Synergistic Activity of New Diclofenac and Essential Oils Combinations against Different Candida spp.
Abstract
:1. Introduction
2. Results
2.1. EOs Chemical Composition
2.2. Antifungal Activity
3. Discussion
4. Material and Methods
4.1. Material
4.2. Methods
4.2.1. Gas Chromatography and Mass Spectrometry Equipment
4.2.2. Compound Identification
4.2.3. Preparation of The Test Solution
4.2.4. Antifungal and Susceptibility Tests
4.2.5. Checkerboard Test
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSS | Diclofenac Sodium Salt |
Eos | EssentialOils |
GC | Gas Chromatography |
MS | Mass Spectrometer |
SEM | Structural Equation Modeling |
LRI | Linear Retention Indices |
AI | Arithmetic Index |
SI/MS | Similarity Index/Mass Spectra |
MIC | Minimal Inhibitory Concentration |
FICI | fractional inhibitory concentration |
References
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Neglected Trop. Dis. 2020, 14, e0007964. [Google Scholar] [CrossRef] [Green Version]
- Vallabhaneni, S.; Cleveland, A.A.; Farley, M.M.; Harrison, L.H.; Schaffner, W.; Beldavs, Z.G.; Derado, D.; Pham, C.D.; Lockhart, S.R.; Smith, R.M. Epidemiology and Risk Factors for Echinocandin Non-susceptible Candida glabrata Bloodstream Infections: Data from a Large Multisite Population-Based Candidemia Surveillance Program, 2008–2014. Open Forum Infect. Dis. 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Ricotta, E.E.; Lai, Y.L.; Babiker, A.; Strich, J.R.; Kadri, S.S.; Lionakis, M.S.; Prevots, D.R.; Adjemian, J. Invasive Candidiasis Species Distribution and Trends, United States, 2009-2017. J. Infect. Dis. 2021, 223, 1295–1302. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Gibbs, D.L.; Newell, V.A.; Ellis, D.; Tullio, V.; Rodloff, A.; Fu, W.; Ling, T.A. Global Antifungal Surveillance Group. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: A 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J. Clin. Microbiol. 2010, 48, 1366–1377. [Google Scholar] [PubMed] [Green Version]
- Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manage. 2014, 10, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; MacDougall, C.; Ostrosky-Zeichner, L.; Perfect, J.R.; Rex, J.H. Combination antifungal therapy. Antimicrob. Agents Chemother. 2004, 48, 693–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, D.C.; Ferreira-Pereira, A. Insights on the anticandidal activity of non-antifungal drugs. J. Mycol. Med. 2019, 29, 253–259. [Google Scholar] [CrossRef]
- Lagadinou, M.; Onisor, M.O.; Rigas, A.; Musetescu, D.-V.; Gkentzi, D.; Assimakopoulos, S.F.; Panos, G.; Marangos, M. Antimicrobial Properties on Non-Antibiotic Drugs in the Era of Increased Bacterial Resistance. Antibiot. Chemother. 2020, 9, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudy, A.E. Non-antibiotics, Efflux Pumps and Drug Resistance of Gram-negative Rods. Pol. J. Microbiol. 2018, 67, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.; Silva, P. Non-Antibiotic Compounds: The Activity of the NSAID Diclofenac on Bacteria- A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 340–351. [Google Scholar] [CrossRef]
- Leão, C.; Borges, A.; Simões, M. NSAIDs as a Drug Repurposing Strategy for Biofilm Control. Antibiotics 2020, 9, 591. [Google Scholar] [CrossRef] [PubMed]
- De Matos, R.F.; Mendonça, L.C.V.; da Silva Souza, K.G.; Fonseca, A.A.D.; Costa, E.M.S.; de Lima, M.V.D.; Vieira, J.M.D.S.; de Brito, M.T.F.M.; Monteiro, M.C. Nimesulide inhibits pathogenic fungi: PGE2-dependent mechanisms. Folia Microbiol. 2017, 62, 169–174. [Google Scholar] [CrossRef]
- Bink, A.; Kucharíková, S.; Neirinck, B.; Vleugels, J.; Van Dijck, P.; Cammue, B.P.; Thevissen, K. The Nonsteroidal Antiinflammatory Drug Diclofenac Potentiates the In Vivo Activity of Caspofungin Against Candida albicans Biofilms. J. Infect. Dis. 2012, 206, 1790–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, T.; Tóth, R.; Gácser, A. Eicosanoid production by Candida parapsilosis and other pathogenic yeasts. Virulence 2019, 10, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Brilhante, R.S.N.; Brasil, J.A.; Oliveira, J.S.D.; Pereira, V.S.; Pereira-Neto, W.D.A.; Sidrim, J.J.C.; Rocha, M.F.G. Diclofenac exhibits synergism with azoles against planktonic cells and biofilms of Candida tropicalis. Biofouling 2020, 36, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Her. J. Med. Microbiol. 2011, 60, 612–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ríos, J.L.; Recio, M.C. Medicinal Plants and Antimicrobial Activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential oils and their natural active compounds presenting antifungal properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the Antifungal Activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules 2019, 24, 3148. [Google Scholar] [CrossRef] [Green Version]
- Szutt, A.; Dołhańczuk-Śródka, A.; Sporek, M. Evaluation of Chemical Composition of Essential Oils Derived from Different Species Leaves. Ecol. Chem. Eng. 2020, 26, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. ClinMicrobiol Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Di Vito, M.; Fracchiolla, G.; Mattarelli, P.; Modesto, M.; Tamburro, A.; Padula, F.; Agatensi, L.; Giorlandino, F.R.; Girolamo, A.; Carbonara, G.G.; et al. Probiotic and tea tree oil treatments improve therapy of vaginal candidiasis: A preliminary clinical study. Med. J. Obstet. Gynecol. 2016, 4, 1–6. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Pub Corp.: Carol Stream, IL, USA, 2007; ISBN 9781932633214. [Google Scholar]
- NIST Chemistry WebBook. 2018. Available online: http://webbook.nist.gov/chemistry (accessed on 17 April 2021).
- Koo, I.; Kim, S.; Zhang, X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography–mass spectrometry. J. Chromatog. A 2013, 1298, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Wan, K.X.; Vidavsky, I.; Gross, M.L. Comparing similar spectra: From similarity index to spectral contrastangle. J. Am. Soc. Mass Spectrom. 2002, 13, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Rosato, A.; Catalano, A.; Carocci, A.; Carrieri, A.; Carone, A.; Caggiano, G.; Franchini, F.; Corbo, F.; Montagna, M.T. In vitro interactions between anidulafungin and nonsteroidal anti-inflammatory drugs on biofilms of Candida spp. Bioorg. Med. Chem. 2016, 24, 1002–1005. [Google Scholar] [CrossRef]
- Ashraf, A.; Yousri, F.; Taha, N.; El-Waly, O.A.; Ramadan, A.E.K.; Ismail, E.; Hamada, R.; Khalaf, M.; Refaee, M.; Ali, S.; et al. Effect of some non-steroidal anti-inflammatory drugs on growth, adherence and mature biofilms of Candida spp. Am. J. Microbiol. Res. 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the synergistic action of MenthaPiperita essential oil with common antimicrobials. PLoS ONE 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, L.; Sblano, S.; Fracchiolla, G.; Corbo, F.; Clodoveo, M.L.; Rosato, A. Antibiotics—Mentha piperita essential oil synergism inhibits mature bacterial biofilm. Chem. Today 2020, 38, 49–52. [Google Scholar]
- Rosato, A.; Sblano, S.; Salvagno, L.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics. Antibiotics 2020, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Maggi, F.; Cianfaglione, K.; Conti, F.; Ciaschetti, G.; Rakotosaona, R.; Fracchiolla, G.; Clodoveo, M.L.; Franchini, C.; Corbo, F. Chemical composition, and antibacterial activity of seven uncommon essential oils. J. Essent. Oil Res. 2018, 30, 233–243. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Milillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 31 January 2021).
N | Components | LRI | AI | Pelargonium graveolens | Mentha × piperita | Melaleuca alternifolia | |||
---|---|---|---|---|---|---|---|---|---|
AREA% ± SEM | SI/MS | AREA% ± SEM | SI/MS | AREA% ± SEM | SI/MS | ||||
1 | propanoic acid, ethylester | 712 | 714 | 0.12 ± 0.012 | 86 | 0.11 ± 0.009 | 91 | ||
2 | α-thujene | 924 | 926 | 0.04 ± 0.001 | 91 | 0.88 ± 0.020 | 91 | ||
3 | α-pinene | 933 | 933 | 0.59 ± 0.050 | 97 | 1.40 ± 0.010 | 97 | 2.14 ± 0.120 | 96 |
4 | 1-methyl-3-(2-methyl-1-propenyl)-cyclopentane | 972 | 972 | 0.18 ± 0.050 | 80 | ||||
5 | β-pinene | 975 | 975 | 1.43 ± 0.500 | 96 | ||||
6 | trans-carene | 977 | 977 | 7.72 ± 2.110 | 91 | ||||
7 | β-myrcene | 987 | 988 | 0.13 ± 0.100 | 91 | ||||
8 | 2,6-dimethyl- 2,6-octadiene | 991 | 990 | 1.01 ± 0.090 | 96 | ||||
9 | 3-octanol | 995 | 995 | 0.13 ± 0.150 | 90 | ||||
10 | o-cymene | 1021 | 1021 | 0.10 ± 0.005 | 91 | 0.44 ± 0.050 | 95 | ||
11 | p-cymene | 1025 | 1025 | 2.21 ± 0.990 | 95 | ||||
12 | (Z)−β-ocimene | 1027 | 1027 | 0.10 ± 0.007 | 95 | ||||
13 | 3-isopropenyl-5,5-dimethyl-cyclopentene | 1029 | 1028 | 1.68 ± 0.030 | 81 | ||||
14 | 1,8-cineole | 1031 | 1031 | 9.07 ± 2.090 | 98 | 2.13 ± 0.700 | 98 | ||
15 | limonene | 1033 | 1033 | 0.22 ± 0.040 | 94 | ||||
16 | β-phellandrene | 1035 | 1035 | 0.53 ± 0.010 | 91 | 0.23 ± 0.005 | 91 | ||
17 | γ-terpinene a | 1058 | 1060 | 0.11 ± 0.002 | 96 | 17.18 ± 2.120 | 94 | ||
18 | cis-linalool oxide | 1070 | 1074 | 0.37 ± 0.001 | 90 | ||||
19 | α−terpinolene | 1081 | 1082 | 3.80 ± 0.020 | 96 | ||||
20 | linalol | 1099 | 1098 | 4.68 ± 0.850 | 95 | ||||
21 | rose oxide | 1112 | 1112 | 1.67 ± 0.050 | 90 | ||||
22 | cis-p-menth-2-en-1-ol | 1119 | 1119 | 0.33 ± 0.005 | 93 | ||||
23 | p-menthone | 1154 | 1154 | 2.19 ± 0.970 | 98 | ||||
24 | iso-menthone a | 1164 | 1165 | 4.61 ± 1.700 | 98 | 23.99 ± 2.490 | 97 | ||
25 | menthol a | 1168 | 1169 | 0.14 + 0.003 | 91 | 35.60 + 1.760 | 91 | ||
26 | terpinen-4-ol a | 1174 | 1174 | 33.28 + 2.750 | 83 | ||||
27 | isopulegone | 1177 | 1177 | 0.16 + 0.002 | 96 | ||||
28 | neo-iso-menthol | 1187 | 1188 | 9.33 + 1.100 | 96 | ||||
29 | α-terpineol | 1191 | 1190 | 0.45 + 0.090 | 80 | 0.59 + 0.010 | 87 | 2.84 + 0.350 | 86 |
30 | citronellol a | 1220 | 1221 | 26.15 ± 3.260 | 98 | ||||
31 | pulegone | 1230 | 1236 | 0.11 ± 0.010 | 83 | 1.21 ± 0.400 | 98 | ||
32 | citral | 1240 | 1240 | 0.70 ± 0.001 | 96 | ||||
33 | piperitone | 1250 | 1253 | 1.20 ± 0.030 | 96 | ||||
34 | geraniol a | 1254 | 1254 | 11.70 ± 1.020 | 96 | ||||
35 | citronellyl formate | 1272 | 1275 | 6.85 ± 0.920 | 96 | ||||
36 | geraniol formate | 1280 | 1281 | 2.69 ± 0.100 | 86 | ||||
37 | menthyl acetate | 1294 | 1294 | 0.40 ± 0.005 | 91 | ||||
38 | 1,5,5-trimethyl-6-methylen-cyclohexene | 1335 | 1338 | 0.33 ± 0.070 | 86 | ||||
39 | citronellyl acetate | 1358 | 1355 | 0.48 ± 0.050 | 94 | ||||
40 | neryl acetate | 1364 | 1367 | 1.47 ± 0.250 | 86 | ||||
41 | isoledene | 1376 | 1373 | 1.07 ± 0.090 | 95 | ||||
42 | β-bourbonene | 1380 | 1382 | 1.80 ± 0.140 | 95 | ||||
43 | langifolene | 1405 | 1405 | 0.12 ± 0.009 | 90 | ||||
44 | 1-H-indene-1-ethylideneocta hydro-7a-methyl-(1z,3a.a,7a.b) | 1410 | 1409 | 0.64 ± 0.040 | 95 | ||||
45 | α-guajene | 1413 | 1413 | 0.39 ± 0.001 | 98 | ||||
46 | (E)-caryophyllene | 1420 | 1419 | 1.63 ± 0.020 | 99 | 2.13 ± 0.950 | 99 | 1.09 ± 0.013 | 99 |
47 | β-copaene | 1428 | 1428 | 1.06 ± 0.015 | 99 | ||||
48 | neryl propionate | 1430 | 1430 | 0.15 ± 0.023 | 80 | ||||
49 | aromadendrene | 1440 | 1440 | 0.70 ± 0.090 | 99 | 4.41 ± 1.090 | 99 | ||
50 | citronellyl propionate | 1445 | 1445 | 1.06 ± 0.030 | 64 | ||||
51 | humulene | 1452 | 1452 | 0.38 ± 0.001 | 97 | 0.12 ± 0.090 | 95 | 0.20 ± 0.001 | 97 |
52 | α−amorphene | 1455 | 1455 | 0.87 ± 0.025 | 96 | 0.32 ± 0.015 | 99 | ||
53 | (E)-β-farnesene | 1459 | 1459 | 0.10 ± 0.080 | 95 | ||||
54 | γ−muurolene | 1474 | 1474 | 0.73 ± 0.055 | 90 | 0.15 ± 0.090 | 83 | ||
55 | epi-bicyclosesquiphellandrene | 1482 | 1482 | 1.00 ± 0.078 | 87 | ||||
56 | 4,11-selinadiene | 1483 | 1485 | 0.18 ± 0.074 | 92 | ||||
57 | δ−selinene | 1490 | 1493 | 0.17 ± 0.007 | 97 | ||||
58 | ledene | 1495 | 1495 | 3.93 ± 1.670 | 95 | ||||
59 | δ−cadiene | 1524 | 1524 | 2.98 ± 0.430 | 95 | ||||
60 | α-panasinsene | 1527 | 1527 | 0.16 + 0.009 | 93 | ||||
61 | α−calacorene | 1542 | 1540 | 0.11 ± 0.001 | 91 | ||||
62 | geranyl butyrate | 1554 | 1555 | 1.49 ± 0.012 | 96 | ||||
63 | neo-isolongifolene | 1558 | 1558 | 0.18 ± 0.004 | 83 | ||||
64 | spathulenol | 1578 | 1578 | 0.35 ± 0.002 | 91 | 0.11 ± 0.008 | 99 | ||
65 | phenylethyl tiglate | 1584 | 1584 | 1.48 + 0.015 | 90 | ||||
66 | globulol | 1585 | 1585 | 0.54 ± 0.001 | 98 | ||||
67 | caryophyllene oxyde | 1592 | 1592 | 0.28 ± 0.070 | 95 | ||||
68 | γ−eudesmol a | 1620 | 1619 | 7.02 ± 2.050 | 99 | ||||
69 | (E)-citronellyl tiglate | 1665 | 1667 | 0.38 ± 0.009 | 91 | ||||
70 | geranyl tiglate | 1701 | 1700 | 1.57 ± 0.080 | 91 | ||||
% Characterized | 89.40 | 96.22 | 82.78 | ||||||
Others | 10.60 | 3.78 | 17.22 |
Strains | EO | DSS | Synergism | ||
---|---|---|---|---|---|
MIC a ± SD | MIC a ± SD | DSS μg/mL b | EO μg/mL c | FICI d | |
C. albicans ATCC 10231 | 1.00 ± 0.480 | 1.02 ± 0.350 | 0.51 | 0.05 | 0.30 |
C. albicans ATCC 90028 | 1.00 ± 0.450 | 1.02 ± 0.370 | 0.51 | 0.05 | 0.30 |
C. glabrata ATCC 15126 | 1.00 ± 0.500 | 2.05 ± 0.790 | 0.10 | 0.51 | 0.30 |
C. tropicalis ATCC 750 | 1.00 ± 0.450 | 1.02 ± 0.350 | 0.20 | 0.06 | 0.22 |
C. kefyr ATCC 204093 | 0.25 ± 0.020 | 2.05 ± 0.800 | 0.20 | 0.13 | 0.30 |
C. krusei ATCC 6258 | 0.50 ± 0.030 | 1.02 ± 0.390 | 0.06 | 0.31 | 0.30 |
C. albicans A18 | 1.00 ± 0.080 | 2.05 ± 0.500 | 0.10 | 0.51 | 0.30 |
C. albicans 10A12 | 0.50 ± 0.030 | 1.02 ± 0.310 | 0.20 | 0.13 | 0.30 |
C. albicans 810 | 1.00 ± 0.20 | 1.02 ± 0.250 | 0.20 | 0.13 | 0.30 |
C. krusei 31A29 | 1.00 ± 0.310 | 2.05 ± 0.620 | 0.41 | 0.25 | 0.30 |
C. parapsilosis 11A13 | 1.00 ± 0.060 | 1.02 ± 0.200 | 0.05 | 0.51 | 0.30 |
C. parapsilosis 1A1 | 0.50 ± 0.020 | 2.05 ± 0.830 | 0.41 | 0.13 | 0.30 |
C. parapsilosis 911 | 0.25 ± 0.060 | 1.02 ± 0.270 | 0.10 | 0.06 | 0.22 |
C. parapsilosis 910 | 0.12 ± 0.040 | 1.02 ± 0.410 | 0.10 | 0.03 | 0.22 |
C. tropicalis 810 | 0.50 ± 0.020 | 1.02 ± 0.450 | 0.10 | 0.12 | 0.22 |
Strains | EO | DSS | Synergism | ||
---|---|---|---|---|---|
MIC a ± SD | MIC a ± SD | DSS μg/mL b | EO μg/mL c | FICI d | |
C. albicans ATCC 10231 | 0.12 ± 0.021 | 1.02 ± 0.350 | 0.10 | 0.03 | 0.23 |
C. albicans ATCC 90028 | 0.25 ± 0.017 | 1.02 ± 0.370 | 0.20 | 0.06 | 0.30 |
C. glabrata ATCC 15126 | 0.25 ± 0.015 | 2.05 ± 0.790 | 0.20 | 0.06 | 0.23 |
C. tropicalis ATCC 750 | 0.12 ± 0.013 | 1.02 ± 0.350 | 0.10 | 0.03 | 0.23 |
C. kefyr ATCC 204093 | 0.12 ± 0.014 | 2.05 ± 0.800 | 0.10 | 0.06 | 0.30 |
C. krusei ATCC 6258 | 0.50 ± 0.021 | 1.02 ± 0.390 | 0.20 | 0.12 | 0.30 |
C. albicans A18 | 0.25 ± 0.021 | 2.05 ± 0.500 | 0.41 | 0.06 | 0.33 |
C. albicans 10A12 | 0.12 ± 0.012 | 1.02 ± 0.310 | 0.20 | 0.03 | 0.30 |
C. albicans 810 | 0.12 ± 0.010 | 1.02 ± 0.250 | 0.10 | 0.03 | 0.23 |
C. krusei 31A29 | 0.50 ± 0.084 | 2.05 ± 0.620 | 0.41 | 0.12 | 0.30 |
C. parapsilosis 11A13 | 0.50 ± 0.082 | 1.02 ± 0.200 | 0.20 | 0.06 | 0.30 |
C. parapsilosis 1A1 | 0.25 ± 0.070 | 2.05 ± 0.830 | 0.41 | 0.06 | 0.26 |
C. parapsilosis 911 | 0.25 ± 0.072 | 1.02 ± 0.270 | 0.20 | 0.03 | 0.30 |
C. parapsilosis 910 | 0.25 ± 0.079 | 1.02 ± 0.410 | 0.05 | 0.12 | 0.30 |
C. tropicalis 810 | 0.25 ± 0.052 | 1.02 ± 0.450 | 0.10 | 0.12 | 0.35 |
Strains | EO | DSS | Synergism | ||
---|---|---|---|---|---|
MIC a ± SD | MIC a ± SD | DSS μg/mL b | EO μg/mL c | FICI d | |
C. albicans ATCC 10231 | 0.50 ± 0.021 | 1.02 ± 0.350 | 0.20 | 0.25 | 0.45 |
C. albicans ATCC 90028 | 0.50 ± 0.020 | 1.02 ± 0.370 | 0.10 | 0.13 | 0.23 |
C. glabrata ATCC 15126 | 0.50 ± 0.012 | 2.05 ± 0.790 | 0.20 | 0.13 | 0.23 |
C. tropicalis ATCC 750 | 0.50 ± 0.015 | 1.02 ± 0.350 | 0.20 | 0.03 | 0.23 |
C. kefyr ATCC 204093 | 1.00 ± 0.112 | 2.05 ± 0.800 | 0.82 | 0.51 | // |
C. krusei ATCC 6258 | 0.50 ± 0.025 | 1.02 ± 0.390 | 0.40 | 0.25 | // |
C. albicans A18 | 0.25 ± 0.001 | 2.05 ± 0.500 | 0.82 | 0.15 | 0.43 |
C. albicans 10A12 | 0.50 ± 0.025 | 1.02 ± 0.310 | 0.20 | 0.25 | 0.45 |
C. albicans 810 | 0.50 ± 0.022 | 1.02 ± 0.250 | 0.40 | 0.06 | 0.45 |
C. krusei 31A29 | 0.50 ± 0.027 | 2.05 ± 0.620 | 0.82 | 0.25 | // |
C. parapsilosis 11A13 | 0.50 ± 0.023 | 1.02 ± 0.200 | 0.05 | 0.25 | 0.30 |
C. parapsilosis 1A1 | 0.50 ± 0.030 | 2.05 ± 0.830 | 0.20 | 0.25 | 0.35 |
C. parapsilosis 911 | 0.50 ± 0.042 | 1.02 ± 0.270 | 0.05 | 0.25 | 0.30 |
C. parapsilosis 910 | 0.50 ± 0.050 | 1.02 ± 0.410 | 0.40 | 0.03 | 0.43 |
C. tropicalis 810 | 0.50 ± 0.045 | 1.02 ± 0.450 | 0.20 | 0.25 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosato, A.; Altini, E.; Sblano, S.; Salvagno, L.; Maggi, F.; de Michele, G.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Synergistic Activity of New Diclofenac and Essential Oils Combinations against Different Candida spp. Antibiotics 2021, 10, 688. https://doi.org/10.3390/antibiotics10060688
Rosato A, Altini E, Sblano S, Salvagno L, Maggi F, de Michele G, Carocci A, Clodoveo ML, Corbo F, Fracchiolla G. Synergistic Activity of New Diclofenac and Essential Oils Combinations against Different Candida spp. Antibiotics. 2021; 10(6):688. https://doi.org/10.3390/antibiotics10060688
Chicago/Turabian StyleRosato, Antonio, Elisabetta Altini, Sabina Sblano, Lara Salvagno, Filippo Maggi, Giuliana de Michele, Alessia Carocci, Maria Lisa Clodoveo, Filomena Corbo, and Giuseppe Fracchiolla. 2021. "Synergistic Activity of New Diclofenac and Essential Oils Combinations against Different Candida spp." Antibiotics 10, no. 6: 688. https://doi.org/10.3390/antibiotics10060688
APA StyleRosato, A., Altini, E., Sblano, S., Salvagno, L., Maggi, F., de Michele, G., Carocci, A., Clodoveo, M. L., Corbo, F., & Fracchiolla, G. (2021). Synergistic Activity of New Diclofenac and Essential Oils Combinations against Different Candida spp. Antibiotics, 10(6), 688. https://doi.org/10.3390/antibiotics10060688