Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective
Abstract
:1. Introduction
2. Results
2.1. Microbiological Analyses
2.2. UHPLC-MS/MS
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sampling
5.2. Microbiological Analysis
5.3. Extraction Procedure and UHPLC-MS/MS Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; OIE; WHO. The Tripartite’s Commitment Collaborative Leadership in Addressing Health Challenges. Available online: https://www.who.int/zoonoses/tripartite_oct2017.pdf (accessed on 29 December 2020).
- Dunlop, R.H.; McEwen, S.A.; Meek, A.H.; Clarke, R.C.; Black, W.D.; Friendship, R.M. Associations among antimicrobial drug treatments and antimicrobial resistance of fecal Escherichia coli of swine on 34 farrow-to-finish farms in Ontario, Canada. Prev. Vet. Med. 1998, 34, 283–305. [Google Scholar] [CrossRef]
- Kivits, T.; Peter, H.; Beeltje, H.; Grif, J. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ. Pollut. 2018, 241, 988–998. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://amr-review.org/sites/default/files/160525_Finalpaper_withcover.pdf (accessed on 29 December 2020).
- World Organisation for Animal Health (OIE). OIE Annual Report on the Use of Antimicrobial Agents Intended for Use in Animals. Available online: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_Third_Annual_Report_AMR.pdf (accessed on 29 December 2020).
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019: Trends from 2010–2018. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2017_en.pdf (accessed on 29 December 2020).
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; De Bleecker, K.; Deprez, P. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chee-Sanford, J.C.; Mackie, R.I.; Koike, S.; Krapac, I.G.; Lin, Y.-F.; Yannarell, A.C.; Maxwell, S.; Aminov, R.I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. J. Environ. Qual. 2009, 38, 1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielmeyer, A. Occurrence and fate of antibiotics in manure during manure treatments: A short review. Sustain. Chem. Pharm. 2018, 9, 76–86. [Google Scholar] [CrossRef]
- Filippitzi, M.E.; Devreese, M.; Broekaert, K.; Rasschaert, G.; Daeseleire, E.; Meirlaen, J.; Dewulf, J. Quantitative risk model to estimate the level of antimicrobial residues that can be transferred to soil via manure, due to oral treatments of pigs. Prev. Vet. Med. 2019, 167, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Krapac, I.G.; Koike, S.; Meyer, M.T.; Snow, D.D.; Chou, S.J.; Mackie, R.I.; Roy, W.R. Long-Term Monitoring of the Occurrence of Antibiotic Residues and Antibiotic Resistance Genes in Groundwater near Swine Confinement Facilities; Report of the CSREES Project 2001-35102-10774; U.S. Deptartment of Agriculture: Washington, DC, USA, 2004; pp. 158–174.
- VLM Mestbank Mestrapport_2020.pdf. Available online: https://www.vlaanderen.be/publicaties/mestrapport (accessed on 4 March 2021).
- Siterim. Estimation des Émissions dans l’Air de CH4, NH3 et N2O par le Secteur Agricole en Région Wallonne. Rapport Final Demandé par le Ministère de la Région Wallonne; Direction Générale des Ressources Naturelles et de l’Environnement. Belgium. 2001.
- BelVetSac Belgian Veterinary Surveillance of Antibacterial Consumption—National Consumption Report. 2018. Available online: https://belvetsac.ugent.be/BelvetSac_report_2019.pdf (accessed on 29 December 2020).
- Gobin, P.; Lemaitre, F.; Marchand, S.; Couet, W.; Olivier, J.C. Assay of Colistin and Colistin Methanesulfonate in Plasma and Urine by Liquid Chromatography-Tandem Mass Spectrometry. Antimicrob. Agents Chemother. 2010, 54, 1941–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decolin, D.; Leroy, P.; Nicolas, A.; Archimbault, P. Hyphenated Liquid Chromatographic Method for the Determination of Colistin Residues in Bovine Tissues. J. Chromatogr. Sci. 1997, 35, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RIVM/SWAB MARAN 2019: Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2018. Available online: https://swab.nl/en/abstract-nethmap-2019 (accessed on 30 March 2021).
- Jones, P.W. The Effect of Temperature, Solids Content and pH on the Survival of Salmonellas in Cattle Slurry. Br. Vet. J. 1976, 132, 284–293. [Google Scholar] [CrossRef]
- Managing Farm Manures for Food Safety; Guidelines for Growers to Reduce the Risks of Microbiological Contamination of Ready-to-Eat Crops. 2009. Available online: https://www.food.gov.uk/sites/default/files/media/document/manuresguidance%281%29.pdf (accessed on 29 December 2020).
- Bouwknegt, M.; Dam-Deisz, W.; Schouten, J.; Wannet, W.; Van Pelt, W.; Visser, G.; Van De Giessen, A. Surveillance of Zoonotic Bacteria in Farm Animals in The Netherlands. Results from January 1998 until December 2000; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2003.
- McEvoy, J.D.G. Contamination of animal feedingstuffs as a cause of residues in food: A review of regulatory aspects, incidence and control. Anal. Chim. Acta 2002, 473, 3–26. [Google Scholar] [CrossRef]
- Hutchison, M.L.; Walters, L.D.; Avery, S.M.; Synge, B.A.; Moore, A. Levels of zoonotic agents in British livestock manures. Lett. Appl. Microbiol. 2004, 39, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Lailler, R.; Sanaa, M.; Chadoeuf, J.; Fontez, B.; Brisabois, A.; Colmin, C.; Millemann, Y. Prevalence of multidrug resistant (MDR) Salmonella in bovine dairy herds in western France. Prev. Vet. Med. 2005, 70, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Matthews, P.R.J. Examination of slurry from cattle for pathogenic bacteria. J. Hyg. 1975, 74, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millner, P.; Ingram, D.; Mulbry, W.; Arikan, O.A. Pathogen reduction in minimally managed composting of bovine manure. Waste Manag. 2014, 34, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Rasschaert, G.; Van Elst, D.; Colson, L.; Herman, L.; de Carvalho Ferreira, H.C.; Dewulf, J.; Decrop, J.; Meirlaen, J.; Heyndrickx, M.; Daeseleire, E. Antibiotic Residues and Antibiotic-Resistant Bacteria in Pig Slurry Used to Fertilize Agricultural Fields. Antibiotics 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, B.J.A.; Wegh, R.S.; Memelink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A.; Fogg, L.A.; Blackwell, P.A.; Blackwell, P.; Kay, P.; Pemberton, E.J.; Croxford, A. Veterinary Medicines in the Environment. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2004; pp. 1–91. ISBN 0387404023. [Google Scholar]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of Resistant Bacteria at Very Low Antibiotic Concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef] [Green Version]
- Thomaidi, V.S.; Stasinakis, A.S.; Borova, V.L.; Thomaidis, N.S. Assessing the risk associated with the presence of emerging organic contaminants in sludge-amended soil: A country-level analysis. Sci. Total. Environ. 2016, 548–549, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Larsson, D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Van Epps, A.; Blaney, L. Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional Agricultural Waste Management Practices. Curr. Pollut. Rep. 2016, 2, 135–155. [Google Scholar] [CrossRef] [Green Version]
- WHO. Critically Important Antimicrobials for Human Medicine: 6th Revision. Available online: https://www.who.int/foodsafety/publications/antimicrobials-sixth/en/ (accessed on 29 December 2020).
- Youngquist, C.P.; Mitchell, S.M.; Cogger, C.G. Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. J. Environ. Qual. 2016, 45, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Dolliver, H.; Kumar, K.; Gupta, S. Sulfamethazine Uptake by Plants from Manure-Amended Soil. J. Environ. Qual. 2007, 36, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A.; Johnson, P.; Smith, E.J.; Sinclair, C.J.; Stutt, E.; Levy, L.S. Uptake of Veterinary Medicines from Soils into Plants. J. Agric. Food Chem. 2006, 54, 2288–2297. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total. Environ. 2017, 599–600, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Flemish Law of 16 July 2010 Regarding the Protection of the Environment by Pollution of Fertilizers. Available online: http://www.ejustice.just.fgov.be/eli/besluit/2010/07/16/2010035540/staatsblad (accessed on 15 December 2020).
- Cugnon, T.; Pitchugina, E.; Planchon, V.; Lambert, R. Thème 1: Produits Résiduaires Organiques et Recyclage. Comment Prélever un Échantillon Représentatif d’un tas de Fumier au Champ? Available online: https://dial.uclouvain.be/pr/boreal/object/boreal:227601 (accessed on 8 April 2021).
- Cugnon, T.; Ferber, F.; Mahillon, J.; Lambert, R. Conclusions of a blind proficiency testing scheme in manure analysis. In Proceedings of the Seventh International Proficiency Testing Conference, Oradea, Romania, 10–13 September 2019. [Google Scholar]
- Cugnon, T.; Pitchugina, E.; Planchon, V.; Mahillon, J.; Lambert, R. A new, reliable and representative sampling procedure for fresh solid animal manure. In preparation.
- Maciel, J.F.; Gressler, L.T.; Silveira, B.P.; Dotto, E.; Balzan, C.; Matter, L.B.; Siqueira, F.M.; Vargas, A.P.C. Caution at choosing a particular colony-forming unit from faecal Escherichia coli: It may not represent the sample profile. Lett. Appl. Microbiol. 2020, 70, 130–136. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: https://www.eucast.org/Ast_of_Bacteria/ (accessed on 29 December 2020).
- Vetcompendium BCFIvet. Available online: https://www.vetcompendium.be/nl/database?f%5B0%5D=type%3Acommentaar&f%5B1%5D=field_groep%3A1839 (accessed on 30 March 2021).
Manure Type | Antibiotic Resistance Profile 1 | Number of E. coli (%) |
---|---|---|
fattening calf slurry | AMP&AZI&CHL&CIP&COL&GEN&NAL&SMX&TET&TMP | 3 (7.3%) |
AMP&AZI&FOT&TAZ&CHL&CIP&NAL&SMX&TET&TMP | 1 (2.4%) | |
AMP&AZI&CHL&CIP&GEN&NAL&SMX&TET&TMP | 2 (4.9%) | |
AMP&AZI&FOT&CIP&GEN&NAL&SMX&TET&TMP | 1 (2.4%) | |
AMP&AZI&CHL&CIP&NAL&SMX&TET&TMP | 1 (2.4%) | |
AMP&CHL&CIP&COL&GEN&NAL&SMX&TET | 1 (2.4%) | |
AMP&AZI&CHL&NAL&SMX&TET&TMP | 1 (2.4%) | |
AMP&CHL&CIP&COL&SMX&TET&TMP | 1 (2.4%) | |
AMP&CHL&CIP&SMX&TET&TMP | 2 (4.9%) | |
AMP&CHL&SMX&TET&TMP | 3 (7.3%) | |
AMP&FOT&TAZ&CHL&SMX | 2 (4.9%) | |
CHL&CIP&NAL&SMX&TMP | 1 (2.4%) | |
AMP&CHL&SMX&TET | 1 (2.4%) | |
AMP&CIP&TET&TMP | 2 (4.9%) | |
AMP&SMX&TET&TMP | 6 (14.6%) | |
CHL&GEN&SMX&TMP | 1 (2.4%) | |
AMP&SMX&TMP | 2 (4.9%) | |
AMP&TET | 1 (2.4%) | |
SMX&TMP | 1 (2.4%) | |
TET | 3 (7.3%) | |
sensitive | 5 (12.2%) | |
beef cattle farmyard manure | AMP&CHL&CIP&GEN&SMX&TET&TMP | 1 (1.2%) |
AMP&AZI&CHL&SMX&TET&TMP | 1 (1.2%) | |
AMP&FOT&TAZ&CHL&SMX&TET | 4 (4.9%) | |
AMP&CHL&SMX&TET | 2 (2.4%) | |
AMP&TET | 1 (1.2%) | |
CIP&NAL | 1 (1.2%) | |
SMX&TET | 1 (1.2%) | |
SMX&TMP | 2 (2.4%) | |
FOT | 1 (1.2%) | |
TET | 5 (6.1%) | |
sensitive | 63 (76.8%) |
Antibiotic | Number of Resistant E. coli Isolates from Fattening Calf Slurry Samples (%) | Number of Resistant E. coli Isolates from Beef Cattle Farmyard Manure Samples (%) |
---|---|---|
ampicillin | 30 (73.2%) | 9 (11.0%) |
azithromycin | 9 (22.0%) | 1 (1.2%) |
cefotaxime | 3 (7.3%) | 5 (6.1%) |
ceftazidim | 2 (4.9%) | 4 (4.9%) |
chloramphenicol | 20 (48.8%) | 8 (9.8%) |
ciprofloxacin | 16 (39.0%) | 2 (2.4%) |
colistin | 5 (12.2%) | 0 (0.0%) |
gentamicin | 8 (19.5%) | 1 (1.2%) |
meropenem | 0 (0.0%) | 0 (0.0%) |
nalidixic acid | 11 (26.8%) | 1 (1.2%) |
sulfamethoxazole | 30 (73.2%) | 11 (13.4%) |
tetracycline | 30 (73.2%) | 15 (18.3%) |
tigecycline | 0 (0.0%) | 0 (0.0%) |
trimethoprim | 28 (68.3%) | 4 (4.9%) |
Manure Type | Antibiotic Residue | Frequence of Detection (%) | Mean | Min | Max | Median |
---|---|---|---|---|---|---|
fattening calf slurry | doxycycline | 9 (100.0%) | 2776 | 441 | 10,881 | 1873 |
oxytetracycline | 9 (100.0%) | 4078 | 98 | 19,522 | 1810 | |
ciprofloxacin | 9 (100.0%) | 48 | 5 | 234 | 26 | |
enrofloxacin | 9 (100.0%) | 31 | 6 | 161 | 14 | |
flumequine | 9 (100.0%) | 536 | 3 | 4494 | 21 | |
lincomycin | 9 (100.0%) | 36 | 9 | 141 | 18 | |
tilmicosin | 8 (88.9%) | 162 | 8 | 1149 | 20 | |
sulfadiazine | 8 (88.9%) | 10,895 | 4 | 84,084 | 5 | |
marbofloxacin | 7 (77.8%) | 16 | 6 | 39 | 7 | |
tetracycline | 6 (66.7%) | 45 | 10 | 168 | 24 | |
sulfadoxine | 4 (44.4%) | 6 | 3 | 10 | 6 | |
neomycin | 3 (33.3%) | 1863 | 960 | 3186 | 1442 | |
danofloxacin | 2 (22.2%) | 7 | 6 | 8 | 7 | |
tylosin | 2 (22.2%) | 261 | 17 | 504 | 261 | |
gamithromycin | 1 (11.1%) | 6 | - | - | - | |
tylvalosin | 1 (11.1%) | 44 | - | - | - | |
sulfamethazine | 1 (11.1%) | 3 | - | - | - | |
colistin A | 1 (11.1%) | 152 | - | - | - | |
colistin B | 1 (11.1%) | 88 | - | - | - | |
beef cattle farmyard manure | oxytetracycline | 2 (8.0%) | 250 | 28 | 471 | 250 |
ciprofloxacin | 1 (4.0%) | 35 | - | - | - | |
enrofloxacin | 1 (4.0%) | 80 | - | - | - | |
paromomycin | 1 (4.0%) | 50 | - | - | - |
Antibiotic Residue | Mean LOD (µg/kg) | CV of LOD (%) | Mean LOQ (µg/kg) | CV of LOQ (%) |
---|---|---|---|---|
dihydrostreptomycin | 64 | 71 | 222 | 68 |
hygromycin | 45 | 42 | 149 | 42 |
kanamycin | 49 | 56 | 164 | 56 |
paromomycin | 88 | 52 | 293 | 52 |
spectinomycin | 66 | 41 | 221 | 41 |
streptomycin | 48 | 66 | 160 | 66 |
tobramycin | 208 | 58 | 961 | 96 |
apramycin | 66 | 63 | 219 | 63 |
gentamicin | 78 | 58 | 259 | 58 |
colistin A | 95 | 69 | 318 | 69 |
colistin B | 58 | 66 | 220 | 63 |
Aminoglycosides | β-lactam Antibiotics | Fluoroquinolones | Sulfonamides and Trimethoprim | Macrolides |
---|---|---|---|---|
apramycin | amoxicillin | ciprofloxacin | sulfachloropyridazine | erythromycin A |
dihydrostreptomycin | ampicillin | danofloxacin | sulfaclozine | gamithromycin |
gentamicin (sum of C1, C1a, C2/C2a) | benzylpenicillin | difloxacin | sulfadiazine | spiramycin |
hygromycin B | cloxacillin | enoxacin | sulfadimethoxine | tilmicosin |
kanamycin A | dicloxacillin | enrofloxacin | sulfadoxine | tulathromycin |
neomycin B | nafcillin | sulfamerazine | tylosin A | |
paromomycin | oxacillin | norfloxacin | sulfamethazine | tylvasolin |
spectinomycin | penicillin V | flumequine | sulfamethoxazole | |
streptomycin | cefalexin | marbofloxacin | sulfamethoxypyridazine | Diaminopyrimidine derivatives |
tobramycin | cefalonium | sarafloxacin | sulfapyridine | dapsone |
Polymyxins | cefapirin (+ metabolite desacetylcefapirin) | Quinolones | sulfaquinoxaline | Tetracyclines |
colistin A | cinoxacin | sulfathiazole | chlortetracycline | |
colistin B | cefazolin | nalidixic acid | trimethoprim | doxycycline |
Amphenicols | cefoperazone | oxolinic acid | Pleuromutilins | oxytetracycline |
chloramphenicol | cefquinome | Lincosamides | tiamulin | tetracycline |
florfenicol | ceftiofur (+metabolite desfuroylceftiofur cysteine disulfide) | lincomycin | valnemulin | |
thiamphenicol | pirlymicin |
Antibiotic Residue | LOD (µg/kg) | LOQ (µg/kg) | Antibiotic Residue | LOD (µg/kg) | LOQ (µg/kg) |
---|---|---|---|---|---|
β-lactam antibiotics | Quinolones | ||||
amoxicillin | 18.2 (75 1) | - | cinoxacin | 4.2 | 14.0 |
ampicillin | 5.4 | 17.9 | nalidixic acid | 5.9 | 19.8 |
benzylpenicillin | 30.8 (50 1) | - | oxolinic acid | 3.7 | 12.4 |
cefalexin | 13.1 | 29.5 | Fluoroquinolones | ||
cefalonium | 11.3 (100 1) | - | ciprofloxacin | 5.0 | 16.6 |
cefapirin | 8.2 (20 1) | - | danofloxacin | 21.6 | 72.1 |
cefazolin | 12.1 (50 1) | - | difloxacin | 3.3 | 10.9 |
cefoperazone | 16.3 (100 1) | - | enoxacin | 13.4 (5 1) | - |
cefquinome | 9.4 | 35.9 | enrofloxacin | 4.4 | 14.7 |
ceftiofur | 4.1 | 13.6 | flumequine | 2.8 | 9.2 |
cloxacillin | 7.6 | 25.3 | marbofloxacin | 7.2 | 24.1 |
desacetylcephapirin | 24.0 (50 1) | - | norfloxacin | 15.0 | 50.1 |
desfuroyceftiofur cysteine disulfide | 7.3 (100 1) | - | sarafloxacin | 4.1 | 13.5 |
dicloxacillin | 4.1 | 13.8 | Sulfonamides and trimethoprim | ||
nafcillin | 2.9 | 9.8 | sulfapyridine | 4.5 | 14.9 |
oxacillin | 9.9 | 32.9 | sulfachloropyridazine | 6.2 | 18.8 |
penicillin V | 12.4 | 41.4 | sulfaclozine | 9.5 | 31.7 |
Tetracyclines | sulfadiazine | 6.6 (10 1) | - | ||
chloortetracycline | 10.3 | 30.5 | sulfadimethoxine | 5.2 | 17.3 |
doxycycline | 8.6 | 28.6 | sulfadoxine | 5.0 | 16.6 |
oxytetracycline | 7.1 (15 1) | - | sulfamerazine | 5.5 (8 1) | - |
tetracycline | 5.6 | 18.6 | sulfamethazine | 4.8 | 16.0 |
Macrolides | sulfamethoxazole | 3.9 | 13.1 | ||
erythromycin A | 5.6 | 18.5 | sulfamethoxypyridazine | 5.6 | 18.8 |
gamithromycin | 5.2 | 17.4 | sulfaquinoxaline | 7.5 | 25.1 |
spiramycin | 2.7 | 9.2 | sulfathiazole | 10.4 | 34.7 |
tilmicosin | 16.6 | 50.1 | trimetoprim | 2.4 | 7.9 |
tulathromycin | 6.3 | 20.9 | Lincosamides | ||
tylosin A | 2.9 | 9.8 | lincomycin | 2.6 | 8.7 |
tylvalosin | 3.5 | 11.8 | pirlimycin | 1.6 | 5.2 |
Pleuromutilins | Amphenicols | ||||
tiamulin | 1.8 | 6.1 | chloramphenicol | 1.5 (5 1) | - |
valnemulin | 2.3 | 7.7 | florfenicol | 2.9 | 9.5 |
Diaminopyrimidine derivatives | thiamphenicol | 9.1 (10 1) | - | ||
dapsone | 6.9 | 23.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huygens, J.; Daeseleire, E.; Mahillon, J.; Van Elst, D.; Decrop, J.; Meirlaen, J.; Dewulf, J.; Heyndrickx, M.; Rasschaert, G. Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective. Antibiotics 2021, 10, 410. https://doi.org/10.3390/antibiotics10040410
Huygens J, Daeseleire E, Mahillon J, Van Elst D, Decrop J, Meirlaen J, Dewulf J, Heyndrickx M, Rasschaert G. Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective. Antibiotics. 2021; 10(4):410. https://doi.org/10.3390/antibiotics10040410
Chicago/Turabian StyleHuygens, Judith, Els Daeseleire, Jacques Mahillon, Daan Van Elst, Johan Decrop, Jurgen Meirlaen, Jeroen Dewulf, Marc Heyndrickx, and Geertrui Rasschaert. 2021. "Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective" Antibiotics 10, no. 4: 410. https://doi.org/10.3390/antibiotics10040410
APA StyleHuygens, J., Daeseleire, E., Mahillon, J., Van Elst, D., Decrop, J., Meirlaen, J., Dewulf, J., Heyndrickx, M., & Rasschaert, G. (2021). Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective. Antibiotics, 10(4), 410. https://doi.org/10.3390/antibiotics10040410