The Design of Alapropoginine, a Novel Conjugated Ultrashort Antimicrobial Peptide with Potent Synergistic Antimicrobial Activity in Combination with Conventional Antibiotics
Abstract
:1. Introduction
2. Results
2.1. Alapropoginine Design, Synthesis, and Purification
2.2. In Vitro Antimicrobial Activity of Alapropoginine
2.3. Hemolytic Activity of Alapropoginine
2.4. Determination of the MIC and MBC of the Individual Antibiotics
2.5. Synergistic Activity of Alapropoginine in Combination with Conventional Antibiotics
3. Discussion
4. Materials and Methods
4.1. Design and Synthesis of Alapropoginine
4.2. Determination of the Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) for Alapropoginine
4.3. MIC and MBC Determination of Individual Antibiotics
4.4. MIC Determination of Alapropoginine in Combination with Antibiotics
4.5. Determination of the Synergistic Activity of Alapropoginine
4.6. Erythrocyte Hemolytic Assay
- A0 is OD 450 of the blank.
- And A is OD 450 of control (0.1% Triton X-100).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattar, C.; Edwards, S.; Baraldi, E.; Hood, J. An overview of the global antimicrobial resistance research and development hub and the current landscape. Curr. Opin. Microbiol. 2020, 57, 56–61. [Google Scholar] [CrossRef]
- Khan, A.; Manzoor, K.; Sultan, A.; Saeed, M.; Rafique, M.; Noushad, S.; Talib, A.; Rentschler, S.; Deigner, H.-P. Pulling the Brakes on Fast and Furious Multiple Drug-Resistant (MDR) Bacteria. Int. J. Mol. Sci. 2021, 22, 859. [Google Scholar] [CrossRef]
- Karakonstantis, S.; I Kritsotakis, E.; Gikas, A. Pandrug-resistant Gram-negative bacteria: A systematic review of current epidemiology, prognosis and treatment options. J. Antimicrob. Chemother. 2020, 75. [Google Scholar] [CrossRef]
- Johura, F.-T.; Tasnim, J.; Barman, I.; Biswas, S.R.; Jubyda, F.T.; Sultana, M.; George, C.M.; Camilli, A.; Seed, K.D.; Ahmed, N.; et al. Colistin-resistant Escherichia coli carrying mcr-1 in food, water, hand rinse, and healthy human gut in Bangladesh. Gut Pathog. 2020, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Elbediwi, M.; Pan, H.; Biswas, S.; Li, Y.; Yue, M. Emerging colistin resistance in Salmonella enterica serovar Newport isolates from human infections. Emerg. Microbes Infect. 2020, 9, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Beyer, P.; Paulin, S. The Antibacterial Research and Development Pipeline Needs Urgent Solutions. ACS Infect. Dis. 2020, 6, 1289–1291. [Google Scholar] [CrossRef]
- Matos de Opitz, C.L.; Sass, P. Tackling antimicrobial resistance by exploring new mechanisms of antibiotic action. Future Med. 2020, 15, 703–708. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef]
- Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. Curr. Med. Chem. 2017, 24, 4303–4314. [Google Scholar] [CrossRef]
- Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Current state of a dual behaviour of antimicrobial peptides—Therapeutic agents and promising delivery vectors. Chem. Biol. Drug Des. 2017, 90, 1079–1093. [Google Scholar]
- Deslouches, B.; Montelaro, R.C.; Urish, K.L.; Di, Y.P. Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics 2020, 12, 501. [Google Scholar] [CrossRef]
- van der Does, A.M.; Hiemstra, P.S.; Mookherjee, N. Antimicrobial host defence peptides: Immunomodulatory functions and translational prospects. Antimicrob. Pept. 2019, 1117, 149–171. [Google Scholar]
- Urawadee, R.; Sarojini, S. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjugate Chem. 2017, 28, 2673–2686. [Google Scholar]
- Raheem, N.; Straus, S.K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions. Front. Microbiol. 2019, 10, 2866. [Google Scholar] [CrossRef] [Green Version]
- Almaaytah, A.; Mohammed, G.K.; Abualhaijaa, A.; Al-Balas, Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des. Dev. Ther. 2017, 11, 3159. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Gallo, R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, Y.; Song, Z.; Tan, Z.; Cheng, J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv. Drug Deliv. Rev. 2021, 17, 261–280. [Google Scholar] [CrossRef]
- Almaaytah, A.; Qaoud, M.T.; Mohammed, G.K.; Abualhaijaa, A.; Knappe, D.; Hoffmann, R.; Al-Balas, Q. Antimicrobial and Antibiofilm Activity of UP-5, an Ultrashort Antimicrobial Peptide Designed Using Only Arginine and Biphenylalanine. Pharm. 2018, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Helal, M.H.; Abbas, S.Y.; Salem, M.A.; Farag, A.A.; Ammar, Y.A. Synthesis and characterization of new types of 2-(6-methoxy-2-naphthyl) propionamide derivatives as potential antibacterial and antifungal agents. Med. Chem. Res. 2013, 22, 5598–5609. [Google Scholar] [CrossRef]
- Matthew, L. A Comparison of Disc Diffusion and Microbroth Dilution Methods for the Detection of Antibiotic Resistant Subpopulations in Gram Negative Bacilli. Ph.D. Thesis, University of Washingtom, Seattle, WA, USA, 2015. [Google Scholar]
- Sueke, H.; Kaye, S.B.; Neal, T.; Hall, A.; Tuft, S.; Parry, C.M. An in vitro investigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4151–4155. [Google Scholar] [CrossRef] [Green Version]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Ana Rita, B.; Telzerow, A.; Bobonis, J.; Banzhaf, M.; Mateus, A.; Selkrig, J.; Huth, E. Species-specific activity of antibacterial drug combinations. Nature 2018, 559, 259–263. [Google Scholar]
- Alberto, O.; Hansen, P.R. Hemolytic activity of antimicrobial peptides. In Antimicrobial Peptides; Humana Press: New York, NY, USA, 2017; pp. 427–435. [Google Scholar]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.D.; Coast, J. Antimicrobial resistance: A global response. Bull. World Heal. Organ. 2002, 80, 126–133. [Google Scholar]
- Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Heal. Organ. 2020, 98, 442–442A. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Nielsen, T.B.; Brass, E.P.; Gilbert, D.N.; Bartlett, J.G.; Spellberg, B. Sustainable discovery and development of antibiotics—Is a nonprofit approach the future? N. Engl. J. Med. 2019, 381, 503. [Google Scholar] [CrossRef]
- Shlaes, D.M.; Bradford, P.A. Antibiotics—From There to Where?: How the antibiotic miracle is threatened by resistance and a broken market and what we can do about it. Pathog. Immun. 2018, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Ng, S.M.S.; Yap, J.M.; Lau, Q.Y.; Ng, F.M.; Ong, E.H.Q.; Barkham, T.; Teo, J.W.P.; Alfatah, M.; Kong, K.W.; Hoon, S.; et al. Structure-activity relationship studies of ultra-short peptides with potent activities against fluconazole-resistant Candida albicans. Eur. J. Med. Chem. 2018, 150, 479–490. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, L.; Liu, L.; Yue, S.; Wang, J.; Cao, Z. Influence of Different Aromatic Hydrophobic Residues on the Antimicrobial Activity and Membrane Selectivity of BRBR-NH2 Tetrapeptide. Langmuir 2020, 36, 15331–15342. [Google Scholar] [CrossRef]
- Travkova, O.G.; Moehwald, H.; Brezesinski, G. The interaction of antimicrobial peptides with membranes. Adv. Colloid Interface Sci. 2017, 247, 521–532. [Google Scholar] [CrossRef]
- Shahmiri, M.; Cornell, B.; Mechler, A. Phenylalanine residues act as membrane anchors in the antimicrobial action of Aurein 1.2. Biointerphases 2017, 12, 05G605. [Google Scholar] [CrossRef] [PubMed]
- Arenas, I.; Villegas, E.; Walls, O.; Barrios, H.; Rodríguez, R.; Corzo, G. Antimicrobial Activity and Stability of Short and Long Based Arachnid Synthetic Peptides in the Presence of Commercial Antibiotics. Molecules 2016, 21, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampshoff, F.; Willcox, M.D.P.; Dutta, D. A Pilot Study of the Synergy between Two Antimicrobial Peptides and Two Common Antibiotics. Antibiotics 2019, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Almaaytah, A.; Alnaamneh, A.; Abualhaijaa, A.; Alshari’, N.; Al-Balas, Q. In Vitro Synergistic Activities of the Hybrid Antimicrobial Peptide MelitAP-27 in Combination with Conventional Antibiotics Against Planktonic and Biofilm Forming Bacteria. Int. J. Pept. Res. Ther. 2016, 22, 497–504. [Google Scholar] [CrossRef]
- Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T.J. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2010, 54, 602–609. [Google Scholar]
- Glukhov, E.; Stark, M.; Burrows, L.L.; Deber, C.M. Basis for Selectivity of Cationic Antimicrobial Peptides for Bacterial Versus Mammalian Membranes. J. Biol. Chem. 2005, 280, 33960–33967. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecues 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
Gram-Positive Strains | ATCC | MIC Value (µg/mL) | MBC Value (µg/mL) |
S. aureus | 29215 | 9.152 | 9.152 |
MRSA | BAA-41 | 17.16 | 17.16 |
Gram-Negative Strains | ATCC | MIC Value (µg/mL) | MBC Value (µg/mL) |
E. coli | 25922 | 20.5 | 20.5 |
ESBL E. coli | BAA-3054 | 28.6 | 28.6 |
Concentration (µg/mL) | Hemolysis % |
---|---|
5.72 | 0 |
11.44 | 0 |
22.88 | 0 |
45.76 | 0 |
68.64 | 0 |
91.52 | 0 |
114.4 | 1 |
Antibiotics | S. aureus (ATCC 29215) | MRSA (ATCC BAA-41) | E. coli (ATCC 25922) | ESBL E. coli (BAA-3054) |
---|---|---|---|---|
MIC-(MBC) | MIC-(MBC) | MIC-(MBC) | MIC-(MBC) | |
Levofloxacin | 0.57-(0.57) | 11.44-(11.44) | 2.28-(2.28) | 13.7-(13.7) |
Chloramphenicol | 22.8-(34.32) | 28.6-(45.7) | 91.5-(114.4) | 171-(228.8) |
Rifampicin | 0.028-(0.028) | 0.0057-(0.0057) | 17.6-(17.65) | 57-(57) |
Amoxicillin | 5.72-(5.72) | 45.7-(45.7) | 28.6-(28.6) | 228.8-(286) |
Clarithromycin | 0.57-(1.71) | 143-(171) | 143-(171) | 143-(228.8) |
Doxycycline | 2.2-(11.44) | 11.44-(22.88) | 1.7-(17.6) | 18.3-(28.6) |
Vancomycin | 5.72-(5.72) | 2.28-(2.28) | 228.8-(228.8) | 286-(286) |
Cefixime | 4.57-(4.57) | 34.32-(34.32) | 6.8-(6.8) | 91.5-(91.5) |
Bacterial Strains | Antibiotic | Antibiotic MIC | Antibiotic/Alapropoginine MICs | Alapropoginine MIC | Alapropoginine/Antibiotic MIC | |
---|---|---|---|---|---|---|
S. aureus (ATCC 29215) | Levofloxacin | 0.57 | 0.057 | 9.152 | 0.143 | 0.12 |
Chloramphenicol | 34.3 | 11.4 | 9.152 | 2.2 | 0.58 | |
Rifampicin | 0.025 | 0.015 | 9.152 | 0.57 | 0.66 | |
Amoxicillin | 5.7 | 2.8 | 9.152 | 6.86 | 1.25 | |
Clarithromycin | 1.7 | 0.57 | 9.152 | 4.5 | 0.83 | |
Doxycycline | 11.4 | 2.2 | 9.152 | 4.5 | 0.7 | |
Vancomycin | 0.5 | 0.028 | 9.152 | 2.2 | 0.3 | |
Cefixime | 0.57 | 1.144 | 9.152 | 4.5 | 0.75 | |
MRSA (ATCC BAA-41) | Levofloxacin | 11.4 | 9.152 | 17.1 | 6.86 | 1.2 |
Chloramphenicol | 45.7 | 22.8 | 17.1 | 6.86 | 0.9 | |
Rifampicin | 0.005 | 0.0025 | 17.1 | 11.4 | 1.17 | |
Amoxicillin | 45.7 | 28.6 | 17.1 | 11.4 | 1.3 | |
Clarithromycin | 228.8 | 91.5 | 17.1 | 17.1 | 1.4 | |
Doxycycline | 22.8 | 11.4 | 17.1 | 6.86 | 0.9 | |
Vancomycin | 2.2 | 0.57 | 17.1 | 4.5 | 0.5 | |
Cefixime | 34.3 | 17.1 | 17.1 | 9.152 | 1.03 | |
E. coli (ATCC 25922) | Levofloxacin | 2.2 | 0.28 | 20.5 | 2.8 | 0.26 |
Chloramphenicol | 114.4 | 28.6 | 20.5 | 11.4 | 0.81 | |
Rifampicin | 17.1 | 0.57 | 20.5 | 6.8 | 0.37 | |
Amoxicillin | 28.6 | 9.15 | 20.5 | 9.15 | 0.76 | |
Clarithromycin | 171 | 114.4 | 20.5 | 13.7 | 1.33 | |
Doxycycline | 17.1 | 6.8 | 20.5 | 9.15 | 0.84 | |
Vancomycin | 171 | 114.4 | 20.5 | 11.4 | 1.22 | |
Cefixime | 6.8 | 2.2 | 20.5 | 4.57 | 0.56 | |
ESBL E. coli (BAA-3054) | Levofloxacin | 13.7 | 11.4 | 28.6 | 17.1 | 1.43 |
Chloramphenicol | 228.8 | 17.1 | 28.6 | 8.58 | 0.38 | |
Rifampicin | 68 | 6.8 | 28.6 | 17.1 | 1.1 | |
Amoxicillin | 250 | 171.6 | 28.6 | 11.4 | 1 | |
Clarithromycin | 228.8 | 143 | 28.6 | 17.1 | 1.23 | |
Doxycycline | 28.6 | 11.4 | 28.6 | 11.4 | 0.8 | |
Vancomycin | 228.8 | 171.6 | 28.6 | 17.1 | 1.35 | |
Cefixime | 91.5 | 22.8 | 28.6 | 17.1 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salama, A.; Almaaytah, A.; Darwish, R.M. The Design of Alapropoginine, a Novel Conjugated Ultrashort Antimicrobial Peptide with Potent Synergistic Antimicrobial Activity in Combination with Conventional Antibiotics. Antibiotics 2021, 10, 712. https://doi.org/10.3390/antibiotics10060712
Salama A, Almaaytah A, Darwish RM. The Design of Alapropoginine, a Novel Conjugated Ultrashort Antimicrobial Peptide with Potent Synergistic Antimicrobial Activity in Combination with Conventional Antibiotics. Antibiotics. 2021; 10(6):712. https://doi.org/10.3390/antibiotics10060712
Chicago/Turabian StyleSalama, Ali, Ammar Almaaytah, and Rula M. Darwish. 2021. "The Design of Alapropoginine, a Novel Conjugated Ultrashort Antimicrobial Peptide with Potent Synergistic Antimicrobial Activity in Combination with Conventional Antibiotics" Antibiotics 10, no. 6: 712. https://doi.org/10.3390/antibiotics10060712
APA StyleSalama, A., Almaaytah, A., & Darwish, R. M. (2021). The Design of Alapropoginine, a Novel Conjugated Ultrashort Antimicrobial Peptide with Potent Synergistic Antimicrobial Activity in Combination with Conventional Antibiotics. Antibiotics, 10(6), 712. https://doi.org/10.3390/antibiotics10060712