A Cell-Free Screen for Bacterial Membrane Disruptors Identifies Mefloquine as a Novel Antibiotic Adjuvant
Abstract
:1. Introduction
2. Results and Discussion
2.1. High-Throughput Screen for Bacterial Model Membrane Lysis
2.2. Antibacterial Activity of Mefloquine
2.3. Effects of Mefloquine on the S. aureus Membrane
2.4. Mefloquine Enhances the Activity of Oxacillin against S. aureus
3. Materials and Methods
3.1. Bacterial Strains Used in This Study
3.2. Bacterial Growth Conditions
3.3. Antimicrobial Susceptibility Testing
3.4. Carboxy-Fluorescein-Loaded Liposome Production and Control Tests
3.5. Liposome Lysis Screen
3.6. SYTOXTM Green Membrane Permeability Assay
3.7. Cytoplasmic Membrane Fluidity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Rev. Antimicrob. Resist. 2014. Available online: https://wellcomecollection.org/works/rdpck35v (accessed on 15 December 2020).
- Alanis, A.J. Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 2007, 6, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G. New Drugs and Emerging Leads in Antibacterial Drug Discovery. In Comprehensive Medicinal Chemistry III; Elsevier: Amsterdam, The Netherlands, 2017; pp. 682–702. [Google Scholar]
- Fischbach, M.A.; Walsh, C.T. Antibiotics for Emerging Pathogens. Science 2009, 325, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trend Biotechnol. 2013, 31, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minato, Y.; Dawadi, S.; Kordus, S.L.; Sivanandam, A.; Aldrich, C.C.; Baughn, A.D. Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole. Nat. Commun. 2018, 9, 1003. [Google Scholar] [CrossRef]
- Dias, C.; Rauter, A.P. Membrane-Targeting Antibiotics: Recent Developments Outside the Peptide Space. Future Med. Chem. 2019, 11, 211–228. [Google Scholar] [CrossRef]
- Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular Mechanisms of Membrane Targeting Antibiotics. Biochim. Biophys. Acta BBA—Biomembr. 2016, 1858, 980–987. [Google Scholar] [CrossRef]
- Hurdle, J.G.; O’Neill, A.J.; Chopra, I.; Lee, R.E. Targeting Bacterial Membrane Function: An Underexploited Mechanism for Treating Persistent Infections. Nat. Rev. Microbiol. 2011, 9, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Pachaiyappan, B.; Gruber, J.D.; Schmidt, M.G.; Zhang, Y.M.; Woster, P.M. Antibacterial Diamines Targeting Bacterial Membranes. J. Med. Chem. 2016, 59, 3140–3151. [Google Scholar] [CrossRef] [Green Version]
- Bernal, P.; Lemaire, S.; Pinho, M.G.; Mobashery, S.; Hinds, J.; Taylor, P.W. Insertion of Epicatechin Gallate into the Cytoplasmic Membrane of Methicillin-Resistant Staphylococcus Aureus Disrupts Penicillin-Binding Protein (PBP) 2a-Mediated β-Lactam Resistance by Delocalizing PBP2. J. Biol. Chem. 2010, 285, 24055–24065. [Google Scholar] [CrossRef] [Green Version]
- García-Fernández, E.; Koch, G.; Wagner, R.M.; Fekete, A.; Stengel, S.T.; Schneider, J.; Mielich-Süss, B.; Geibel, S.; Markert, S.M.; Stigloher, C.; et al. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell 2017, 171, 1354–1367.e20. [Google Scholar] [CrossRef]
- Jimah, J.; Schlesinger, P.; Tolia, N. Liposome Disruption Assay to Examine Lytic Properties of Biomolecules. Bio-Protocol 2017, 7. [Google Scholar] [CrossRef]
- Epand, R.F.; Savage, P.B.; Epand, R.M. Bacterial Lipid Composition and the Antimicrobial Efficacy of Cationic Steroid Compounds (Ceragenins). Biochim. Biophys. Acta BBA—Biomembr. 2007, 1768, 2500–2509. [Google Scholar] [CrossRef] [Green Version]
- Sani, M.-A.; Whitwell, T.C.; Gehman, J.D.; Robins-Browne, R.M.; Pantarat, N.; Attard, T.J.; Reynolds, E.C.; O’Brien-Simpson, N.M.; Separovic, F. Maculatin 1.1 Disrupts Staphylococcus Aureus Lipid Membranes via a Pore Mechanism. Antimicrob. Agents Chemother. 2013, 57, 3593–3600. [Google Scholar] [CrossRef] [Green Version]
- Himbert, S.; Alsop, R.J.; Rose, M.; Hertz, L.; Dhaliwal, A.; Moran-Mirabal, J.M.; Verschoor, C.P.; Bowdish, D.M.; Kaestner, L.; Wagner, C.; et al. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jamasbi, E.; Mularski, A.; Separovic, F. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues. Curr. Top. Med. Chem. 2016, 16, 40–45. [Google Scholar] [CrossRef]
- Zhang, J.-H. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Kunin, C.M.; Ellis, W.Y. Antimicrobial Activities of Mefloquine and a Series of Related Compounds. Antimicrob. Agents Chemother. 2000, 44, 848–852. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.J.; Holliday, S.M.; Brogden, R.N. Mefloquine: A Review of Its Antimalarial Activity, Pharmacokinetic Properties and Therapeutic Efficacy. Drugs 1993, 45, 430–475. [Google Scholar] [CrossRef]
- Chevli, R.; Fitch, C.D. The Antimalarial Drug Mefloquine Binds to Membrane Phospholipids. Antimicrob. Agents Chemother. 1982, 21, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melvin, P.W.; Weinstein, M.D. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Kim, W.; Zhu, W.; Hendricks, G.L.; Van Tyne, D.; Steele, A.D.; Keohane, C.E.; Fricke, N.; Conery, A.L.; Shen, S.; Pan, W.; et al. A New Class of Synthetic Retinoid Antibiotics Effective against Bacterial Persisters. Nature 2018, 556, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Li, Q.; Nina, Z.; Shang, L.; Li, J.; Li, J.; Wang, Z.; Shan, A. Peptides with Triplet-Tryptophan-Pivot Promoted Pathogenic Bacteria Membrane Defects. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, T.J. Can β-Lactam Antibiotics Be Resurrected to Combat MRSA? Trends Microbiol. 2019, 27, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Saeloh, D.; Tipmanee, V.; Jim, K.K.; Dekker, M.P.; Bitter, W.; Voravuthikunchai, S.P.; Wenzel, M.; Hamoen, L.W. The Novel Antibiotic Rhodomyrtone Traps Membrane Proteins in Vesicles with Increased Fluidity. PLOS Pathog. 2018, 14, e1006876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, A.; Wenzel, M.; Strahl, H.; Grein, F.; Saaki, T.N.V.; Kohl, B.; Siersma, T.; Bandow, J.E.; Sahl, H.G.; Schneider, T.; et al. Daptomycin Inhibits Cell Envelope Synthesis by Interfering with Fluid Membrane Microdomains. Proc. Natl. Acad. Sci. USA 2016, 113, E7077–E7086. [Google Scholar] [CrossRef] [Green Version]
- Scheinpflug, K.; Wenzel, M.; Krylova, O.; Bandow, J.E.; Dathe, M.; Strahl, H. Antimicrobial Peptide CWFW Kills by Combining Lipid Phase Separation with Autolysis. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Scheinpflug, K.; Krylova, O.; Strahl, H. Measurement of Cell Membrane Fluidity by Laurdan GP: Fluorescence Spectroscopy and Microscopy. In Antibiotics; Sass, P., Ed.; Springer: New York, NY, USA, 2017; Volume 1520, pp. 159–174. [Google Scholar]
- Wenzel, M.; Rautenbach, M.; Vosloo, J.A.; Siersma, T.; Aisenbrey, C.H.M.; Zaitseva, E.; Laubscher, W.E.; van Rensburg, W.; Behrends, J.C.; Bechinger, B.; et al. The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. mBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Mehta, S.; Singh, C.; Plata, K.B.; Chanda, P.K.; Paul, A.; Riosa, S.; Rosato, R.R.; Rosato, A.E. β-Lactams Increase the Antibacterial Activity of Daptomycin against Clinical Methicillin-Resistant Staphylococcus Aureus Strains and Prevent Selection of Daptomycin-Resistant Derivatives. Antimicrob. Agents Chemother. 2012, 56, 6192–6200. [Google Scholar] [CrossRef] [Green Version]
- Preparing Large, Unilamellar Vesicles by Extrusion (LUVET). Avanti Polar Lipids. Available online: https://avantilipids.com/tech-support/liposome-preparation/luvet (accessed on 15 December 2020).
- Gerits, E.; Blommaert, E.; Lippell, A.; O’Neill, A.J.; Weytjens, B.; De Maeyer, D.; Fierro, A.C.; Marchal, K.; Marchand, A.; Chaltin, P.; et al. Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus Aureus and Pseudomonas Aeruginosa. PLoS ONE 2016, 11, e0155139. [Google Scholar] [CrossRef] [Green Version]
- Yaraksa, N.; Anunthawan, T.; Theansungnoen, T.; Daduang, S.; Araki, T.; Dhiravisit, A.; Thammasirirak, S. Design and Synthesis of Cationic Antibacterial Peptide Based on Leucrocin I Sequence, Antibacterial Peptide from Crocodile (Crocodylus Siamensis) White Blood Cell Extracts. J. Antibiot. (Tokyo) 2014, 67, 205–212. [Google Scholar] [CrossRef]
- Wenzel, M.; Vischer, N.; Strahl, H.; Hamoen, L.W. Assessing Membrane Fluidity and Visualizing Fluid Membrane Domains in Bacteria Using Fluorescent Membrane Dyes. BIO-Protoc. 2018, 8, e3063. [Google Scholar] [CrossRef] [Green Version]
- Orzáez, M.; Mondragón, L.; García-Jareño, A.; Mosulén, S.; Pineda-Lucena, A.; Pérez-Payá, E. Deciphering the Antitumoral Activity of Quinacrine: Binding to and Inhibition of Bcl-XL. Bioorg. Med. Chem. Lett. 2009, 19, 1592–1595. [Google Scholar] [CrossRef]
- Tommasi, R.; Brown, D.G.; Walkup, G.K.; Manchester, J.I.; Miller, A.A. ESKAPEing the Labyrinth of Antibacterial Discovery. Nat. Rev. Drug Discov. 2015, 14, 529–542. [Google Scholar] [CrossRef]
- Hancock, R.E.; Farmer, S.W.; Li, Z.S.; Poole, K. Interaction of Aminoglycosides with the Outer Membranes and Purified Lipopolysaccharide and OmpF Porin of Escherichia Coli. Antimicrob. Agents Chemother. 1991, 35, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
- Lipsky, J.J.; Lietman, P.S. Neomycin Inhibition of Adenosine Triphosphatase: Evidence for a Neomycin-Phospholipid Interaction. Antimicrob. Agents Chemother. 1980, 18, 532–535. [Google Scholar] [CrossRef] [Green Version]
- Randall, C.P.; Mariner, K.R.; Chopra, I.; O’Neill, A.J. The Target of Daptomycin Is Absent from Escherichia Coli and Other Gram-Negative Pathogens. Antimicrob. Agents Chemother. 2013, 57, 637–639. [Google Scholar] [CrossRef] [Green Version]
- Som, A.; Tew, G.N. Influence of Lipid Composition on Membrane Activity of Antimicrobial Phenylene Ethynylene Oligomers. J. Phys. Chem. B 2008, 112, 3495–3502. [Google Scholar] [CrossRef] [Green Version]
Strain | Daptomyci (μg/mL) | Colistin (μg/mL) | Melittin (μg/mL) | Mefloquine (μM) | Quinidine (μM) |
---|---|---|---|---|---|
MSSA ATCC 25923 | 2 | >64 | 8 | 100 | >200 |
MSSA NCTC 8325 | 2 | >64 | 16 | 100 | >200 |
MRSA252 | 2 | >64 | 8 | 100 | >200 |
MRSA ATCC 33592 | 2 | >64 | 4 | 100 | >200 |
E. coli ATCC 25922 | >32 | 1 | 32 | 200 | >200 |
Strain | Oxacillin (μg/mL) | Oxacillin (μg/mL) + ¼ MIC Mefloquine | Fold Potentiation |
---|---|---|---|
MSSA ATCC 25923 | 0.25 | 0.06 | 4 |
MSSA NCTC 8325 | 0.25 | 0.06 | 4 |
MRSA252 | 512 | 128 | 4 |
MRSA ATCC 33592 | 128 | 32 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podoll, J.; Olson, J.; Wang, W.; Wang, X. A Cell-Free Screen for Bacterial Membrane Disruptors Identifies Mefloquine as a Novel Antibiotic Adjuvant. Antibiotics 2021, 10, 315. https://doi.org/10.3390/antibiotics10030315
Podoll J, Olson J, Wang W, Wang X. A Cell-Free Screen for Bacterial Membrane Disruptors Identifies Mefloquine as a Novel Antibiotic Adjuvant. Antibiotics. 2021; 10(3):315. https://doi.org/10.3390/antibiotics10030315
Chicago/Turabian StylePodoll, Jessica, Justin Olson, Wei Wang, and Xiang Wang. 2021. "A Cell-Free Screen for Bacterial Membrane Disruptors Identifies Mefloquine as a Novel Antibiotic Adjuvant" Antibiotics 10, no. 3: 315. https://doi.org/10.3390/antibiotics10030315
APA StylePodoll, J., Olson, J., Wang, W., & Wang, X. (2021). A Cell-Free Screen for Bacterial Membrane Disruptors Identifies Mefloquine as a Novel Antibiotic Adjuvant. Antibiotics, 10(3), 315. https://doi.org/10.3390/antibiotics10030315