizer_test_method_copper_alloy_surfaces.pdf (accessed on 4 October 2018).
- Association Française de Normalisation. Surfaces à Propriétés Biocides—Méthode d’évaluation de l’activité Bactéricide de Base d’une Surface Non Poreuse NF S90–700. 2019. Available online: https://norminfo.afnor.org/norme/NF%20S90-700/surfaces-a-proprietes-biocides-methode-devaluationde-lactivite-bactericide-de-base-dune-surface-non-poreuse/126063 (accessed on 20 May 2019).
- Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancer, S.J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 2009, 73, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, P.A.; Schmidt, M.G. Control and mitigation of healthcare-acquired infections: Designing clinical trials to evaluate new materials and technologies. HERD Health Environ. Res. Des. J. 2011, 5, 94–115. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.; Adams, D.; Karpanen, T.; Lambert, P.; Cookson, B.; Nightingale, P.; Miruszenko, L.; Shillam, R.; Christian, P.; Elliott, T. Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 2010, 74, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Marais, F.; Mehtar, S.; Chalkley, L. Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J. Hosp. Infect. 2010, 74, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Prado, V.; Duran, C.; Crestto, M.; Gutierrez, A.; Sapiain, P.; Flores, G.; Fabres, H.; Schmidt, M. Effectiveness of copper contact surfaces in reducing the microbial burden (MB) in the intensive care unit (ICU) of hospital del Cobre, Calama, Chile. Int. J. Infect. Dis. 2010, 14, e268. [Google Scholar] [CrossRef] [Green Version]
- Dancer, S.J.; White, L.F.; Lamb, J.; Girvan, E.K.; Robertson, C. Measuring the effect of enhanced cleaning in a UK hospital: A prospective cross-over study. BMC Med. 2009, 7, 28-12. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.; Hirsch, B.E.; Attaway, H.H.; Nadan, R.; Fairey, S.; Hardy, J.; Miller, G.; Armellino, D.; Moran, W.R.; Sharpe, P.; et al. Evaluation of the Antimicrobial properties of copper surfaces in an outpatient infectious disease practice. Infect. Control. Hosp. Epidemiol. 2012, 33, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.G.; Attaway, H.H.; Sharpe, P.A.; John, J.; Sepkowitz, K.A.; Morgan, A.; Fairey, S.E.; Singh, S.; Steed, L.L.; Cantey, J.R.; et al. Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J. Clin. Microbiol. 2012, 50, 2217–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, C.D.; Sepkowitz, K.A.; John, J.F.; Cantey, J.R.; Attaway, H.H.; Freeman, K.D.; Sharpe, P.A.; Michels, H.T.; Schmidt, M.G. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect. Control. Hosp. Epidemiol. 2013, 34, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpanen, T.J.; Casey, A.L.; Lambert, P.A.; Cookson, B.D.; Nightingale, P.; Miruszenko, L.; Elliott, T.S.J. The Antimicrobial efficacy of copper alloy furnishing in the clinical environment: A crossover study. Infect. Control. Hosp. Epidemiol. 2012, 33, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.G.; Attaway, H.H.; Fairey, S.E.; Steed, L.L.; Michels, H.T.; Salgado, C.D. Copper continuously limits the concentration of bacteria resident on bed rails within the intensive care unit. Infect. Control. Hosp. Epidemiol. 2013, 34, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.G.; Attaway, H.H.; Fairey, S.E.; Howard, J.; Mohr, D.; Craig, S. Self-disinfecting copper beds sustain terminal cleaning and disinfection effects throughout patient care. Appl. Environ. Microbiol. 2019, 86, 01886–01919. [Google Scholar] [CrossRef]
- Ruelle, A.; Sion, M.; Damiani, C.; Totet, A.; Segard, C.; Leke, A.; Adjidé, C.; Biendo, M.; Telliez, F.; Bach, V.; et al. Étude de l’effet antimicrobien du laiton AB+: Pour une maîtrise des biocontaminations des équipements hospitaliers. Hygiènes 2014, XII, 117–122. [Google Scholar]
- Schmidt, M.G.; von Dessauer, B.; Benavente, C.; Benadof, D.; Cifuentes, P.; Elgueta, A.; Duran, C.; Navarrete, M.S. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Am. J. Infect. Control. 2016, 44, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Inkinen, J.; Mäkinen, R.; Keinänen-Toivola, M.M.; Nordström, K.; Ahonen, M. Copper as an antibacterial material in different facilities. Lett. Appl. Microbiol. 2016, 64, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colin, M.; Klingelschmitt, F.; Charpentier, E.; Josse, J.; Kanagaratnam, L.; De Champs, C.; Gangloff, S.C. Copper alloy touch surfaces in healthcare facilities: An effective solution to prevent bacterial spreading. Materials 2018, 11, 2479. [Google Scholar] [CrossRef] [Green Version]
- Colin, M.; Charpentier, E.; Klingelschmitt, F.; Bontemps, C.; De Champs, C.; Reffuveille, F.; Gangloff, S.C. Specific antibacterial activity of copper alloy touch surfaces in five long-term care facilities for older adults. J. Hosp. Infect. 2020, 104, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.L.; Karpanen, T.J.; Adams, D.; Lambert, P.A.; Nightingale, P.; Miruszenko, L.; Elliott, T.S. A comparative study to evaluate surface microbial contamination associated with copper-containing and stainless steel pens used by nurses in the critical care unit. Am. J. Infect. Control. 2011, 39, e52–e54. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.G.; Tuuri, R.E.; Dharsee, A.; Attaway, H.H.; Fairey, S.E.; Borg, K.T.; Salgado, C.D.; Hirsch, B.E. Antimicrobial copper alloys decreased bacteria on stethoscope surfaces. Am. J. Infect. Control. 2017, 45, 642–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbarth, S.J.; Maiwald, M.; Dancer, S.J. The environment and healthcare-acquired infections: Why accurate reporting and evaluation of biological plausibility are important. Infect. Control. Hosp. Epidemiol. 2013, 34, 996–997. [Google Scholar] [CrossRef]
- Rivero, P.; Brenner, P.; Nercelles, P. Impacto del cobre en la reducción de infecciones intrahospitalarias, mortalidad y gasto en antimicrobianos en una Unidad de Cuidados Intensivo de adultos. Rev. Chil. Infectol. 2014, 31, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Von Dessauer, B.; Navarrete, M.S.; Benadof, D.; Benavente, C.; Schmidt, M.G. Potential effectiveness of copper surfaces in reducing health care—Associated infection rates in a pediatric intensive and intermediate care unit: A nonrandomized controlled trial. Am. J. Infect. Control. 2016, 44, e133–e139. [Google Scholar] [CrossRef] [Green Version]
- Zerbib, S.; Vallet, L.; Muggeo, A.; De Champs, C.; Lefebvre, A.; Jolly, D.; Kanagaratnam, L. Copper for the prevention of outbreaks of health care–Associated infections in a long-term care facility for older adults. J. Am. Med. Dir. Assoc. 2020, 21, 68–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, S.P.; Cooper, B.S.; Kibbler, C.C.; Cookson, B.D.; Roberts, J.A.; Medley, G.F.; Duckworth, G.; Lai, R.; Ebrahim, S.; Brown, E.M.; et al. The ORION statement: Guidelines for transparent reporting of outbreak reports and intervention studies of nosocomial infection. Lancet Infect. Dis. 2007, 7, 282–288. [Google Scholar] [CrossRef]
- Hinsa-Leasure, S.M.; Nartey, Q.; Vaverka, J.; Schmidt, M.G. Copper alloy surfaces sustain terminal cleaning levels in a rural hospital. Am. J. Infect. Control. 2016, 44, e195–e203. [Google Scholar] [CrossRef] [Green Version]
- Coppin, J.D.; Villamaria, F.C.; Williams, M.D.; Copeland, L.A.; Zeber, J.E.; Jinadatha, C. Self-sanitizing copper-impregnated surfaces for bioburden reduction in patient rooms. Am. J. Infect. Control. 2017, 45, 692–694. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dauvergne, E.; Mullié, C. Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections? Antibiotics 2021, 10, 286. https://doi.org/10.3390/antibiotics10030286
Dauvergne E, Mullié C. Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections? Antibiotics. 2021; 10(3):286. https://doi.org/10.3390/antibiotics10030286
Chicago/Turabian StyleDauvergne, Emilie, and Catherine Mullié. 2021. "Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections?" Antibiotics 10, no. 3: 286. https://doi.org/10.3390/antibiotics10030286
APA StyleDauvergne, E., & Mullié, C. (2021). Brass Alloys: Copper-Bottomed Solutions against Hospital-Acquired Infections? Antibiotics, 10(3), 286. https://doi.org/10.3390/antibiotics10030286