Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections
Abstract
:1. Introduction
2. Biological Activities of Lectins
2.1. Antibacterial Activity of Lectins
2.2. Antibiofilm Activity of Lectins
3. Microbiota in Host Health
3.1. Gut Microbiota Modulation
3.1.1. Prebiotics and Probiotics
3.1.2. Fecal Microbiome Transplantation (FMT)
3.1.3. Strategies to Combat Oxidative Stress Based on Gut Microbiome Modulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Wu, J.; Ding, C.; Cui, Y.; Zhou, Y.; Li, Y.; Deng, M.; Wang, C.; Xu, K.; Ren, J.; et al. Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: An observational trend study. Lancet Infect. Dis. 2017, 17, 716–725. [Google Scholar] [CrossRef]
- Tse, B.N.; Adalja, A.A.; Houchens, C.; Larsen, J.; Inglesby, T.V.; Hatchett, R. Challenges and opportunities of nontraditional approaches to treating bacterial infections. Clin. Infect. Dis. 2017, 65, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Walvekar, P.; Gannimani, R.; Govender, T. Combination drug therapy via nanocarriers against infectious diseases. Eur. J. Pharm. Sci. 2019, 127, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Zignol, M.; Dean, A.S.; Falzon, D.; van Gemert, W.; Wright, A.; van Deun, A.; Portaels, F.; Laszlo, A.; Espinal, M.A.; Pablos-Méndez, A.; et al. Twenty years of global surveillance of antituberculosis-drug resistance. N. Engl. J. Med. 2016, 375, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics 2019, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Relman, D.A.; Lipsitch, M. Microbiome as a tool and a target in the effort to address antimicrobial resistance. Proc. Natl. Acad. Sci. USA 2018, 115, 12902–12910. [Google Scholar] [CrossRef] [Green Version]
- Gargiullo, L.; Del Chierico, F.; D’Argenio, P.; Putignani, L. Gut microbiota modulation for multidrug-resistant organism decolonization: Present and future perspectives. Front. Microbiol. 2019, 10, 1704. [Google Scholar] [CrossRef]
- Desmond, P.; Best, J.P.; Morgenroth, E.; Derlon, N. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res. 2018, 132, 211–221. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 552–554. [Google Scholar] [CrossRef]
- Eze, E.; Chenia, H.; Zowalaty, M. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect. Drug Resist. 2018, 11, 2277. [Google Scholar] [CrossRef] [Green Version]
- Arrrowsmith, J., III. Phase III and submission failures 2007–2010. Nat. Rev. Drug Discov. 2011, 10, 87. [Google Scholar] [CrossRef]
- Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 2017, 11, 57. [Google Scholar] [PubMed] [Green Version]
- Tang, S.S.; Apisarnthanarak, A.; Hsu, Y. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Adv. Drug Deliv. Rev. 2014, 78, 3–13. [Google Scholar] [CrossRef]
- Honoré, N.; Cole, S.T. Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother. 1994, 38, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theuretzbacher, U.; Piddock, L.J.V. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe 2019, 26, 61–72. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [Green Version]
- Van, V.S.; Viljoen, A. Plantased antimicrobial studies–methods and approaches to study the interaction between natural products. Planta Med. 2011, 77, 1168–1182. [Google Scholar]
- Safdar, N.; Handelsman, J.; Maki, D.G. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect. Dis. 2004, 4, 519–527. [Google Scholar] [CrossRef]
- Joung, D.K.; Kang, O.H.; Seo, Y.S.; Zhou, T.; Lee, Y.S.; Han, S.H.; Mun, S.H.; Kong, R.; Song, H.J.; Shin, D.W.; et al. Luteolin potentiates the effects of aminoglycoside and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus in vitro. Exp. Ther. Med. 2016, 11, 2597–2601. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Gurav, P. PhytoNanotechnology: Enhancing delivery of plant based anti-cancer drugs. Front. Pharmacol. 2018, 8, 1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elumalai, P.; Rubeena, A.S.; Arockiaraj, J.; Wongpanya, R.; Cammarata, M.; Ringø, E.; Vaseeharan, B. The role of lectins in finfish: A review. Rev. Fish. Sci. Aquac. 2019, 27, 152–169. [Google Scholar] [CrossRef]
- Ghazarian, H.; Idoni, B.; Oppenheimer, S.B. A glycobiology review: Carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011, 113, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkouh, O.; Ng, T.; Singh, S.; Yin, C.; Dan, X.; Chan, Y.; Pan, W.; Cheung, R. Lectins with anti-HIV activity: A review. Molecules 2015, 20, 648–668. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.C.B.B.; Silva, P.M.S.; Lima, V.L.M.; Pontual, E.V.; Paiva, P.M.G.; Napoleão, T.H.; Correia, M.T.S. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid. Based Complement. Altern. Med. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Johannssen, T.; Lepenies, B. Glycan-based cell targeting to modulate immune responses. Trends Biotechnol. 2017, 35, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Ríos, P.; Mooibroek, T.J.; Carter, T.S.; Williams, C.; Wilson, M.R.; Crump, M.P.; Davis, A.P. Enantio selective carbohydrate recognition by synthetic lectins in water. Chem. Sci. 2017, 8, 4056–4061. [Google Scholar] [CrossRef] [Green Version]
- Bhutia, S.K.; Panda, P.K.; Sinha, N.; Praharaj, P.P.; Bhol, C.S.; Panigrahi, D.P.; Mahapatra, K.K.; Saha, S.; Patra, S.; Mishra, S.R.; et al. Plant lectins in cancer therapeutics: Targeting apoptosis and autophagy-dependent cell death. Pharmacol. Res. 2019, 144, 8–18. [Google Scholar] [CrossRef]
- De Juan, L.L.; Recio, V.G.; López, P.J.; Juan, T.G.; Manuel, C.D.; Díaz, D.C. Pharmaceutical applications of lectins. J. Drug Deliv. Sci. Technol. 2017, 42, 126–133. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef]
- Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front. Chem. 2018, 6, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, R.R.; Silva, C.R.; Santos, V.F.; Barbosa, C.R.; Muniz, D.F.; Santos, A.L.; Santos, M.H.; Rocha, B.A.; Batista, K.L.; Costa, L.M., Jr.; et al. Parkia platycephala lectin enhances the antibiotic activity against multi-resistant bacterial strains and inhibits the development of Haemonchus contortus. Microb. Pathog. 2019, 135, 103629. [Google Scholar] [CrossRef]
- Bourne, Y.; Ayouba, A.; Rougé, P.; Cambillau, C. Interaction of a legume lectin with two components of the bacterial cell wall. A crystallographic study. J. Biol. Chem. 1994, 269, 9429–9435. [Google Scholar] [CrossRef]
- Mukherjee, S.; Zheng, H.; Derebe, M.G.; Callenberg, K.M.; Partch, C.L.; Rollins, D.; Propheter, D.C.; Rizo, J.; Grabe, M.; Jiang, Q.X.; et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2014, 505, 103–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iordache, F.; Ionita, M.; Mitrea, L.I.; Fafaneata, C.; Pop, A. Antimicrobial and antiparasitic activity of lectins. Curr. Pharm. Biotechnol. 2015, 16, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.M.S.; Falcão-Silva, V.S.; Siqueira-Junior, J.P.; Costa, M.J.C.; Diniz, M.F.F.M. Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica L., Anacardiaceae) peel. Rev. Bras. Farmacogn. 2011, 21, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Shang, D.; Liu, Y.; Jiang, F.; Ji, F.; Wang, H.; Han, X. Synergistic antibacterial activity of Trp-containing antibacterial peptides in combination with antibiotics against multidrug-resistant Staphylococcus epidermidis. Front. Microbiol. 2019, 10, 2719. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Parai, D.; Banerjee, M.; Hossain, S.T.; Mukherjee, S.K. Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm. Int. J. Med Microbiol. 2020, 310, 151410. [Google Scholar] [CrossRef]
- Torres, M.É.L.M.; Brandão-Costa, R.M.P.; Santos, J.V.O.; Cavalcanti, I.M.F.; Silva, M.M.; Nascimento, T.P.; Nascimento, C.O.; Porto, A.L.F. DdeL, a novel thermostable lectin from Dypsis decaryi seeds: Biological properties. Process Biochem. 2019, 86, 169–176. [Google Scholar] [CrossRef]
- Da Silva, J.D.F.; Da Silva, S.P.; Da Silva, P.M.; Vieira, A.M.; De Araújo, L.C.C.; De, A.L.T.; De Oliveira, A.P.S.; Do Nascimento Carvalho, L.V.; Da Rocha Pitta, M.G.; De Melo Rêgo, M.J.B.; et al. Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int. J. Biol. Macromol. 2019, 126, 291–297. [Google Scholar]
- Carvalho, A.S.; Da Silva, M.V.; Gomes, F.S.; Paiva, P.M.G.; Malafaia, C.B.; Da Silva, T.D.; Vaz, A.F.M.; Da Silva, A.G.; Arruda, I.R.S.; Napoleão, T.H.; et al. Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds. Int. J. Biol. Macromol. 2015, 75, 402–408. [Google Scholar] [CrossRef]
- Santi-Gadelha, T.; Rocha, B.A.M.; Gadelha, C.A.A.; Silva, H.C.; Castellon, R.E.R.; Gonçalves, F.J.T.; Toyama, D.O.; Toyama, M.H.; De Souza, A.J.F.; Beriam, L.O.S.; et al. Effects of a lectin-like protein isolated from Acacia farnesiana seeds on phytopathogenic bacterial strains and root-knot nematode. Pestic. Biochem. Physiol. 2012, 103, 15–22. [Google Scholar] [CrossRef]
- Costa, R.M.P.B.; Vaz, A.F.M.; Oliva, M.L.V.; Coelho, L.C.B.B.; Correia, M.T.S.; Carneiro-da-Cunha, M.G. A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochem. 2010, 45, 526–533. [Google Scholar] [CrossRef]
- Santos, V.F.; Araújo, A.C.J.; Freitas, P.R.; Sila, A.L.P.; Santos, A.L.E.; Da Rocha, B.A.M.; Silva, R.R.S.; Almeira, D.V.; Garcia, W.; Coutinho, H.D.M.; et al. Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin. Microb. Pathog. 2021, 152, 104639. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.C.; Procópio, T.F.; Ferreira, G.R.S.; Alves, R.R.V.; Sá, R.A.; Paiva, P.M.G.; Ingmer, H.; Coelho, L.C.B.B.; Napoleão, T.H. Anti-staphylococcal effects of Myracrodruon urundeuva lectins on nonresistant and multidrug resistant isolates. J. Appl. Microbiol. 2020, 130, 745–754. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Da Silva, B.R.; De Oliveira Silva, J.N.; De Moura, M.C.; Soares, T.; Feitosa, A.P.S.; Brayner, F.A.; Alves, L.C.; Paiva, P.M.G.; Damborg, P.; et al. Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic effects with antibiotics against β-lactamase-producing Escherichia coli. Int. J. Biol. Macromol. 2019, 135, 931–939. [Google Scholar] [CrossRef]
- Procópio, T.F.; Moura, M.C.; Bento, E.F.L.; Soares, T.; Coelho, L.C.B.B.; Bezerra, R.P.; Mota, R.A.; Porto, A.L.F.; Paiva, P.M.G.; Napoleão, T.H. Looking for alternative treatments for bovine and caprine mastitis: Evaluation of the potential of Calliandra surinamensis leaf pinnulae lectin (CasuL), both alone and in combination with antibiotics. Microbiol. Open 2019, 8, e869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, G.R.S.; Brito, J.S.; Procópio, T.F.; Santos, N.D.L.; De Lima, B.J.R.C.; Coelho, L.C.B.B.; Navarro, D.M.A.F.; Paiva, P.M.G.; Soares, T.; De Moura, M.C.; et al. Antimicrobial potential of Alpinia purpurata lectin (ApuL): Growth inhibitory action, synergistic effects in combination with antibiotics, and antibiofilm activity. Microb. Pathog. 2018, 124, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Muslim, S.N. Improving of antibacterial activity for antibiotics by purified and characterized lectin from Acinetobacter baumannii. Iraqi J. Biotechnol. 2015, 14, 9–22. [Google Scholar]
- Lima, I.M.S.F.; Zagmignan, A.; Santos, D.M.; Maia, H.S.; Dos Santos Silva, L.; Da Silva Cutrim, B.S.; Vieira, S.L.; Bezerra Filho, C.M.; De Souza, E.M.; Napoleão, T.H.; et al. Schinus terebinthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci. Rep. 2019, 9, 18159. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Nickol, M.E.; Ciric, J.; Falcinelli, S.D.; Chertow, D.S.; Kindrachuk, J. Characterization of host and bacterial contributions to lung barrier dysfunction following co-infection with 2009 pandemic influenza and methicillin resistant Staphylococcus aureus. Viruses 2019, 11, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, Y.; Lovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 24, S44–S51. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Chattopadhyay, M.K.; Grossart, H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Santos, V.F.; Araújo, A.C.J.; Silva, A.L.F.; Almeida, D.V.; Freitas, P.R.; Santos, A.L.E.; Rocha, B.A.M.; Garcia, W.; Leme, A.M.; Bondan, E.; et al. Dioclea violacea lectin modulates the gentamicin activity against multi-resistant strains and induces nefroprotection during antibiotic exposure. Int. J. Biol. Macromol. 2020, 146, 841–852. [Google Scholar] [CrossRef]
- Santos, V.F.; Costa, M.S.; Campina, F.F.; Rodrigues, R.R.; Santos, A.L.E.; Pereira, F.M.; Batista, K.L.R.; Silva, R.C.; Pereira, R.O.; Rocha, B.A.M.; et al. The Galactose-Binding lectin isolated from Vatairea macrocarpa seeds enhances the effect of antibiotics against Staphylococcus aureus–resistant strain. Probiotics Antimicrob. Proteins 2020, 12, 82–90. [Google Scholar] [CrossRef]
- Almeida, G.D.; Godoi, E.P.; Santos, E.C.; De Lima, L.R.P.; De Oliveira, M.E. Extrato aquoso de Allium sativum potencializa a ação dos antibióticos vancomicina, gentamicina e tetraciclina frente Staphylococcus aureus. Rev. Ciências Farm. Básica E Apl. 2013, 34, 487–492. [Google Scholar]
- Alhariri, M.; Majrashi, M.A.; Bahkali, A.H.; Almajed, F.S.; Azghani, A.O.; Khiyami, M.; Alyamani, E.J.; Aljohani, S.M.; Halwani, M.A. Efficacy of neutral and negatively charged liposome-loaded gentamicin on planktonic bacteria and biofilm communities. Int. J. Nanomed. 2017, 12, 6949. [Google Scholar] [CrossRef] [Green Version]
- Pereira, Y.F.; Do Socorro Costa, M..; Tintino, S.R.; Rocha, J.E.; Rodrigues, F.G.; De Sá Barreto Feitosa, M.; De Menezes, I.R.; Coutinho, H.D.M.; Da Costa, J.G.M.; De Sousa, E.O. Modulation of the antibiotic activity by the Mauritia flexuosa (buriti) fixed oil against methicillin-resistant Staphylococcus aureus (MRSA) and other multidrug-resistant (MDR) bacterial strains. Pathogens 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Coughlan, L.M.; Cotter, P.D.; Hill, C.; Alvarez-Ordóñez, A. New weapons to fight old enemies: Novel strategies for the (bio)control of bacterial biofilms in the food industry. Front. Microbiol. 2016, 7, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, M. Staphylococcal biofilms. Gram Posit. Pathog. 2019, 699–711. [Google Scholar] [CrossRef]
- Elisha, I.L.; Botha, F.S.; McGaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Altern. Med. 2017, 17, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoñanzas, F.; Goossens, H. The economics of antibiotic resistance: A claim for personalised treatments. Eur. J. Health Econ. 2019, 20, 483–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, S.; Muzammil, S.; Rasool, M.H.; Nisar, Z.; Hussain, S.Z.; Sabri, A.N.; Jamil, S. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol. Immunol. 2018, 62, 211–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, M.C.; Trentin, D.S.; Napoleão, T.H.; Primon-Barros, M.; Xavier, A.S.; Carneiro, N.P.; Paiva, P.M.G.; Macedo, A.J.; Coelho, L.C.B.B. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: Antibacterial, antibiofilm and anti-adhesive properties. J. Appl. Microbiol. 2017, 123, 861–874. [Google Scholar] [CrossRef]
- Procópio, T.F.; De Siqueira Patriota, L.L.; De Moura, M.C.; Da Silva, P.M.; De Oliveira, A.P.S.; Do Nascimento Carvalho, L.V.; De Albuquerque Lima, T.; Soares, T.; Da Silva, T.D.; Breitenbach Barroso Coelho, L.C.; et al. CasuL: A new lectin isolated from Calliandra surinamensis leaf pinnulae with cytotoxicity to cancer cells, antimicrobial activity and antibiofilm effect. Int. J. Biol. Macromol. 2017, 98, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.P.; Bhattacharjee, S.; Singha, S.; Mandal, S.; Mondal, G.; Gupta, P.; Chatterjee, B.P. A glucose/mannose binding lectin from litchi (Litchi chinensis) seeds: Biochemical and biophysical characterizations. Biochem. Biophys. Rep. 2016, 6, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Fu, T.K.; Ng, S.K.; Chen, Y.E.; Lee, Y.C.; Demeter, F.; Herczeg, M.; Borbás, A.; Chiu, C.H.; Lan, C.Y.; Chen, C.L.; et al. Rhamnose binding protein as an anti-bacterial agent—Targeting biofilm of Pseudomonas aeruginosa. Mar. Drugs 2019, 17, 355. [Google Scholar] [CrossRef] [Green Version]
- Mah, T.F.C.; O’toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Ciofu, O.; Rojo-Molinero, E.; Macià, M.D.; Oliver, A. Antibiotic treatment of biofilm infections. Apmis 2017, 125, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Moser, C.; Wang, H.Z.; Høiby, N.; Song, Z.J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Covington, A.; Pamer, E.G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 2017, 279, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Barko, P.C.; McMichael, M.A.; Swanson, K.S.; Williams, D.A. The gastrointestinal microbiome: A review. J. Vet. Intern. Med. 2018, 32, 9–25. [Google Scholar] [CrossRef]
- Thomas, S.; Izard, J.; Walsh, E.; Batich, K.; Chongsathidkiet, P.; Clarke, G.; Sela, D.A.; Muller, A.J.; Mullin, J.M.; Albert, K.; et al. The host microbiome regulates and maintains human health: A primer and perspective for non-microbiologists. Cancer Res. 2017, 77, 1783–1812. [Google Scholar] [CrossRef] [Green Version]
- Picot-Guéraud, R.; Batailler, P.; Caspar, Y.; Hennebique, A.; Mallaret, M.R. Bacteremia caused by multidrug-resistant bacteria in a French university hospital center: 3 years of collection. Am. J. Infect. Control 2015, 43, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.S.E.; Tay, H.L.; Tan, S.H.; Lee, T.H.; Ng, T.M.; Lye, D. Gut microbiota modulation: Implications for infection control and antimicrobial stewardship. Adv. Ther. 2020, 37, 4054–4067. [Google Scholar] [CrossRef] [PubMed]
- Mattila-Sandholm, T.; Myllärinen, P.; Crittenden, R.; Mogensen, G.; Fondén, R.; Saarela, M. Technological challenges for future probiotic foods. Int. Dairy J. 2002, 12, 173–182. [Google Scholar] [CrossRef]
- Wong, J.M.W.; De Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Hotel, A.C.P.; Cordoba, A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 2001, 5, 1–10. [Google Scholar]
- Eggers, S.; Barker, A.K.; Valentine, S.; Hess, T.; Duster, M.; Safdar, N. Effect of Lactobacillus rhamnosus HN001 on carriage of Staphylococcus aureus: Results of the impact of probiotics for reducing infections in veterans (IMPROVE) study. BMC Infect. Dis. 2018, 18, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; De Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.; Tijssen, J.G.; et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvas, C.L.; Dahl Jørgensen, S.M.; Jørgensen, S.P.; Storgaard, M.; Lemming, L.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 2019, 156, 1324–1332. [Google Scholar] [CrossRef] [Green Version]
- Pehrsson, E.C.; Tsukayama, P.; Patel, S.; Mejía-Bautista, M.; Sosa-Soto, G.; Navarrete, K.M.; Calderon, M.; Cabrera, L.; Hoyos-Arango, W.; Bertoli, M.T.; et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016, 533, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, V.; Vincent, C.; Edens, T.; Miller, M.; Manges, A.R. Antimicrobial resistance gene acquisition and depletion following fecal microbiota transplantation for recurrent Clostridium difficile infection. Clinical Infectious Diseases 2018, 66, 456–457. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.L.; Schiestl, R.H. Intestinal microbiome and lymphoma development. Cancer J. 2014, 20, 190. [Google Scholar] [CrossRef] [Green Version]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Obin, M.S.; Zhao, L. The gut microbiota, obesity and insulin resistance. Mol. Asp. Med. 2013, 34, 39–58. [Google Scholar] [CrossRef]
- Yang, C.; Deng, Q.; Xu, J.; Wang, X.; Hu, C.; Tang, H.; Huang, F. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Res. Int. 2019, 116, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Castelli, V.; Grassi, D.; Bocale, R.; d’Angelo, M.; Antonosante, A.; Cimini, A.; Ferri, C.; Desideri, G. Diet and brain health: Which role for polyphenols? Curr. Pharm. Des. 2018, 24, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Sun, J.; Ding, Y.; Le, G.; Shi, Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl. Microbiol. Biotechnol. 2013, 97, 1689–1697. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Feelisch, M.; Faber, K.N.; Pasch, A.; Dijkstra, G.; van Goor, H. Oxidative Stress and Redox-Modulating Therapeutics in Inflammatory Bowel Disease. Trends Mol. Med. 2020, 26, 1034–1046. [Google Scholar] [CrossRef]
- Ballway, J.W.; Song, B.J. Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction and Fatty Liver Disease. Antioxidants 2021, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Luo, Q.; Nie, R.; Yang, X.; Tang, Z.; Chen, H. Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Crit. Rev. Food Sci. Nutr. 2020, 1–19. [Google Scholar] [CrossRef]
- Jandú, J.J.B.; Moraes, N.; Roberval, N.; Zagmignan, A.; de Sousa, E.M.; Brelaz-de-Castro, M.C.A.; dos Santos Correia, M.T.; da Silva, L.C.N. Targeting the immune system with plant lectins to combat microbial infections. Front. Pharmacol. 2017, 8, 671. [Google Scholar] [CrossRef] [Green Version]
- Lucius, K. Dietary Lectins: Gastrointestinal and Immune Effects. Altern. Complement. Ther. 2020, 26, 168–174. [Google Scholar] [CrossRef]
- Banwell, J.G.; Howard, R.; Kabir, I.; Costerton, J.W. Bacterial overgrowth by indigenous microflora in the phytohemagglutinin-fed rat. Can. J. Microbiol. 1988, 34, 1009–1013. [Google Scholar] [CrossRef]
- Rabinovich, G.A.; Rubinstein, N.; Toscano, M.A. Role of galectins in inflammatory and immunomodulatory processes. Biochim. Biophys. Acta (BBA) Gen. Subj. 2002, 1572, 274–284. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly) phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, E. Polyphenolic nutraceuticals to combat oxidative stress through microbiota modulation. Front. Pharmacol. 2019, 10, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016, 8, 78. [Google Scholar] [CrossRef]
- Gowd, V.; Karim, N.; Shishir, M.R.I.; Xie, L.; Chen, W. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends Food Sci. Technol. 2019, 93, 81–93. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target Microorganism | Lectin | Reference |
---|---|---|
Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Providencia stuartii, ESBL, Staphylococcus aureus, MRSA, Streptococcus mutans, and Enterococcus faecalis | Dypsis decaryi (Ddel) | [39] |
Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus | Portulaca elatior (PeRoL) | [40] |
Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Micrococcus luteus, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, Streptococcus pyogenes, and Xanthomonas campestres | Apuleia leiocarpa (ApulSL) | [41] |
Xanthomonas axonopodis and Clavibacter michiganensis | Acacia farnesiana (AfaL) | [42] |
B. subtilis, K. pneumoniae, Staphylococcus epidermidis, and E. faecalis | Phthirusa pyrifolia (PpyLL) | [43] |
Lectin | Microrganism | MIC | MBC | Synergism | Reference |
---|---|---|---|---|---|
Canavalia ensiformis (ConA) | MDR S. aureus | ≥1024 μg/mL | NR | Gentamicin MICs were reduced in association with ConA (64 to 12.7 μg/mL) | [44] |
Canavalia ensiformis (ConA) | MDR E. coli | ≥1024 μg/mL | NR | Gentamicin MICs were reduced in association with ConA (32 to 20 μg/mL) | [44] |
Myracrodruon urundeuva (MuBL) | Staphylococcus aureus | 12.5 µg/mL | 100.0 µg/mL | MuBL (0.4 μg/mL) and cefotaxime (0.2 μg/mL) | [45] |
Myracrodruon urundeuva (MuHL) | Staphylococcus aureus | 25.0 µg/mL | 100.0 µg/mL | MuHL (0.8 μg/mL) and cefoxitin (0.2 μg/mL) MuHL (0.2 μg/mL) and cefotaxime (0.2 μg/mL) | [45] |
Myracrodruon urundeuva (MuLL) | Staphylococcus aureus | 25.0 µg/mL | 100.0 µg/mL | MuLL (0.8 μg/mL) and cefoxitin (0.2 μg/mL) MuLL (0.4 μg/mL) and cefotaxime (1 μg/mL) | [45] |
Myracrodruon urundeuva (MuBL) | CA-MRSA | 25.0 µg/mL | 100.0 µg/mL | MuBL (6.2 μg/mL) and cefoxitin (0.004 μg/mL) MuBL (6.2 μg/mL) and cefotaxime (0.004 μg/mL) | [45] |
Myracrodruon urundeuva (MuHL) | CA-MRSA | 25.0 µg/mL | 100.0 µg/mL | MuHL (0.0007 μg/mL) and cefoxitin (32 μg/mL) MuHL (0.0007 μg/mL) and cefotaxime (32 μg/mL) | [45] |
Myracrodruon urundeuva (MuLL) | CA-MRSA | 50 µg/mL | 100.0 µg/mL | MuLL (3.1 μg/mL) and cefoxitin (0.004 μg/mL) MuLL (6.2 μg/mL) and cefotaxime (0.004 μg/mL) | [45] |
Parkia platycephala (PPL) | Multi-resistant S. aureus | ≥1024 μg/mL | NR | Gentamicin MICs were reduced in association with DVL (64 to 25.4 μg/mL) | [32] |
Punica granatum sarcotesta (PgTeL) | ESBL Escherichia coli | 25 to 50.0 μg/mL | 50 to 100.0 μg/mL | PgTel (0.003 to 0.48 μg/mL) and ceftazidime (0.78 to 12.5 μg/mL) | [46] |
Punica granatum sarcotesta (PgTeL) | MBL Escherichia coli | 25 μg/mL | 100.0 μg/mL | PgTel (0.097 μg/mL) and ceftazidime (0.39 μg/mL) | [46] |
Punica granatum sarcotesta (PgTeL) | ESBL Escherichia coli | 25 to 50.0 μg/mL | 50 to 100.0 μg/mL | PgTeL (6.25) and ampicillin (0.006 μg/mL) | [46] |
Punica granatum sarcotesta (PgTeL) | ESBL Escherichia coli | 25 to 50.0 μg/mL | 50 to 100.0 μg/mL | PgTeL (0.0030 μg/mL) and carbenicillin (12.5 μg/mL) | [46] |
Punica granatum sarcotesta (PgTeL) | MBL Escherichia coli | 25 μg/mL | 100.0 μg/mL | PgTeL (0.78 μg/mL) and cefuroxime (0.048 μg/mL) | [46] |
Calliandra surinamensis pinnulae (CasuL) | Staphylococcus sp. | 15.0 µg/mL | No activity | Casul (0.00183 μg/mL) and ampicillin (0.0156 μg/mL) | [47] |
Calliandra surinamensis pinnulae (CasuL) | Staphylococcus aureus | 3.75 µg/mL | No activity | Casul (2.30 × 10−4, 3.66 × 10−3 μg/mL) and tetracycline (0.12, 3.12 × 10−2 μg/mL) | [47] |
Alpinia purpurata (ApuL) | MRSA | >400 µg/mL | No activity | ApuL (0.125 μg/mL to 50 μg/mL) and oxacillin (0.003 μg/mL to 7.7 μg/mL × 10−6) | [48] |
Alpinia purpurata (ApuL) | MDR Pseudomonas aeruginosa | >400 | No activity | ApuL (0.003 μg/mL) and ceftazidime (2 μg/mL) | [48] |
Lectin from Acinetobacter baumannii | Staphylococcus aureus | 256 µg/mL | No activity | Lectin and ceftazidime (32 µg/mL) | [49] |
Lectin from Acinetobacter baumannii | Escherichia coli | 1024 µg/mL | No activity | Lectin and ceftazidime (128 µg/mL) | [49] |
Target Microorganism | Lectin | Reference |
---|---|---|
β-lactamase-producing Escherichia coli | Punica granatum (PgTeL) | [46] |
S. aureus and Candida albicans | Alpinia purpurata (ApuL) | [48] |
Serratia marcescens and Bacillus sp. | Moringa oleífera (WSMoL) | [66] |
S. aureus, MRSA, E. coli, and Staphylococcus saprophyticus | Calliandra surinamensis (Casul) | [67] |
P. aeruginosa | Litchi chinensis | [68] |
Lectin | Microorganism | Antibiofilm Activity | Reference | |
---|---|---|---|---|
Alone | Combination | |||
Recombinant hemolymph plasma lectin (rHPLOE) | Pseudomonas aeruginosa PA14 | rHPLOE at 0.63 μM inhibits 51% of P. aeruginosa biofilm formation rHPLOE at 5 μM inhibits 24% of preformed biofilm of P. aeruginosa | 25 μM of azithromycin + rHPLOE at concentrations of 0.31, 0.63, 1.25 and 2.5 µM inhibit 19%, 21%, 39% and 43% of preformed biofilm of P. aeruginosa, respectively 25 µg/mL of cephalexin + rHPLOE at concentrations of 0.31, 0.63, 1.25 and 2.5 µM inhibit 33%, 33%, 38% and 50% of preformed biofilm of P. aeruginosa, respectively | [69] |
Calliandra surinamensis pinnulae lectin (CasuL) | Staphylococcus aureus | CasuL at 3.75 µg/mL inhibits 30% of S. aureus biofilm formation | CasuL-tetracycline (0.00023 µg/mL + 0.12 µg/mL) inhibits approximately 26% of S. aureus biofilm formation CasuL-tetracycline (0.00366 µg/mL + 0.0312 µg/mL) inhibits approximately 60% of Ssp6PD biofilm formation CasuL-ampicillin (0.00183 µg/mL + 0.0156 µg/mL) inhibits approximately 35% of Ssp01 biofilm formation | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.V.d.O.; Porto, A.L.F.; Cavalcanti, I.M.F. Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections. Antibiotics 2021, 10, 520. https://doi.org/10.3390/antibiotics10050520
Santos JVdO, Porto ALF, Cavalcanti IMF. Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections. Antibiotics. 2021; 10(5):520. https://doi.org/10.3390/antibiotics10050520
Chicago/Turabian StyleSantos, João Victor de Oliveira, Ana Lúcia Figueiredo Porto, and Isabella Macário Ferro Cavalcanti. 2021. "Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections" Antibiotics 10, no. 5: 520. https://doi.org/10.3390/antibiotics10050520
APA StyleSantos, J. V. d. O., Porto, A. L. F., & Cavalcanti, I. M. F. (2021). Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections. Antibiotics, 10(5), 520. https://doi.org/10.3390/antibiotics10050520