Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety
Abstract
:1. Introduction
2. Synthesis of NMOFs
3. NMOFs for Food Quality
3.1. Small Molecules
3.1.1. Antibiotics
3.1.2. Food Additives
3.1.3. Pesticides
3.1.4. Mycotoxins
3.1.5. Spoilage Indicators
3.1.6. Illegal Additives
3.2. Ions
3.2.1. Cations
3.2.2. Anions
3.3. Food-Borne Pathogen
4. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MOFs | Metal-Organic Frameworks |
NMOFs | Nanoscale MOFs |
TC | Tetracycline |
FRET | Fluorescence Resonance Energy Transfer |
TET | Tetracycline |
CTC | Chlorotetracycline |
OTC | Oxytetracycline |
DOX | Doxycycline |
IFE | Inner-filter Effect |
PET | Photo-induced Electron Transfer |
RhB | Rhodamine B |
FSS | Fluorescein disodium salt |
NFAs | Nitrofurans |
OFX | Ofloxacin |
NFZ | Nitrofurazone |
NFT | Nitrofurantoin |
CPFX | Ciprofloxacin |
NFX | Norfloxacin |
CRO | Ceftriaxone |
CHL | Chloramphenicol |
TBHQ | Tertiary Butylhydroquinone |
OPs | Organophosphate Pesticides |
AFB1 | Aflatoxin B1 |
3-NPA | 3-nitropropionic Acid |
Hx | Hypoxanthine |
MA | Methylamine |
MG | Malachite Green |
E. coli | Escherichia coli |
S. aureus | Staphylococcus aureus |
References
- Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Luo, X.; Han, Y.; Chen, X.; Tang, W.; Yue, T.; Li, Z. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci. Technol. 2020, 95, 149–161. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Yung, B.; Xiong, Y.; Chen, X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017, 11, 5238–5292. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H.-C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28–45. [Google Scholar] [CrossRef]
- Bai, Y.; Dou, Y.; Xie, L.H.; Rutledge, W.; Li, J.R.; Zhou, H.C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ding, Z.; Wang, C.; Wang, S.; Li, S.; Zhang, Z.; Zhang, X. Coordination-Directed Assembly of Luminescent Semiconducting Oligomers and Weak Interaction-Induced Morphology Transformation. ACS Omega 2019, 4, 14294–14300. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, C.; Fu, K.; Song, X.; Xu, K.; Wang, J.; Li, J. Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control 2017, 80, 380–387. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, Q.; Chen, H.; Zhang, J.; Chiu, D.T.; McNeill, J. Dual-Mode Superresolution Imaging Using Charge Transfer Dynamics in Semiconducting Polymer Dots. Angew. Chem. Int. Ed. 2020, 59, 16173–16180. [Google Scholar] [CrossRef]
- Jiang, Y.; McNeill, J. Superresolution mapping of energy landscape for single charge carriers in plastic semiconductors. Nat. Commun. 2018, 9, 4314. [Google Scholar] [CrossRef]
- Kitagawa, S.J.C.S.R. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- MacGillivray, L.R.; Lukehart, C.M. Metal-Organic Framework Materials; Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- Batten, S.R.; Neville, S.M.; Turner, D.R. Coordination Polymers: Design, Analysis and Application; Royal Society of Chemistry: Cambridge, UK, 2009. [Google Scholar]
- Li, T.; Bai, Y.; Wang, Y.; Xu, H.; Jin, H. Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord. Chem. Rev. 2020, 410, 213221. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angew. Chem. Int. Ed. 2012, 51, 10307–10310. [Google Scholar] [CrossRef]
- Della Rocca, J.; Liu, D.; Lin, W. Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res. 2011, 44, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Vardali, S.C.; Manousi, N.; Barczak, M.; Giannakoudakis, D.A. Novel Approaches Utilizing Metal-Organic Framework Composites for the Extraction of Organic Compounds and Metal Traces from Fish and Seafood. Molecules 2020, 25, 513. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Dou, X.; Wang, C.; Feng, G.; Xie, J.; Zhang, X. Ratiometric pH sensing by fluorescence resonance energy transfer-based hybrid semiconducting polymer dots in living cells. Nanotechnology 2021, 32, 245502. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, S.; Qin, J.-S.; Pang, J.; Zhang, P.; Zhang, Y.; Huang, Y.; Drake, H.F.; Liu, W.R.; Zhou, H.-C. Stepwise Assembly of Turn-on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for in Vitro Cyanide Detection. Angew. Chem. Int. Ed. 2020, 59, 9319–9323. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wang, C.; Wang, S.; Wu, L.; Zhang, X. Light-harvesting metal-organic framework nanoprobes for ratiometric fluorescence energy transfer-based determination of pH values and temperature. Microchim. Acta 2019, 186, 476. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wang, C.; Feng, G.; Zhang, X. Energy-Transfer Metal–Organic Nanoprobe for Ratiometric Sensing with Dual Response to Peroxynitrite and Hypochlorite. ACS Omega 2018, 3, 9400–9406. [Google Scholar] [CrossRef]
- Ding, Z.; Tan, J.; Feng, G.; Yuan, Z.; Wu, C.; Zhang, X. Nanoscale metal–organic frameworks coated with poly(vinyl alcohol) for ratiometric peroxynitrite sensing through FRET. Chem. Sci. 2017, 8, 5101–5106. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fan, Y.; Lee, H.-W.; Yi, C.; Cheng, C.; Zhao, X.; Yang, M. Ultrasmall Metal–Organic Framework Zn-MOF-74 Nanodots: Size-Controlled Synthesis and Application for Highly Selective Colorimetric Sensing of Iron(III) in Aqueous Solution. ACS Appl. Nano Mater. 2018, 1, 3747–3753. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900–10905. [Google Scholar] [CrossRef]
- Majewski, M.B.; Noh, H.; Islamoglu, T.; Farha, O.K. NanoMOFs: Little crystallites for substantial applications. J. Mater. Chem. A 2018, 6, 7338–7350. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, K.; Li, J. Solvothermal Synthesis of Multifunctional Coordination Polymers. Z. Naturforsch. 2010, 65, 976–998. [Google Scholar] [CrossRef]
- Xia, W.; Zhu, J.; Guo, W.; An, L.; Xia, D.; Zou, R. Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem. A Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef]
- Bunzen, H.; Grzywa, M.; Hambach, M.; Spirkl, S.; Volkmer, D. From Micro to Nano: A Toolbox for Tuning Crystal Size and Morphology of Benzotriazolate-Based Metal–Organic Frameworks. Cryst. Growth Des. 2016, 16, 3190–3197. [Google Scholar] [CrossRef]
- Suslick, K.S. Sonochemistry. Science 1990, 247, 1439–1445. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Wang, A.; Guo, C.-Y.; Tai, Y.-F.; Qiu, L.-G. One-pot synthesis of metal–organic framework@SiO2 core–shell nanoparticles with enhanced visible-light photoactivity. Dalton Trans. 2013, 42, 13948–13954. [Google Scholar] [CrossRef]
- Zheng, W.; Hao, X.; Zhao, L.; Sun, W. Controllable Preparation of Nanoscale Metal–Organic Frameworks by Ionic Liquid Microemulsions. Ind. Eng. Chem. Res. 2017, 56, 5899–5905. [Google Scholar] [CrossRef]
- Seoane, B.; Dikhtiarenko, A.; Mayoral, A.; Tellez, C.; Coronas, J.; Kapteijn, F.; Gascon, J. Metal organic framework synthesis in the presence of surfactants: Towards hierarchical MOFs? CrystEngComm 2015, 17, 1693–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Laínez, J.; Zornoza, B.; Mayoral, Á.; Berenguer-Murcia, Á.; Cazorla-Amorós, D.; Téllez, C.; Coronas, J. Beyond the H2/CO2 upper bound: One-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes. J. Mater. Chem. A 2015, 3, 6549–6556. [Google Scholar] [CrossRef] [Green Version]
- Garai, B.; Mallick, A.; Das, A.; Mukherjee, R.; Banerjee, R. Self-Exfoliated Metal-Organic Nanosheets through Hydrolytic Unfolding of Metal-Organic Polyhedra. Chem. A Eur. J. 2017, 23, 7361–7366. [Google Scholar] [CrossRef]
- Carné-Sánchez, A.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D. A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat. Chem. 2013, 5, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Lv, X.-L.; Feng, D.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.-R.; Zhou, H.-C. Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc. 2016, 138, 6204–6216. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Guo, S.; Xu, J.; Chen, X.; Zhu, T.; Zhao, T. A Ratiometric Fluorescent Nano-Probe for Rapid and Specific Detection of Tetracycline Residues Based on a Dye-Doped Functionalized Nanoscaled Metal-Organic Framework. Nanomaterials 2019, 9, 976. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Ning, D.; Li, W.J.; Du, X.M.; Wang, Q.; Li, Y.; Ruan, W.J. Metal-organic framework-based fluorescent sensing of tetracycline-type antibiotics applicable to environmental and food analysis. Analyst 2019, 144, 1916–1922. [Google Scholar] [CrossRef]
- Li, C.; Yang, W.; Zhang, X.; Han, Y.; Tang, W.; Yue, T.; Li, Z. A 3D hierarchical dual-metal–organic framework heterostructure up-regulating the pre-concentration effect for ultrasensitive fluorescence detection of tetracycline antibiotics. J. Mater. Chem. C 2020, 8, 2054–2064. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Q.; Zhang, D.; Gan, N.; Li, Q.; Cuan, J. Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens. Actuators B Chem. 2018, 262, 137–143. [Google Scholar] [CrossRef]
- Yu, L.; Chen, H.; Yue, J.; Chen, X.; Sun, M.; Hou, J.; Alamry, K.A.; Marwani, H.M.; Wang, X.; Wang, S. Europium metal-organic framework for selective and sensitive detection of doxycycline based on fluorescence enhancement. Talanta 2020, 207, 120297. [Google Scholar] [CrossRef]
- Li, C.-P.; Long, W.-W.; Lei, Z.; Guo, L.; Xie, M.-J.; Lü, J.; Zhu, X.-D. Anionic metal–organic framework as a unique turn-on fluorescent chemical sensor for ultra-sensitive detection of antibiotics. Chem. Commun. 2020, 56, 12403–12406. [Google Scholar] [CrossRef]
- Li, R.; Wang, W.; El-Sayed, E.-S.M.; Su, K.; He, P.; Yuan, D. Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal–organic framework. Sens. Actuators B Chem. 2021, 330, 129314. [Google Scholar] [CrossRef]
- Zhu, Q.Q.; Zhou, Q.S.; Zhang, H.W.; Zhang, W.W.; Lu, D.Q.; Guo, M.T.; Yuan, Y.; Sun, F.; He, H. Design and Construction of a Metal-Organic Framework as an Efficient Luminescent Sensor for Detecting Antibiotics. Inorg. Chem. 2020, 59, 1323–1331. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, X.H.; Mao, S.; Tao, W.Q.; Li, Z. Highly luminescent sensing for nitrofurans and tetracyclines in water based on zeolitic imidazolate framework-8 incorporated with dyes. Talanta 2019, 204, 344–352. [Google Scholar] [CrossRef]
- Yu, M.; Xie, Y.; Wang, X.; Li, Y.; Li, G. Highly Water-Stable Dye@Ln-MOFs for Sensitive and Selective Detection toward Antibiotics in Water. ACS Appl. Mater. Interfaces 2019, 11, 21201–21210. [Google Scholar] [CrossRef]
- Xing, P.; Wu, D.; Chen, J.; Song, J.; Mao, C.; Gao, Y.; Niu, H. A Cd-MOF as a fluorescent probe for highly selective, sensitive and stable detection of antibiotics in water. Analyst 2019, 144, 2656–2661. [Google Scholar] [CrossRef]
- Liu, W.; Qu, X.; Zhu, C.; Gao, Y.; Mao, C.; Song, J.; Niu, H. A two-dimensional zinc(II)-based metal-organic framework for fluorometric determination of ascorbic acid, chloramphenicol and ceftriaxone. Mikrochim. Acta 2020, 187, 136. [Google Scholar] [CrossRef]
- Wu, L.; Lin, Z.-Z.; Zhong, H.-P.; Peng, A.-H.; Chen, X.-M.; Huang, Z.-Y. Rapid detection of malachite green in fish based on CdTe quantum dots coated with molecularly imprinted silica. Food Chem. 2017, 229, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Han, L.J.; Kong, Y.J.; Hou, G.Z.; Chen, H.C.; Zhang, X.M.; Zheng, H.G. A Europium-based MOF Fluorescent Probe for Efficiently Detecting Malachite Green and Uric Acid. Inorg. Chem. 2020, 59, 7181–7187. [Google Scholar] [CrossRef]
- Huang, Q.; Bu, T.; Zhang, W.; Yan, L.; Zhang, M.; Yang, Q.; Huang, L.; Yang, B.; Hu, N.; Suo, Y.; et al. An improved clenbuterol detection by immunochromatographic assay with bacteria@Au composite as signal amplifier. Food Chem. 2018, 262, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, B.; Cheng, J.; Wang, R.; Zhang, S.; Dong, S.; Wei, S.; Wang, P.; Li, J.-R. Determination and removal of clenbuterol with a stable fluorescent zirconium(IV)-based metal organic framework. Microchim. Acta 2019, 186, 454. [Google Scholar] [CrossRef]
- Lv, M.; Liu, Y.; Geng, J.; Kou, X.; Xin, Z.; Yang, D. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Tyan, Y.-C.; Yang, M.-H.; Jong, S.-B.; Wang, C.-K.; Shiea, J. Melamine contamination. Anal. Bioanal. Chem. 2009, 395, 729–735. [Google Scholar] [CrossRef]
- Lin, C.; Zhong, C.; Song, Y.; Wang, L. Ratiometric fluorescence detection of melamine in milk by a zirconium-based metal-organic frameworks composite. Microchem. J. 2021, 162, 105837. [Google Scholar] [CrossRef]
- Huang, X.; He, Z.; Guo, D.; Liu, Y.; Song, J.; Yung, B.C.; Lin, L.; Yu, G.; Zhu, J.J.; Xiong, Y.; et al. “Three-in-one” Nanohybrids as Synergistic Nanoquenchers to Enhance No-Wash Fluorescence Biosensors for Ratiometric Detection of Cancer Biomarkers. Theranostics 2018, 8, 3461–3473. [Google Scholar] [CrossRef]
- Maia, L.B.; Moura, J.J.G. How Biology Handles Nitrite. Chem. Rev. 2014, 114, 5273–5357. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Han, Z.; Wang, M.; Li, Y.; Zhou, T.; Shi, W.; Cheng, P. A water-stable terbium metal–organic framework as a highly sensitive fluorescent sensor for nitrite. Inorg. Chem. Front. 2020, 7, 3379–3385. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; Zhang, F.; Chu, T.; Yang, Y. A novel lanthanide MOF thin film: The highly performance self-calibrating luminescent sensor for detecting formaldehyde as an illegal preservative in aquatic product. Sens. Actuators B Chem. 2017, 251, 667–673. [Google Scholar] [CrossRef]
- Vellingiri, K.; Deep, A.; Kim, K.-H.; Boukhvalov, D.W.; Kumar, P.; Yao, Q. The sensitive detection of formaldehyde in aqueous media using zirconium-based metal organic frameworks. Sens. Actuators B Chem. 2017, 241, 938–948. [Google Scholar] [CrossRef]
- Li, C.; Huang, J.; Zhu, H.; Liu, L.; Feng, Y.; Hu, G.; Yu, X. Dual-emitting fluorescence of Eu/Zr-MOF for ratiometric sensing formaldehyde. Sens. Actuators B Chem. 2017, 253, 275–282. [Google Scholar] [CrossRef]
- Yue, X.; Luo, X.; Zhou, Z.; Bai, Y. Selective electrochemical determination of tertiary butylhydroquinone in edible oils based on an in-situ assembly molecularly imprinted polymer sensor. Food Chem. 2019, 289, 84–94. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Li, R.; Du, L.; Feng, X.; Ding, Y. A highly sensitive and selective “turn off-on” fluorescent sensor based on Sm-MOF for the detection of tertiary butylhydroquinone. Dye. Pigment. 2020, 178, 108347. [Google Scholar] [CrossRef]
- Yashaswini, P.S.; Kurrey, N.K.; Singh, S.A. Encapsulation of sesamol in phosphatidyl choline micelles: Enhanced bioavailability and anti-inflammatory activity. Food Chem. 2017, 228, 330–337. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, S.; Luo, J.; Huang, R.; Cai, H.; Yan, W.; Yang, H. A Novel Tb@Sr-MOF as Self-Calibrating Luminescent Sensor for Nutritional Antioxidant. Nanomaterials 2018, 8, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Vikrant, K.; Tsang, D.C.W.; Raza, N.; Giri, B.S.; Kukkar, D.; Kim, K.-H. Potential Utility of Metal–Organic Framework-Based Platform for Sensing Pesticides. ACS Appl. Mater. Interfaces 2018, 10, 8797–8817. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Guo, Y.; Wang, X.; Li, W.; Qi, P.; Wang, Z.; Wang, X.; Gunasekaran, S.; Wang, Q. Sensitive detection of pesticides by a highly luminescent metal-organic framework. Sens. Actuators B Chem. 2018, 260, 339–345. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.-L.; Liu, C.-G.; Ye, F.; Fu, Y. Two luminescent dye@MOFs systems as dual-emitting platforms for efficient pesticides detection. J. Hazard. Mater. 2020, 381, 120966. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, W.H.; Ye, L.Y.; Zhang, W.S.; Yang, H. Developing a Novel Nanoscale Porphyrinic Metal–Organic Framework: A Bifunctional Platform with Sensitive Fluorescent Detection and Elimination of Nitenpyram in Agricultural Environment. J. Agric. Food Chem. 2020, 68, 5572–5578. [Google Scholar] [CrossRef]
- Kumar, P.; Paul, A.K.; Deep, A. Sensitive chemosensing of nitro group containing organophosphate pesticides with MOF-5. Microporous Mesoporous Mater. 2014, 195, 60–66. [Google Scholar] [CrossRef]
- He, K.; Li, Z.; Wang, L.; Fu, Y.; Quan, H.; Li, Y.; Wang, X.; Gunasekaran, S.; Xu, X. A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Appl. Mater. Interfaces 2019, 11, 26250–26260. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, K.; Quan, H.; Wang, X.; Wang, Q.; Xu, X. A luminescent method for detection of parathion based on zinc incorporated metal-organic framework. Microchem. J. 2020, 153. [Google Scholar] [CrossRef]
- Fan, M.Y.; Yu, H.H.; Fu, P.; Su, Z.M.; Li, X.; Hu, X.L.; Gao, F.W.; Pan, Q.Q. Luminescent Cd(Ⅱ) metal-organic frameworks with anthracene nitrogen-containing organic ligands as novel multifunctional chemosensors for the detection of picric acid, pesticides, and ferric ions. Dye. Pigment. 2021, 185, 185. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, D.; Guo, Z.; Jia, P.; Xing, H. Eosin Y-Embedded Zirconium-Based Metal–Organic Framework as a Dual-Emitting Built-In Self-Calibrating Platform for Pesticide Detection. Inorg. Chem. 2020, 59, 5386–5393. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-X.; Hu, F.-L.; Song, J.-G.; Zhang, J.-L.; Liu, S.-S.; Wang, B.-X.; Meng, H.; Liu, L.-L.; Ma, L.-F. Ultrathin two-dimensional metal-organic framework nanosheets decorated with tetra-pyridyl calix[4]arene: Design, synthesis and application in pesticide detection. Sens. Actuators B Chem. 2020, 310. [Google Scholar] [CrossRef]
- Tian, D.; Liu, X.-J.; Feng, R.; Xu, J.-L.; Xu, J.; Chen, R.-Y.; Huang, L.; Bu, X.-H. Microporous Luminescent Metal–Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. ACS Appl. Mater. Interfaces 2018, 10, 5618–5625. [Google Scholar] [CrossRef]
- Hu, Z.; Lustig, W.P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N.D.; Li, J. Effective detection of mycotoxins by a highly luminescent metal–organic framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, X.; Fu, Y.; Guo, Y.; Zhang, Q.; Zhang, Q.; Yang, H.; Li, Y. A water-stable luminescent metal–organic framework for effective detection of aflatoxin B1 in walnut and almond beverages. Rsc Adv. 2019, 9, 620–625. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Zhou, G.; Wang, X.; Zhang, Y.; Li, Z.; Liu, P.; Yu, B.; Zhang, J. A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 2020, 219, 121342. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, N.; Lou, Y.; Ren, S.; Pang, S.; He, Y.; Chen, X.-B.; Shi, Z.; Feng, S. A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chem. Commun. 2020, 56, 5389–5392. [Google Scholar] [CrossRef]
- Yang, S.-L.; Liu, W.-S.; Li, G.; Bu, R.; Li, P.; Gao, E.-Q. A pH-Sensing Fluorescent Metal–Organic Framework: pH-Triggered Fluorescence Transition and Detection of Mycotoxin. Inorg. Chem. 2020, 59, 15421–15429. [Google Scholar] [CrossRef]
- Bagheri, N.; Khataee, A.; Habibi, B.; Hassanzadeh, J. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 2018, 179, 710–718. [Google Scholar] [CrossRef]
- Fletcher, B.; Mullane, K.; Platts, P.; Todd, E.; Power, A.; Roberts, J.; Chapman, J.; Cozzolino, D.; Chandra, S. Advances in meat spoilage detection: A short focus on rapid methods and technologies. Cyta. J. Food 2018, 16, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Yan, J.; Huang, X.; Guo, L.; Lin, Z.; Luo, F.; Qiu, B.; Wong, K.-Y.; Chen, G. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens. Actuators B Chem. 2018, 267, 312–319. [Google Scholar] [CrossRef]
- Mallick, A.; El-Zohry, A.M.; Shekhah, O.; Yin, J.; Jia, J.; Aggarwal, H.; Emwas, A.-H.; Mohammed, O.F.; Eddaoudi, M. Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal–Organic Framework. J. Am. Chem. Soc. 2019, 141, 7245–7249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Hu, Q.; Xia, T.; Zhang, J.; Yang, Y.; Cui, Y.; Chen, B.; Qian, G. Turn-on and Ratiometric Luminescent Sensing of Hydrogen Sulfide Based on Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2016, 8, 32259–32265. [Google Scholar] [CrossRef]
- Nandi, S.; Reinsch, H.; Biswas, S. A vinyl functionalized mixed linker CAU-10 metal-organic framework acting as a fluorescent sensor for the selective detection of H2S and palladium(II). Microporous Mesoporous Mater. 2020, 293. [Google Scholar] [CrossRef]
- Huang, X.; Guo, Q.; Zhang, R.; Zhao, Z.; Leng, Y.; Lam, J.W.Y.; Xiong, Y.; Tang, B.Z. AIEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2297–2329. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, A.M.; Copat, C.; Ferrito, V.; Grasso, A.; Ferrante, M. Heavy metal content and molecular species identification in canned tuna: Insights into human food safety. Mol. Med. Rep. 2017, 15, 3430–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, X.; Liang, M.; Chen, G.; Kong, R.-M.; Xia, L.; Qu, F. A Boric Acid-Functionalized Lanthanide Metal–Organic Framework as a Fluorescence “Turn-on” Probe for Selective Monitoring of Hg2+ and CH3Hg+. Anal. Chem. 2020, 92, 3366–3372. [Google Scholar] [CrossRef]
- Lv, S.-W.; Liu, J.-M.; Li, C.-Y.; Zhao, N.; Wang, Z.-H.; Wang, S. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chem. Eng. J. 2019, 375, 122111. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Kong, R.; Chen, G.; Liu, Z.; Qu, F.; Xia, L.; Tan, W. A Metal–Organic Framework as Selectivity Regulator for Fe3+ and Ascorbic Acid Detection. Anal. Chem. 2019, 91, 12453–12460. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Kong, R.-M.; Xia, L.; Qu, F. Metal-organic framework as a multi-component sensor for detection of Fe3+, ascorbic acid and acid phosphatase. Chin. Chem. Lett. 2021, 32, 198–202. [Google Scholar] [CrossRef]
- Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S. The transition metals copper and iron in neurodegenerative diseases. Chem.-Biol. Interact. 2010, 186, 184–199. [Google Scholar] [CrossRef]
- Yang, L.-Z.; Wang, J.; Kirillov, A.M.; Dou, W.; Xu, C.; Fang, R.; Xu, C.-L.; Liu, W.S. 2D lanthanide MOFs driven by a rigid 3,5-bis(3-carboxy-phenyl)pyridine building block: Solvothermal syntheses, structural features, and photoluminescence and sensing properties. CrystEngComm 2016, 18, 6425–6436. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Ru, F.; Zhang, Z.; Mao, X.; Shan, D.; Chen, J.; Lu, X. Encapsulation of Dual-Emitting Fluorescent Magnetic Nanoprobe in Metal-Organic Frameworks for Ultrasensitive Ratiometric Detection of Cu2+. Chem. A Eur. J. 2018, 24, 3499–3505. [Google Scholar] [CrossRef]
- Exley, C. Human exposure to aluminium. Environ. Sci. Process. Impacts 2013, 15, 1807–1816. [Google Scholar] [CrossRef] [Green Version]
- Exley, C. The toxicity of aluminium in humans. Morphologie 2016, 100, 51–55. [Google Scholar] [CrossRef]
- Zheng, H.; Weiner, L.M.; Bar-Am, O.; Epsztejn, S.; Cabantchik, Z.I.; Warshawsky, A.; Youdim, M.B.; Fridkin, M. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Biorg. Med. Chem. 2005, 13, 773–783. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, Y.; Jia, P.; Wang, Q.; Liu, Y.; Bu, T.; Zhang, M.; Bai, F.; Wang, L. Dual-Emission Zr-MOF-Based Composite Material as a Fluorescence Turn-On Sensor for the Ultrasensitive Detection of Al(3). Inorg. Chem. 2020, 59, 18205–18213. [Google Scholar] [CrossRef] [PubMed]
- Person, R.J.; Tokar, E.J.; Xu, Y.; Orihuela, R.; Ngalame, N.N.; Waalkes, M.P. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicol. Appl. Pharmacol. 2013, 273, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xia, T.; Zhang, X.; Zhang, Q.; Cui, Y.; Yang, Y.; Qian, G. A turn-on fluorescent probe for Cd2+ detection in aqueous environments based on an imine functionalized nanoscale metal–organic framework. Rsc Adv. 2017, 7, 54892–54897. [Google Scholar] [CrossRef] [Green Version]
- Ueda, N.; Takasawa, K. Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease. Nutrients 2018, 10, 1173. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Fan, M.; Liu, Q.; Su, Z.; Li, X.; Pan, Q.; Hu, X. Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe3+,Cr2O72–/CrO42– in a Water Environment. Inorg. Chem. 2020, 59, 2005–2010. [Google Scholar] [CrossRef]
- Gu, J.-Z.; Liang, X.-X.; Cui, Y.-H.; Wu, J.; Shi, Z.-F.; Kirillov, A.M. Introducing 2-(2-carboxyphenoxy)terephthalic acid as a new versatile building block for design of diverse coordination polymers: Synthesis, structural features, luminescence sensing, and magnetism. CrystEngComm 2017, 19, 2570–2588. [Google Scholar] [CrossRef]
- Kumar, A.; Chowdhuri, A.R.; Kumari, A.; Sahu, S.K. IRMOF-3: A fluorescent nanoscale metal organic frameworks for selective sensing of glucose and Fe (III) ions without any modification. Mater. Sci. Eng. C 2018, 92, 913–921. [Google Scholar] [CrossRef]
- Marieeswaran, M.; Panneerselvam, P. A magnetic nanoscale metal–organic framework (MNMOF) as a viable fluorescence quencher material for ssDNA and for the detection of mercury ions via a novel quenching–quenching mechanism. Rsc Adv. 2020, 10, 3705–3714. [Google Scholar] [CrossRef] [Green Version]
- Basaleh, A.S.; Sheta, S.M. Novel advanced nanomaterial based on ferrous metal-organic framework and its application as chemosensors for mercury in environmental and biological samples. Anal. Bioanal. Chem. 2020, 412, 3153–3165. [Google Scholar] [CrossRef]
- Tirima, S.; Bartrem, C.; von Lindern, I.; von Braun, M.; Lind, D.; Anka, S.M.; Abdullahi, A. Food contamination as a pathway for lead exposure in children during the 2010-2013 lead poisoning epidemic in Zamfara, Nigeria. J. Environ. Sci. 2018, 67, 260–272. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Reddy, A.S.; Panda, A.; Sarkar, D.; Son, Y.; Yoon, M. Reversible Fluorescence Switching of Metal–Organic Framework Nanoparticles for Use as Security Ink and Detection of Pb2+ Ions in Aqueous Media. ACS Appl. Nano Mater. 2020, 3, 3684–3692. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, Y.; Ding, J.; Gao, C.; Van der Bruggen, B.; Shen, J. Fluoride Removal from Water by Membrane Capacitive Deionization with a Monovalent Anion Selective Membrane. Ind. Eng. Chem. Res. 2018, 57, 7048–7053. [Google Scholar] [CrossRef]
- Zhou, H.; Chua, M.H.; Tan, H.R.; Lin, T.T.; Tang, B.Z.; Xu, J. Ionofluorochromic Nanoparticles Derived from Octapyrene-Modified Polyhedral Oligomeric Silsesquioxane Organic Frameworks for Fluoride-Ion Detection. ACS Appl. Nano Mater. 2018, 2, 470–478. [Google Scholar] [CrossRef]
- Yang, Z.-R.; Wang, M.-M.; Wang, X.-S.; Yin, X.-B. Boric-Acid-Functional Lanthanide Metal–Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions. Anal. Chem. 2017, 89, 1930–1936. [Google Scholar] [CrossRef] [PubMed]
- Vervloet, M.G.; Sezer, S.; Massy, Z.A.; Johansson, L.; Cozzolino, M.; Fouque, D.; on behalf of the ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group. The role of phosphate in kidney disease. Nat. Rev. Nephrol. 2017, 13, 27–38. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Li, X.; Yang, P.; Yue, J.-Y.; Jiang, Y.; Tang, B. Linker-Eliminated Nano Metal–Organic Framework Fluorescent Probe for Highly Selective and Sensitive Phosphate Ratiometric Detection in Water and Body Fluids. Anal. Chem. 2020, 92, 3722–3727. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.R.J. Cationic inorganic materials for anionic pollutant trapping and catalysis. Chem. Soc. Rev. 2009, 38, 1868–1881. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ganguly, S.; Samanta, D.; Das, D. Sustainable Green Route to Synthesize Functional Nano-MOFs as Selective Sensing Probes for CrVI Oxoanions and as Specific Sequestering Agents for Cr2O72−. ACS Sustain. Chem. Eng. 2019, 8, 1195–1206. [Google Scholar] [CrossRef]
- Paudyal, N.; Pan, H.; Liao, X.; Zhang, X.; Li, X.; Fang, W.; Yue, M. A Meta-Analysis of Major Foodborne Pathogens in Chinese Food Commodities between 2006 and 2016. Foodborne Pathog. Dis. 2018, 15, 187–197. [Google Scholar] [CrossRef]
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Garg, M.; Singh, S.; Deep, A.; Sharma, A.L. Highly Sensitive Optical Detection of Escherichia coli Using Terbium-Based Metal–Organic Framework. ACS Appl. Mater. Interfaces 2020, 12, 48198–48205. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Bhardwaj, S.K.; Mehta, J.; Kim, K.-H.; Deep, A. MOF–Bacteriophage Biosensor for Highly Sensitive and Specific Detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces 2017, 9, 33589–33598. [Google Scholar] [CrossRef]
- Qiu, Q.; Chen, H.; Ying, S.; Sharif, S.; You, Z.; Wang, Y.; Ying, Y. Simultaneous fluorometric determination of the DNAs of Salmonella enterica, Listeria monocytogenes and Vibrio parahemolyticus by using an ultrathin metal-organic framework (type Cu-TCPP). Microchim. Acta 2019, 186, 93. [Google Scholar] [CrossRef]
- Qin, L.; Lin, L.X.; Fang, Z.P.; Yang, S.P.; Qiu, G.H.; Chen, J.X.; Chen, W.H. A water-stable metal-organic framework of a zwitterionic carboxylate with dysprosium: A sensing platform for Ebolavirus RNA sequences. Chem. Commun. 2016, 52, 132–135. [Google Scholar] [CrossRef]
- Qiu, G.H.; Weng, Z.H.; Hu, P.P.; Duan, W.J.; Xie, B.P.; Sun, B.; Tang, X.Y.; Chen, J.X. Synchronous detection of ebolavirus conserved RNA sequences and ebolavirus-encoded miRNA-like fragment based on a zwitterionic copper (II) metal-organic framework. Talanta 2018, 180, 396–402. [Google Scholar] [CrossRef]
Analytes | Formula of MOF (Name) | LOD | Sample | Excitation/Emission | Linear Range | Size | References | |
---|---|---|---|---|---|---|---|---|
Antibiotics | Tetracycline | not available (Dye@UiO-66@SiO2-Cit-Eu) | 17.9 nM | Water; honey; milk | 365 nm/617 nm and 430 nm | 0.1 to 6 µM | around 130 nm | [39] |
Tetracycline | [In2(sbdc)3(H2O)4]∙(H2O)8 (In-sbdc) | 0.28 µM | Water; milk; pork; fish | 327 nm/377 nm | 0 to 30 µM | around 250 nm | [40] | |
Chlorotetracycline | [In2(sbdc)3(H2O)4]∙(H2O)8 (In-sbdc) | 0.30 µM | Water; milk; pork; fish | 327 nm/377 nm | 0 to 30 µM | around 250 nm | [40] | |
Oxytetracycline | [In2(sbdc)3(H2O)4]∙(H2O)8 (In-sbdc) | 0.30 µM | Water; milk; pork; fish | 327 nm/377 nm | 0 to 30 µM | around 250 nm | [40] | |
Doxycycline | not available (Al-MOF@Mo/Zn-MOF) | 0.56 nM | Water; milk | 330 nm/425 nm | 0.001 to 46.67 µM | around 800 nm | [41] | |
Tetracycline | not available (Al-MOF@Mo/Zn-MOF) | 0.53 nM | Water; milk | 330 nm/425 nm | 0.001 to 46.67 µM | around 800 nm | [41] | |
Oxytetracycline | not available (Al-MOF@Mo/Zn-MOF) | 0.58 nM | Water; milk | 330 nm/425 nm | 0.001 to 46.67 µM | around 800 nm | [41] | |
Chlortetracycline | not available (Al-MOF@Mo/Zn-MOF) | 0.86 nM | Water; milk | 330 nm/425 nm | 0.001 to 46.67 µM | around 800 nm | [41] | |
Doxycycline | not available (Eu-In-BTEC) | 47 nM | Water; fish; urine | 365 nm/526 nm and 617 nm | 0 to 6 µM (526 nm)/0 to 3 µM (617 nm) | around 600 nm | [51] | |
Ofloxacin | {[Zn3(OH)(bmipia)(H2O)3]4·[Zn(H2O)6.5]2}n(FCS-3) | 0.52 µM | Water | 401 nm/452 nm | 0 to 0.0215 mM | not available | [43] | |
Tetracycline | [DMA+]2[Tb9(μ3- OH)8(μ2-OH)3(H2O)3 (C21H11O6)6] ·11DMF·23H2O (Tb-L1) | 8 ng/mL | Ethanol | 290 nm/543 nm and 345 nm | 0.06 to 10 μg/mL | not available | [44] | |
Nitrofurazone | {[Cd3(TDCPB)·2DMAc]·DMAc·4H2O}n (complex 1) | not available | DMAc solution | 318 nm/358 nm | not available | not available | [45] | |
Nitrofurantoin | {[Cd3(TDCPB)·2DMAc]·DMAc·4H2O}n (complex 1) | not available | DMAc solution | 318 nm/358 nm | not available | not available | [45] | |
Nitrofurazone | not available (RhB@ZIF-8) | 0.26 µM | Water | 360 nm/580 nm | 0 to 0.12 mM | around 50 nm | [46] | |
Nitrofurantoin | not available (RhB@ZIF-8) | 0.47 µM | Water | 360 nm/580 nm | 0 to 0.12 mM | around 50 nm | [46] | |
Tetracycline | not available (RhB@ZIF-8) | 0.11 µM | Water | 360 nm/580 nm | 0 to 0.046 mM | around 50 nm | [46] | |
Oxytetracycline | not available (RhB@ZIF-8) | 0.14 µM | Water | 360 nm/580 nm | 0 to 0.046 mM | around 50 nm | [46] | |
Nitrofurazone | not available (FSS@ZIF-8) | 0.31 µM | Water | 380 nm/540 nm | 0 to 0.038 mM | around 50 nm | [46] | |
Nitrofurantoin | not available (FSS@ZIF-8) | 0.35 µM | Water | 380 nm/540 nm | 0 to 0.12 mM | around 50 nm | [46] | |
Tetracycline | not available (FSS@ZIF-8) | 0.17 µM | Water | 380 nm/540 nm | not available | around 50 nm | [46] | |
Oxytetracycline | not available (FSS@ZIF-8) | 0.16 µM | Water | 380 nm/540 nm | not available | around 50 nm | [46] | |
Nitrofurazone | [Me2NH2][Tb3(dcpcpt)3(HCOO)]∙DMF∙15H2O (Tb-dcpcpt) | 0.502 µM | Water | 300–390 nm/545 nm | 0 to 0.1 mM | not available | [47] | |
Nitrofurantoin | [Me2NH2][Tb3(dcpcpt)3(HCOO)]∙DMF∙15H2O (Tb-dcpcpt) | 0.448 µM | Water | 300–390 nm/545 nm | 0 to 0.1 mM | not available | [47] | |
Ciprofloxacin | [Me2NH2][Tb3(dcpcpt)3(HCOO)]∙DMF∙15H2O (Tb-dcpcpt) | 0.21 µM | Water | 300–390 nm/441 nm and 583 nm | 0 to 0.1 mM | not available | [47] | |
Norfloxacin | [Me2NH2][Tb3(dcpcpt)3(HCOO)]∙DMF∙15H2O (Tb-dcpcpt) | 0.17 µM | Water | 300–390 nm/441 nm and 583 nm | 0 to 0.1 mM | not available | [47] | |
Ceftriaxone sodium | not available (Cd-MOF) | 55 ppb | Water | 260 nm/288 nm | not available | not available | [48] | |
Chloramphenicol | not available [Zn•(BA)•(BBI)] | 12 ppb | Water; serum samples | 270 nm/290 nm | 0 to 5 × 10−5 mM | around 500 nm | [49] | |
Ceftriaxone | not available [Zn•(BA)•(BBI)] | 3.9 ppb | Water; serum samples | 270 nm/290 nm | 0 to 5 × 10−5 mM | around 500 nm | [49] | |
Ascorbic acid | not available [Zn•(BA)•(BBI)] | 1.6 ppb | Water; serum samples | 270 nm/290 nm | 0 to 5 × 10−5 mM | around 500 nm | [49] | |
Patulin | Zn(TA)·(H2O).(DMF) (ZnMOF) | 0.06 µM | Water; apple juice | 315 nm/425 nm | 0.1 to 10 μM | around 500 nm | [50] | |
Food additives | Nitrite | {[Tb(CA)(OA)0.5(H2O)2]·H2O}n(Tb-MOF) | 28.25 nM | Water | 295 nm/544 nm | 0 to 15.6 µM | not available | [54] |
Formaldehyde | not available (UiO-66-NH2) | 4 ppm | Water | 328 nm/440 nm | 10 to 100 ppm | around 200 nm | [56] | |
Formaldehyde | not available (Eu/Zr-MOF) | 0.2 ppm | Water | 365 nm/465 nm and 615 nm | 0 to 160 ppm | around 50 nm | [57] | |
Tertiary butylhydroquinone | [Sm (DCPP)(H2O)4]n·2nH2O (Sm-MOF) | 5.6 ng/mL | Water; soybean oil | 300 nm/643 nm | 0 to 120 µg/mL | not available | [59] | |
Sesamol | [Sr(BDC)·DMAC·H2O]n (Sr-MOF) | 4.2 µM | Ethanol | 294 nm/545 nm and 330 nm | 10−7 to 8 × 10−4 M | not available | [61] | |
Pesticides | Parathion-methyl | not available (ZnPO-MOF) | 0.456 nM | Water | 365 nm/420 nm | 1.0 µg/kg to 10 mg/kg | around 130 nm | [64] |
Nitenpyram | [Cd2(tib)(btb)(H2O)2]∙NO3∙2DMF (1) | 0.48 nM | DMF; water | 340 nm/370 nm and 600 nm | 0 to 1.1 nM | not available | [65] | |
Nitenpyram | [Cd2(tib)(btb)(H2O)2]∙NO3∙2DMF (1) | 3 nM | DMF; water | 340 nm/370 nm and 600 nm | 0 to 0.2 nM | not available | [65] | |
Nitenpyram | not available (FMOF) | 0.03 µg/mL | Water; soil | 415 nm/650 nm | 0.05 to 10 µg/mL | around 90 nm | [66] | |
Parathion | Zn4O(BDC)3DEF (MOF-5) | 5 ppb | Water | 330 nm/493 nm | 5 to 600 ppb | around100 nm | [67] | |
Methyl parathion | Zn4O(BDC)3DEF (MOF-5) | 5 ppb | Water | 330 nm/493 nm | 5 to 600 ppb | around100 nm | [67] | |
Paraoxon | Zn4O(BDC)3DEF (MOF-5) | 5 ppb | Water | 330 nm/493 nm | 5 to 600 ppb | around100 nm | [67] | |
Fenitrothion | Zn4O(BDC)3DEF (MOF-5) | 5 ppb | Water | 330 nm/493 nm | 5 to 600 ppb | around100 nm | [67] | |
Parathion-methyl | not available (Zr-LMOF) | 0.438 nM | Water; Lettuce; Cowpea | 365 nm/420 nm | 70 µg/kg to 5.0 mg/kg | around 900 nm | [68] | |
Parathion | not available (Zn-MOF) | 1.95 µg/L | Water | 275 nm/380 nm | 5 µg/L to 1 mg/L | around 500 nm | [69] | |
Matrine | not available (F4) | 30 ppb | DMF | 324 nm/423 nm | 0 to 5 ppm | not available | [70] | |
Nitenpyram | not available (EY@ DUT-52) | 0.94 µM | Ethanol | 340 nm/380 nm and 555 nm | 0 to 0.1 mM | around 600 nm | [71] | |
Nitenpyram | not available (EY@ DUT-52) | 1.18 µM | Ethanol | 340 nm/380 nm and 567 nm | 0 to 0.1 mM | around 600 nm | [71] | |
Glyphosate | {[Cd2(5-NO2-BDC)2L(MeOH)]∙2MeOH}n (MOF-Calix) | 2.25 µM | Water | 281 nm/329 nm | 2.5 to 45 µM | around 100 nm | [72] | |
Mycotoxins | Aflatoxin B1 | Zn2(bpdc)2(tppe) (LMOF-241) | 46 ppb | Water | 340 nm/500 nm | not available | not available | [74] |
Aflatoxin B1 | not available (Zr-CAU-24) | 64 nM | Water; spiked walnut; almond beverages | 340 nm/410 nm | 0.075 to 25 µM | around 900 nm | [75] | |
Aflatoxin B1 | not available (UiO-66-NH2) | 0.35 ng/mL | Water; corn; rice; milk | 560 nm/580 nm | 0 to 0.5 ng/mL and 1.5 to 3.0 ng/mL | around 500 nm | [76] | |
3-nitropropionic acid | not available (MPDB-PCN) | 15 µM | Sugarcane juice | 405 nm/538 nm and 655 nm | 0 to 800 μM | around 90 nm | [77] | |
3-nitropropionic acid | [Zn2(tcpbp)(4,4′-bipy)2] (1) | 1.0 µM | Colloidal solution | 320 nm/393 nm | 0 to 18 µM | not available | [78] | |
Spoilage indicators | Hypoxanthine | not available (NH2-Cu-MOF) | 3.93 µM | Water; fish samples | 338 nm/425 nm | 10 to 2000 µM | around 700 nm | [80] |
Methylamine | not available (Zr-BTDB-fcu-MOF) | 66.2 nM | Water | 400 nm/515 nm | not available | not available | [81] | |
Hydrogen Sulfide | Zr6O4(OH)4(O2C-C6H2-CO2-(CO2H)2)6·xH2O [UiO-66-(COOH)2] | 5.45 µM | Water | 305 nm/365 nm | not available | around 800 nm | [82] | |
Hydrogen Sulfide | not available (CAU-10-V-H) | 1.65 µM | HEPES buffer | 365 nm/420 nm | 70 µg/kg to 5.0 mg/kg | around 900 nm | [83] | |
Illegal additives | Malachite Green | Eu2(TDA)4(OOCCH3)2(H2O)2 (Eu-TDA) | 0.0221 µM | Ethanol | 302 nm/615 nm | not available | not available | [85] |
Clenbuterol | not available (UiO-66) | 0.17 µM | Water; urine sample | 290 nm/396 nm | 4.0 to 40 ng/mL | not available | [87] | |
Melamine | not available (UiO-66-NH2@Ru) | 0.27 µM | Water; infant formula milk | 350 nm/445 nm and 595 nm | 0.27 to 110 µM | around 300 nm | [89] | |
Cations | Cu2+ | [Eu3(bcpb)4(µ-HCOO)(µ-H2O)(H2O)2(DEF)]n | not available | DEF | 338 nm/614 nm | 0.05 to 2.5 mM | not available | [98] |
Cu2+ | not available (Eu3+:AMC-DTPA-NH-PEG-DBI-Fe3O4-DBI-PEG-NH-FITC@ZIF-8) | 0.1 nM | water | 616 nm/515 nm | 0.1 to 1 nM | around 100 nm | [99] | |
Al3+ | not available (UiO-(OH)2@RhB) | 10 nM | Water; grain beans | 420 nm/500 nm and 583 nm | 0 to 10 μM | around 200 nm | [103] | |
Cd2+ | not available (UiO-(OH)2@RhB) | 37.8 ppb | Water | 342 nm/468 nm | 0 to 500 µM | around 100 nm | [103] | |
Fe3+ | [Eu2(HICA)(BTEC)(H2O)2]n (Eu-MOF) | not available | Water | 300 nm/616 nm | 0 to 50 µM | not available | [107] | |
Fe3+ | {[Tb2(HICA)-(BTEC)(H2O)2]·2.5H2O}n (Tb-MOF) | not available | Water | 310 nm/545 nm | 0 to 40 µM | not available | [107] | |
Fe3+ | {[Cd3(μ6-cpta)2(py)2]·5H2O}n (4) | 0.21 mM | Water | 375 nm/448 nm | 10-4 to 10-3 M | not available | [108] | |
Fe3+ | not available (IRMOF-3) | 4.2 nM | Water | 360 nm/460 nm | 0.1 to 4.0 µM | around 250 nm | [109] | |
Hg2+ | not available [NH2-MIL-101(Fe)@Fe3O4] | 8 nM | Water | 495 nm/520 nm | 2 to 20 nM | around 150 nm | [110] | |
Hg2+ | not available [Fe(II)-MOF-NPs] | 1.17 nM | Water | 330 nm/422 nm | 1.0 nM to 1.0 µM | around 200 nm | [111] | |
Pb2+ | not available [NH2-MIL-125(Ti)] | 7.7 pM | Water | 360 nm/450 nm | 0 to 11 nM | around 500 nm | [113] | |
Anions | F− | not available (LMOFs) | 2 µM | Water | 275 nm/366 nm and 625 nm | 4 to 80 µM | around 800 nm | [116] |
PO4− | not available (PCN-224) | 54 nM | Water | 380 nm/650 nm and 440 nm | 0 to 10 µM | around 90 nm | [118] | |
CrO42− | [{Cd(5N3-IPA) (4,4′-azp)0.5(H2O)}(H2O)]∞(3) | 11 nM | Water | 350 nm/435 nm | not available | around 150 nm | [120] | |
Cr2O72− | [{Cd(5N3-IPA) (4,4′-azp)0.5(H2O)}(H2O)]∞(3) | 4 nM | Water | 350 nm/435 nm | not available | around 150 nm | [120] | |
Food-borne pathogen | Escherichia coli | not available (Tb-BTC) | 3 cfu/mL | Water; fruit juice | 292 nm/545 nm | 1.3 × 102 to 1.3 × 108 cfu/mL | not available | [123] |
Staphylococcus aureus | not available [NH2-MIL-53(Fe)] | 31 cfu/mL | Water | 300 nm/430 nm | 40 to 4 × 108 cfu/mL | around 700 nm | [124] | |
invA gene of Salmonella enterica | not available (Cu-TCPP) | 28 pM | Water | 589 nm/616 nm | 0.5 to 15 nM | around 900 nm | [125] | |
prfA gene of Listeria monocytogenes | not available (Cu-TCPP) | 35 pM | Water | 540 nm/562 nm | 0.1 to 12 nM | around 900 nm | [125] | |
toxR gene of Vibrio parahemolyticus | not available (Cu-TCPP) | 15 pM | Water | 490 nm/520 nm | 0.1 to 9 nM | around 900 nm | [125] | |
Ebolavirus RNA sequences | {[Dy(Cmdcp)(H2O)3](NO3)·2H2O}n (1) | 160 pM | Water | not available | not available | not available | [126] | |
Ebolavirus conserved RNA sequences | {[Cu(Cmdcp)(phen)(H2O)]2·9H2O}n (1) | 60 pM | Water | 492 nm/518 nm | 0 to 60 nmol/L | not available | [127] | |
Ebolavirus-encoded miRNA-like fragment | {[Cu(Cmdcp)(phen)(H2O)]2·9H2O}n(1) | 206 pM | Water | 578 nm/604 nm | 0 to 60 nmol/L | not available | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, X.; Sun, K.; Chen, H.; Jiang, Y.; Wu, L.; Mei, J.; Ding, Z.; Xie, J. Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics 2021, 10, 358. https://doi.org/10.3390/antibiotics10040358
Dou X, Sun K, Chen H, Jiang Y, Wu L, Mei J, Ding Z, Xie J. Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics. 2021; 10(4):358. https://doi.org/10.3390/antibiotics10040358
Chicago/Turabian StyleDou, Xilin, Kai Sun, Haobin Chen, Yifei Jiang, Li Wu, Jun Mei, Zhaoyang Ding, and Jing Xie. 2021. "Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety" Antibiotics 10, no. 4: 358. https://doi.org/10.3390/antibiotics10040358
APA StyleDou, X., Sun, K., Chen, H., Jiang, Y., Wu, L., Mei, J., Ding, Z., & Xie, J. (2021). Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics, 10(4), 358. https://doi.org/10.3390/antibiotics10040358