Daptomycin versus Glycopeptides for the Treatment of Enterococcus faecium Bacteraemia: A Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Clinical Outcomes
2.2. Safety
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Participants
4.3. Variables and Data Sources
4.4. Definitions
4.5. Microbiology
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Solache, M.; Rice, L.B. The enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [Green Version]
- Pérez-García, A.; Landecho, M.F.; Beunza, J.J.; Conde-Estévez, D.; Horcajada, J.P.; Grau, S.; Gea, A.; Mauleõn, E.; Sorli, L.; Gõmez, J.; et al. Enterococcal bloodstream infection. Design and validation of a mortality prediction rule. Int. J. Clin. Pract. 2016, 70, 147–155. [Google Scholar] [CrossRef]
- de Kraker, M.E.A.; Jarlier, V.; Monen, J.C.M.; Heuer, O.E.; van de Sande, N.; Grundmann, H. The changing epidemiology of bacteraemias in Europe: Trends from the European antimicrobial resistance surveillance system. Clin. Microbiol. Infect. 2013, 19, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, T.; Nagao, M.; Nakano, S.; Yamamoto, M.; Matsumura, Y.; Ichiyama, S. Enterococcal bacteraemia: Predictive and prognostic risk factors for ampicillin resistance. Epidemiol. Infect. 2018, 146, 2028–2035. [Google Scholar] [CrossRef] [Green Version]
- Lester, C.H.; Sandvang, D.; Olsen, S.S.; Schønheyder, H.C.; Jarløv, J.O.; Bangsborg, J.; Hansen, D.S.; Jensen, T.G.; Frimodt-Møller, N.; Hammerum, A.M. Emergence of ampicillin-resistant Enterococcus faecium in Danish hospitals. J. Antimicrob. Chemother. 2008, 62, 1203–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverria-Esnal, D.; Sorli, L.; Prim, N.; Conde-Estévez, D.; Mateu-De Antonio, J.; Martin-Ontiyuelo, C.; Horcajada, J.P.; Grau, S. Linezolid vs. glycopeptides in the treatment of glycopeptide-susceptible Enterococcus faecium bacteraemia: A propensity score matched comparative study. Int. J. Antimicrob. Agents 2019, 54, 572–578. [Google Scholar] [CrossRef]
- Britt, N.S.; Potter, E.M.; Patel, N.; Steed, M.E. Comparison of the Effectiveness and Safety of Linezolid and Daptomycin in Vancomycin-Resistant Enterococcal Bloodstream Infection: A National Cohort Study of Veterans Affairs Patients. Clin. Infect. Dis. 2015, 61, 871–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Data from ECDC Surveillance Atlas—Antimicrobial Resistance; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2021. Available online: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4 (accessed on 28 May 2021).
- Bassetti, M.; Carnelutti, A.; Castaldo, N.; Peghin, M. Important new therapies for methicillin-resistant Staphylococcus aureus. Expert Opin. Pharmacother. 2019, 20, 2317–2334. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H. Limitations of Vancomycin in the Management of Resistant Staphylococcal Infections. Clin. Infect. Dis. 2007, 45, S191–S195. [Google Scholar] [CrossRef]
- Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother. 2018, 73, 1–11. [Google Scholar] [CrossRef]
- Balli, E.P.; Venetis, C.A.; Miyakis, S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob. Agents Chemother. 2014, 58, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Turnidge, J.; Kahlmeter, G.; Cantón, R.; MacGowan, A.; Giske, C.G. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: A EUCAST position paper. Clin. Microbiol. Infect. 2020, 26, 1039–1043. [Google Scholar] [CrossRef]
- Patel, R.; Gallagher, J.C. Vancomycin-Resistant Enterococcal Bacteremia Pharmacotherapy. Ann. Pharmacother. 2015, 49, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Li, H.Y.; Chen, P.Y.; Lin, C.Y.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Effect of daptomycin dose on the outcome of vancomycin-resistant, daptomycin-susceptible enterococcus faecium bacteremia. Clin. Infect. Dis. 2017, 64, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Eucast Clinical Breakpoints. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf (accessed on 6 May 2021).
- Avery, L.M.; Kuti, J.L.; Weisser, M.; Egli, A.; Rybak, M.J.; Zasowski, E.J.; Arias, C.A.; Contreras, G.A.; Chong, P.P.; Aitken, S.L.; et al. Pharmacodynamic Analysis of Daptomycin-Treated Enterococcal Bacteremia: It Is Time to Change the Breakpoint. Clin. Infect. Dis. 2019, 68, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Satlin, M.J.; Nicolau, D.P.; Humphries, R.M.; Kuti, J.L.; Campeau, S.A.; Lewis, J.S.; Weinstein, M.P.; Jorgensen, J.H. Development of Daptomycin Susceptibility Breakpoints for Enterococcus faecium and Revision of the Breakpoints for Other Enterococcal Species by the Clinical and Laboratory Standards Institute. Clin. Infect. Dis. 2020, 70, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Rello, J.; Campogiani, L.; Eshwara, V.K. Understanding resistance in enterococcal infections. Intensive Care Med. 2020, 46, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Shukla, B.S.; Shelburne, S.; Reyes, K.; Kamboj, M.; Lewis, J.D.; Rincon, S.L.; Reyes, J.; Carvajal, L.P.; Panesso, D.; Sifri, C.D.; et al. Influence of Minimum Inhibitory Concentration in Clinical Outcomes of Enterococcus faecium Bacteremia Treated with Daptomycin: Is it Time to Change the Breakpoint? Clin. Infect. Dis. 2016, 62, 1514–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterfield-Cowper, J.M. A Pharmacokinetic-Pharmacodynamic Analysis to Dose Optimize Daptomycin in Vancomycin-Resistant Enterococcus faecium: Is the Answer Fixed Dosing or Lowering Breakpoints? Ann. Pharmacother. 2021, 55, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Santimaleeworagun, W.; Changpradub, D.; Thunyaharn, S.; Hemapanpairoa, J. Optimizing the dosing regimens of daptomycin based on the susceptible dose-dependent breakpoint against vancomycin-resistant enterococci infection. Antibiotics 2019, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Bhavnani, S.M.; Rubino, C.M.; Ambrose, P.G.; Drusano, G.L. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: Data from a randomized trial of patients with bacteremia and endocarditis. Clin. Infect. Dis. 2010, 50, 1568–1574. [Google Scholar] [CrossRef] [Green Version]
- Humphries, R.M. The New, New Daptomycin Breakpoint for Enterococcus spp. J. Clin. Microbiol. 2019, 57, e00600-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, Y.-C.; Lin, H.-Y.; Chen, P.-Y.; Lin, C.-Y.; Wang, J.-T.; Chang, S.-C. Daptomycin versus linezolid for the treatment of vancomycin-resistant enterococcal bacteraemia: Implications of daptomycin dose. Clin. Microbiol. Infect. 2016, 22, 890.e1–890.e7. [Google Scholar] [CrossRef] [Green Version]
- Kebriaei, R.; Rice, S.A.; Singh, K.V.; Stamper, K.C.; Dinh, A.Q.; Rios, R.; Diaz, L.; Murray, B.E.; Munita, J.M.; Tran, T.T.; et al. Influence of inoculum effect on the efficacy of daptomycin monotherapy and in combination with -lactams against daptomycin-susceptible enterococcus faecium harboring liasr substitutions. Antimicrob. Agents. Chemother. 2018, 62, e00315-18. [Google Scholar] [CrossRef] [Green Version]
- Jahanbakhsh, S.; Singh, N.B.; Yim, J.; Kebriaei, R.; Smith, J.R.; Lev, K.; Tran, T.T.; Rose, W.E.; Arias, C.A.; Rybak, M.J. Impact of daptomycin dose exposure alone or in combination with β-lactams or rifampin against vancomycin-resistant enterococci in an in Vitro biofilm model. Antimicrob. Agents. Chemother. 2020, 64, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kebriaei, R.; Stamper, K.C.; Singh, K.V.; Khan, A.; Rice, S.A.; Dinh, A.Q.; Tran, T.T.; Murray, B.E.; Arias, C.A.; Rybak, M.J. Mechanistic Insights into the Differential Efficacy of Daptomycin plus β-Lactam Combinations against Daptomycin-Resistant Enterococcus faecium. J. Infect. Dis. 2020, 222, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Feeney, E.R.; Kubiak, D.W.; Corey, G.R. Prolonged use of oritavancin for vancomycin-resistant enterococcus faecium prosthetic valve endocarditis. Open Forum Infect. Dis. 2015, 2, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercuro, N.J.; Davis, S.L.; Zervos, M.J.; Herc, E.S. Combatting resistant enterococcal infections: A pharmacotherapy review. Expert Opin. Pharmacother. 2018, 19, 979–992. [Google Scholar] [CrossRef] [PubMed]
- Dahesh, S.; Wong, B.; Nizet, V.; Sakoulas, G.; Tran, T.T.; Aitken, S.L. Treatment of multidrug-resistant vancomycin-resistant enterococcus faecium hardware-associated vertebral osteomyelitis with oritavancin plus ampicillin. Antimicrob. Agents Chemother. 2019, 63, 2622–2640. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Cardoso, T.; Almeida, M.; Friedman, N.D.; Aragão, I.; Costa-Pereira, A.; Sarmento, A.E.; Azevedo, L. Classification of healthcare-associated infection: A systematic review 10 years after the first proposal. BMC Med. 2014, 12, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Paterson, D.L.; Ko, W.-C.; Von Gottberg, A.; Mohapatra, S.; Casellas, J.M.; Goossens, H.; Mulazimoglu, L.; Trenholme, G.; Klugman, K.P.; Bonomo, R.A.; et al. International prospective study of Klebsiella pneumoniae bacteremia: Implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann. Intern. Med. 2004, 140, 26–32. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G.; On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-Central Line Associated Bloodstream Infection). Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2018. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/4psc_clabscurrent.pdf (accessed on 6 May 2021).
- Caballero-Granado, F.J.; Becerril, B.; Cuberos, L.; Bernabeu, M.; Cisneros, J.M.; Pachon, J. Attributable Mortality Rate and Duration of Hospital Stay Associated with Enterococcal Bacteremia. Clin. Infect. Dis. 2001, 32, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Peña, C.; Suarez, C.; Ocampo-Sosa, A.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; Calbo, E.; Rodríguez-Baño, J.; et al. Effect of adequate single-drug vs combination antimicrobial therapy on mortality in pseudomonas aeruginosa bloodstream infections: A post hoc analysis of a prospective cohort. Clin. Infect. Dis. 2013, 57, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Van Biesen, W.; Vanholder, R.; Lameire, N. Defining acute renal failure: RIFLE and beyond. Clin. J. Am. Soc. Nephrol. 2006, 1, 1314–1319. [Google Scholar] [CrossRef] [Green Version]
- Conde-Estévez, D.; Sorli, L.; Morales-Molina, J.A.; Knobel, H.; Terradas, R.; Mateu-de Antonio, J.; Horcajada, J.P.; Grau, S. Características clínicas diferenciales entre las bacteriemias por Enterococcus faecalis y Enterococcus faecium. Enferm. Infecc. Microbiol. Clin. 2010, 28, 342–348. [Google Scholar] [CrossRef]
Whole Cohort (n = 192) | |
---|---|
Age, years | 69.0 (64.0–78.0) |
<50 years | 19 (9.9) |
50–75 years | 105 (54.7) |
>75 years | 68 (35.4) |
Female | 54 (28.1) |
Weight, kg | 68.6 (59.0–80.2) |
Body Mass Index, kg/m2 | 24.6 (23.0–29.1) |
Medical/surgical status | |
Medical status | 114 (59.4) |
Surgical status | 78 (40.6) |
Means of acquisition | |
Community acquired | 17 (8.9) |
Healthcare acquired | 35 (18.2) |
Nosocomial | 140 (72.9) |
Comorbidities | |
Charlson comorbidity index | 2.0 (0.0–2.0) |
Diabetes Mellitus | 77 (39.6) |
Arterial hypertension | 114 (59.4) |
Cardiopathy | 53 (27.6) |
Liver cirrhosis | 19 (9.9) |
Solid tumor | 58 (30.2) |
Renal transplantation | 11 (5.7) |
Immunosuppression | 86 (44.8) |
Chemotherapy | 33 (17.2) |
Corticosteroids | 72 (37.5) |
Chronic kidney disease | 36 (18.8) |
Clinical presentation | |
Septic shock | 56 (29.2) |
SOFA score | 3.0 (1.0–6.0) |
SOFA > 2 | 124 (64.5) |
Vasoactive drugs | 52 (27.1) |
Mechanical ventilation | 47 (24.5) |
Pitt bacteraemia score | 2.0 (1.0–3.0) |
Creatinine, mg/dL | 0.9 (0.6–1.4) |
Glomerular filtration rate, mL/min/1.73 m2 | 79.1 (46.0–99.3) |
Albumin, g/dL | 2.7 (2.2–3.2) |
Source of bacteraemia | |
High risk | 110 (57.3) |
Abdominal | 62 (32.3) |
Unknown | 25 (13.0) |
Respiratory tract | 10 (5.2) |
Endocarditis | 1 (0.5) |
Thrombophlebitis | 4 (2.1) |
Skin and soft tissue | 8 (4.2) |
Low risk | 82 (42.7) |
Urinary tract | 18 (9.4) |
Catheter related | 26 (13.5) |
Biliary | 38 (19.8) |
Glycopeptides (n = 54) | Daptomycin (n = 17) | p Value | |
---|---|---|---|
Age, years | 67.5 (55.0–74.5) | 74.0 (62.5–84.5) | 0.166 |
<50 years | 8 (14.8) | 2 (11.8) | |
50–75 years | 33 (61.1) | 7 (41.2) | |
>75 years | 13 (24.1) | 8 (47.1) | |
Female | 17 (31.5) | 7 (41.2) | 0.559 |
Weight, kg | 65.0 (58.0–80.0) | 70.0 (61.0–80.0) | 0.350 |
Body Mass Index, kg/m2 | 24.6 (21.0–29.0) | 25.2 (21.1–31.2) | 0.450 |
Medical/surgical status | 0.572 | ||
Medical status | 36 (66.7) | 10 (58.8) | |
Surgical status | 18 (33.3) | 7 (41.2) | |
Means of acquisition | 1.000 | ||
Community acquired | 2 (3.7) | 0 | |
Healthcare acquired | 12 (22.2) | 4 (23.5) | |
Nosocomial | 40 (74.1) | 13 (76.5) | |
Comorbidities | |||
Charlson comorbidity index | 2.0 (0.3–2.0) | 1.0 (0–2.0) | 0.222 |
Diabetes Mellitus | 18 (33.3) | 9 (52.9) | 0.164 |
Arterial hypertension | 29 (53.7) | 11 (64.7) | 0.577 |
Cardiopathy | 12 (22.2) | 7 (41.2) | 0.207 |
Liver cirrhosis | 7 (13.0) | 2 (11.8) | 1.000 |
Solid tumor | 20 (37.0) | 6 (35.3) | 1.000 |
Renal transplantation | 2 (3.7) | 2 (11.8) | 0.241 |
Immunosuppression | 25 (46.3) | 8 (47.1) | 1.000 |
Chemotherapy | 11 (20.4) | 4 (23.5) | 0.745 |
Corticosteroids | 22 (40.7) | 5 (29.4) | 0.745 |
Chronic kidney disease | 11 (9.9) | 8 (47.1) | 0.005 |
Clinical presentation | |||
Septic shock | 7 (13.0) | 1 (5.9) | 0.670 |
SOFA score | 3.0 (1.0–5.0) | 2.0 (1.0–6.5) | 0.724 |
SOFA > 2 | 28 (51.9) | 9 (52.9) | 1.000 |
Vasoactive drugs | 7 (13.0) | 3 (17.6) | 0.694 |
Mechanical ventilation | 6 (11.1) | 4 (23.5) | 0.237 |
Pitt bacteraemia score | 1.0 (0–2.0) | 2.0 (0.5–3.5) | 0.181 |
Creatinine, mg/dL | 0.8 (0.6–1.0) | 1.2 (0.7–2.1) | 0.009 |
Glomerular filtration rate, mL/min/1.73 m2 | 86.3 (66.6–104.4) | 59.0 (25.3–90.6) | 0.018 |
Albumin, g/dL | 2.7 (2.3–3.3) | 2.6 (2.1–3.4) | 0.842 |
Source of bacteraemia | |||
High risk | 33 (61.1) | 7 (41.2) | 0.160 |
Abdominal | 22 (40.7) | 1 (5.9) | |
Unknown | 5 (9.3) | 4 (23.5) | |
Respiratory tract | 1 (1.9) | 0 (0) | |
Endocarditis | 1 (1.9) | 0 (0) | |
Thrombophlebitis | 2 (3.7) | 1 (5.9) | |
Skin and soft tissue | 2 (3.7) | 1 (5.9) | |
Low risk | 21 (38.9) | 10 (58.8) | |
Urinary tract | 1 (1.7) | 4 (23.5) | |
Catheter related | 7 (13.0) | 3 (17.6) | |
Biliary | 11 (20.4) | 3 (17.6) |
Glycopeptides (n = 54) | Daptomycin (n = 17) | Relative Risk (95% CI) | p Value | |
---|---|---|---|---|
Clinical outcomes | 45 (83.3) | 10 (58.8) | 0.416 (0.189–0.915) | 0.048 |
Clinical cure at the end of therapy | ||||
Time to defervescence, days | 1 (0–2.0) | 1 (0–2.0) | - | 0.881 |
Mortality | ||||
14-day mortality | 1 (1.9) | 2 (11.8) | 0.331 (0.132–0.827) | 0.140 |
30-day mortality | 7 (13.2) | 4 (23.5) | 0.606 (0.242–1.516) | 0.443 |
In-hospital mortality | 12 (22.6) | 6 (35.3) | 0.645 (0.275–1.467) | 0.346 |
Microbiological data | ||||
Eradication | 51 (94.4) | 11 (64.7) | 3.758 (1.852–7.624) | 0.005 |
Relapse | 3 (5.6) | 2 (11.8) | 0.568 (0.178–1.816) | 0.587 |
Superinfection | 27 (50.0) | 11 (64.7) | 0.628 (0.261–1.512) | 0.404 |
Hospital LOS, days | 39.0 (21.8–61.3) | 48.0 (29.0–112.5) | - | 0.133 |
Readmissions | 18 (34.0) | 6 (35.6) | 0.957 (0.403–2.269) | 1.000 |
Glycopeptides (n = 54) | Daptomycin (n = 17) | Relative Risk (95% CI) | p Value | |
---|---|---|---|---|
Any side effect | 26/52 (50.0) | 5/16 (31.3) | 1.843 (0.718–4.734) | 0.254 |
Discontinuation of treatment | 4/52 (7.7) | 0 (0) | - | 0.566 |
Nausea and vomiting | 3/52 (5.8) | 0 (0) | - | 1.000 |
Diarrhoea | 4/52 (7.7) | 0 (0) | - | 0.566 |
Nephrotoxicity | 8/50 (16.0) | 1/16 (6.3) | 2.368 (0.355–15.807) | 0.436 |
R | 6/50 (12.0) | 0 (0) | ||
F | 1/50 (2.0) | 0 (0) | ||
L | 1/50 (2.0) | 1 (5.9) | ||
Thrombocytopenia | 14/50 (28.0) | 5/16 (31.3) | 0.889 (0.357–2.216) | 0.743 |
Anaemia | 4/49 (8.2) | 0 (0) | - | 0.565 |
Creatinine phosphokinase elevation | 1/3 (33.3) | 0/3 (0) | - | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverría-Esnal, D.; Sorli, L.; Prim, N.; Martin-Ontiyuelo, C.; Horcajada, J.P.; Grau, S. Daptomycin versus Glycopeptides for the Treatment of Enterococcus faecium Bacteraemia: A Cohort Study. Antibiotics 2021, 10, 716. https://doi.org/10.3390/antibiotics10060716
Echeverría-Esnal D, Sorli L, Prim N, Martin-Ontiyuelo C, Horcajada JP, Grau S. Daptomycin versus Glycopeptides for the Treatment of Enterococcus faecium Bacteraemia: A Cohort Study. Antibiotics. 2021; 10(6):716. https://doi.org/10.3390/antibiotics10060716
Chicago/Turabian StyleEcheverría-Esnal, Daniel, Luisa Sorli, Nuria Prim, Clara Martin-Ontiyuelo, Juan Pablo Horcajada, and Santiago Grau. 2021. "Daptomycin versus Glycopeptides for the Treatment of Enterococcus faecium Bacteraemia: A Cohort Study" Antibiotics 10, no. 6: 716. https://doi.org/10.3390/antibiotics10060716
APA StyleEcheverría-Esnal, D., Sorli, L., Prim, N., Martin-Ontiyuelo, C., Horcajada, J. P., & Grau, S. (2021). Daptomycin versus Glycopeptides for the Treatment of Enterococcus faecium Bacteraemia: A Cohort Study. Antibiotics, 10(6), 716. https://doi.org/10.3390/antibiotics10060716