The Synergistic Activity and Optimizing Doses of Tigecycline in Combination with Aminoglycosides against Clinical Carbapenem-Resistant Klebsiella pneumoniae Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Determining MICs and Fractional Inhibitory Concentration Indices (FICI)
2.2.1. Determining MICs
2.2.2. Performing FICI
2.3. Molecular Study of Antibiotic Resistance Genes
2.4. Antibiotic Dose Optimization by Monte Carlo Simulation
2.5. Ethics Approval
3. Results
3.1. In Vitro Susceptibility of Tigecycline, Amikacin, and Gentamicin
3.2. Synergistic Activities
3.3. PTA and CFR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect. Dis. 2015, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience 2019, 9, 778–788. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistacce Threats in the United States; 2013. Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed on 7 June 2019).
- Soontaros, S.; Leelakanok, N. Association between carbapenem-resistant Enterobacteriaceae and death: A systematic review and meta-analysis. Am. J. Infect. 2019, 47, 1200–1212. [Google Scholar] [CrossRef]
- Livorsi, D.J.; Chorazy, M.L.; Schweizer, M.L.; Balkenende, E.C.; Blevins, A.E.; Nair, R.; Samore, M.H.; Nelson, R.E.; Khader, K.; Perencevich, E.N. A systematic review of the epidemiology of carbapenem-resistant Enterobacteriaceae in the United States. Antimicrob. Resist. Infect. Control 2018, 7, 55. [Google Scholar]
- Kostyanev, T.; Vilken, T.; Lammens, C.; Timbermont, L.; Van’t Veen, A.; Goossens, H. Detection and prevalence of carbapenem-resistant Gram-negative bacteria among European laboratories in the COMBACTE network: A COMBACTE LAB-Net survey. Int. J. Antimicrob. Agents 2019, 53, 268–274. [Google Scholar] [PubMed]
- Xu, Y.; Gu, B.; Huang, M.; Liu, H.; Xu, T.; Xia, W.; Wang, T. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000–2012 in Asia. J. Thorac. Dis. 2015, 7, 376–385. [Google Scholar] [PubMed]
- National Antimicrobial Resistance Surveillance Center (NARST). Antimicrobial Resistance 2000–2020 (6M). Available online: http://narst.dmsc.moph.go.th/data/AMR%202000-2020-06M.pdf (accessed on 3 January 2021).
- Gutierrez-Gutierrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.R.; Viale, P.; Pano-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Canton, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Ni, W.; Han, Y.; Liu, J.; Wei, C.; Zhao, J.; Cui, J.; Wang, R.; Liu, Y. Tigecycline Treatment for Carbapenem-Resistant Enterobacteriaceae Infections: A Systematic Review and Meta-Analysis. Medicine 2016, 95, e3126. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef]
- Zavascki, A.P.; Bulitta, J.B.; Landersdorfer, C.B. Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Rev. Anti Infect. Ther. 2013, 11, 1333–1353. [Google Scholar] [CrossRef]
- Rodriguez-Bano, J.; Gutierrez-Gutierrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018. [Google Scholar] [CrossRef]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Malchione, M.D.; Torres, L.M.; Hartley, D.M.; Koch, M.; Goodman, J.L. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int. J. Antimicrob. Agents 2019, 54, 381–399. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Liu, Y.H.; Feng, Y. Towards Understanding MCR-like Colistin Resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef] [PubMed]
- Santimaleeworagun, W.; Thunyaharn, S.; Juntanawiwat, P.; Thongnoy, N.; Harindhanavudhi, S.; Nakeesathit, S.; Teschumroon, S. The prevalence of colistin-resistant Gram-negative bacteria isolated from hospitalized patients with bacteremia. J. Appl. Pharm. Sci. 2020, 10, 56–59. [Google Scholar]
- Tang, H.J.; Lai, C.C.; Chen, C.C.; Zhang, C.C.; Weng, T.C.; Chiu, Y.H.; Toh, H.S.; Chiang, S.R.; Yu, W.L.; Ko, W.C.; et al. Colistin-sparing regimens against Klebsiella pneumoniae carbapenemase-producing K. pneumoniae isolates: Combination of tigecycline or doxycycline and gentamicin or amikacin. J. Microbiol. Immunol. Infect. 2019, 52, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Yim, H.; Woo, H.; Song, W.; Park, M.J.; Kim, H.S.; Lee, K.M.; Hur, J.; Park, M.S. Time-kill synergy tests of tigecycline combined with imipenem, amikacin, and ciprofloxacin against clinical isolates of multidrug-resistant Klebsiella pneumoniae and Escherichia coli. Ann. Clin. Lab. Sci. 2011, 41, 39–43. [Google Scholar]
- Prawang, A.; Santimaleeworagun, W.; Changpradub, D.; Thunyaharn, S.; Puttilerpong, C. In vitro antibiotic synergy colistin-resistance Klebsiella pneumoniae. Southeast Asian J. Trop. Med. Public Health 2019, 50, 703–707. [Google Scholar]
- National Antimicrobial Resistance Surveillance Center (NARST). In Antibiogram 2019 (Jan–Dec). Available online: http://narst.dmsc.moph.go.th/antibiograms/2019/12/Jan-Dec2019-All.pdf (accessed on 12 January 2020).
- Asin-Prieto, E.; Rodriguez-Gascon, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 13 May 2020).
- Hsieh, M.H.; Yu, C.M.; Yu, V.L.; Chow, J.W. Synergy assessed by checkerboard. A critical analysis. Diagn. Microbiol. Infect. Dis. 1993, 16, 343–349. [Google Scholar] [CrossRef]
- Dolan, J.G. Patient priorities in colorectal cancer screening decisions. Health Expect. 2005, 8, 334–344. [Google Scholar] [CrossRef]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Preechachuawong, P.; Santimaleeworagun, W.; Jitwasinkul, T.; Samret, W. Detection of New Delhi Metallo-bata-lactamase-1-producing Klebsiella pneumoniae at a general hospital in Thailand. Southeast Asian J. Trop. Med. Public Health 2015, 46, 1031–1036. [Google Scholar]
- Delattre, I.K.; Musuamba, F.T.; Nyberg, J.; Taccone, F.S.; Laterre, P.F.; Verbeeck, R.K.; Jacobs, F.; Wallemacq, P.E. Population pharmacokinetic modeling and optimal sampling strategy for Bayesian estimation of amikacin exposure in critically ill septic patients. Ther. Drug. Monit. 2010, 32, 749–756. [Google Scholar] [CrossRef]
- Hodiamont, C.J.; Juffermans, N.P.; Bouman, C.S.; de Jong, M.D.; Mathot, R.A.; van Hest, R.M. Determinants of gentamicin concentrations in critically ill patients: A population pharmacokinetic analysis. Int. J. Antimicrob. Agents 2017, 49, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Borsuk-De Moor, A.; Rypulak, E.; Potrec, B.; Piwowarczyk, P.; Borys, M.; Sysiak, J.; Onichimowski, D.; Raszewski, G.; Czuczwar, M.; Wiczling, P. Population Pharmacokinetics of High-Dose Tigecycline in Patients with Sepsis or Septic Shock. Antimicrob. Agents Chemother. 2018, 62, 11. [Google Scholar] [CrossRef] [PubMed]
- Bhavnani, S.M.; Rubino, C.M.; Hammel, J.P.; Forrest, A.; Dartois, N.; Cooper, C.A.; Korth-Bradley, J.; Ambrose, P.G. Pharmacological and patient-specific response determinants in patients with hospital-acquired pneumonia treated with tigecycline. Antimicrob. Agents Chemother. 2012, 56, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A. Optimizing aminoglycoside use. Crit Care Clin. 2011, 27, 107–121. [Google Scholar] [CrossRef]
- Drusano, G.L.; Ambrose, P.G.; Bhavnani, S.M.; Bertino, J.S.; Nafziger, A.N.; Louie, A. Back to the future: Using aminoglycosides again and how to dose them optimally. Clin. Infect. Dis. 2007, 45, 753–760. [Google Scholar] [PubMed]
- Chotiprasitsakul, D.; Srichatrapimuk, S.; Kirdlarp, S.; Pyden, A.D.; Santanirand, P. Epidemiology of carbapenem-resistant Enterobacteriaceae: A 5-year experience at a tertiary care hospital. Infect. Drug. Resist. 2019, 12, 461–468. [Google Scholar] [CrossRef]
- Thongkoom, P.; Kanchanahareutai, S.; Chantrakooptungkul, S.; Rahule, S.; Pupan, M.; Tuntrakul, P.; Masan, N.; Teammongkolrat, L. Carbapenem-Resistant Enterobacteriaceae at Rajavithi Hospital: Results of a Microbiology Laboratory Program (2009–2015). J. Med. Assoc. Thai. 2017, 100, S212–S221. [Google Scholar]
- Evren, E.; Azap, O.K.; Colakoglu, S.; Arslan, H. In vitro activity of fosfomycin in combination with imipenem, meropenem, colistin and tigecycline against OXA 48-positive Klebsiella pneumoniae strains. Diagn. Microbiol. Infect. Dis. 2013, 76, 335–338. [Google Scholar] [CrossRef]
- Ni, W.; Li, G.; Zhao, J.; Cui, J.; Wang, R.; Gao, Z.; Liu, Y. Use of Monte Carlo simulation to evaluate the efficacy of tigecycline and minocycline for the treatment of pneumonia due to carbapenemase-producing Klebsiella pneumoniae. Infect. Dis. 2018, 50, 507–513. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Guidance Document on Tigecycline Dosing. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Tigecycline_Guidance_document_20181223.pdf (accessed on 19 September 2019).
- Cunha, B.A.; Baron, J.; Cunha, C.B. Once daily high dose tigecycline–pharmacokinetic/pharmacodynamic based dosing for optimal clinical effectiveness: Dosing matters, revisited. Expert Rev. Anti Infect. Ther. 2017, 15, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Jayol, A.; Dobias, J.; Poirel, L. Rapid Aminoglycoside NP Test for Rapid Detection of Multiple Aminoglycoside Resistance in Enterobacteriaceae. J. Clin. Microbiol. 2017, 55, 1074–1079. [Google Scholar] [CrossRef]
- Eiamphungporn, W.; Yainoy, S.; Jumderm, C.; Tan-Arsuwongkul, R.; Tiengrim, S.; Thamlikitkul, V. Prevalence of the colistin resistance gene mcr-1 in colistin-resistant Escherichia coli and Klebsiella pneumoniae isolated from humans in Thailand. J. Global Antimicrob. Resist. 2018, 15, 32–35. [Google Scholar] [CrossRef]
- Jitaree, K.; Sathirakul, K.; Houngsaitong, J.; Asuphon, O.; Saelim, W.; Thamlikitkul, V.; Montakantikul, P. Pharmacokinetic/Pharmacodynamic (PK/PD) Simulation for Dosage Optimization of Colistin Against Carbapenem-Resistant Klebsiella pneumoniae and Carbapenem-Resistant Escherichia coli. Antibiotics 2019, 8, 125. [Google Scholar] [CrossRef]
- National Antimicrobial Resistance Surveillance Center (NARST). Antibiogram 2020 (Jan–Jun). Available online: http://narst.dmsc.moph.go.th/antibiograms/2020/6/Jan-Jun2020-All.pdf (accessed on 25 January 2020).
- Zusman, O.; Altunin, S.; Koppel, F.; Benattar, Y.D.; Gedik, H.; Paul, M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Barton, G.; Fischer, A. Pharmacokinetic considerations and dosing strategies of antibiotics in the critically ill patient. J. Intensive Care Soc. 2015, 16, 147–153. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Fu, Y.; Zhao, Y.; Wang, Y.; Zhao, J.; Guo, Y.; Li, C.; Zhang, X. Tigecycline in combination with other antibiotics against clinical isolates of carbapenem-resistant Klebsiella pneumoniae in vitro. Ann. Palliat. Med. 2019, 8, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Garneau-Tsodikova, S.; Labby, K.J. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. Medchemcomm 2016, 7, 11–27. [Google Scholar] [CrossRef]
- Zavascki, A.P.; Klee, B.O.; Bulitta, J.B. Aminoglycosides against carbapenem-resistant Enterobacteriaceae in the critically ill: The pitfalls of aminoglycoside susceptibility. Expert Rev. Anti Infect. Ther. 2017, 15, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb Perspect. Med. 2016, 1–18. [Google Scholar] [CrossRef]
- Van Bambeke, F.; Mingeot-Leclercq, M.P.; Schanck, A.; Brasseur, R.; Tulkens, P.M. Alterations in membrane permeability induced by aminoglycoside antibiotics: Studies on liposomes and cultured cells. Eur. J. Pharmacol. 1993, 247, 155–168. [Google Scholar] [CrossRef]
- Ni, W.; Wei, C.; Zhou, C.; Zhao, J.; Liang, B.; Cui, J.; Wang, R.; Liu, Y. Tigecycline-Amikacin Combination Effectively Suppresses the Selection of Resistance in Clinical Isolates of KPC-Producing Klebsiella pneumoniae. Front. Microbiol. 2016, 7, 1304. [Google Scholar] [CrossRef]
- Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef]
Type of Resistance Genes | Primers |
---|---|
IMP |
|
VIM |
|
OXA-48 |
|
NDM |
|
KPC |
|
mcr-1 |
|
No | Specimens | MTP PCR | MICs (µg/mL) | Synergistic Testing | |||||
---|---|---|---|---|---|---|---|---|---|
AMK | GEN | TGC | AMK + TGC | GEN + TGC | |||||
∑ FICI | Interpretation | ∑ FICI | Interpretation | ||||||
Colistin-intermediate strains | |||||||||
1 | Blood | OXA | 2 | ≤0.03125 | 2 | ≤0.625 | ADD | ≤0.5625 | ADD |
2 | Blood | OXA | 8 | ≤0.03125 | 2 | ≤0.5625 | ADD | ≤0.5625 | ADD |
3 | Blood | OXA | 8 | ≤0.03125 | 2 | ≤0.5313 | ADD | 0.75 | ADD |
4 | Sputum | OXA | 0.25 | ≤0.03125 | 1 | ≤0.75 | ADD | 0.625 | ADD |
5 | Sputum | OXA | 8 | ≤0.03125 | 2 | ≤0.375 | SYN | ≤0.5313 | ADD |
6 | Urine | OXA | 8 | 0.0625 | 2 | 1 | ADD | 0.5625 | ADD |
7 | Urine | OXA | 2 | 0.25 | 2 | ≤0.5625 | ADD | ≤0.5313 | ADD |
8 | Urine | OXA | 2 | ≤0.03125 | 1 | 0.75 | ADD | 0.625 | ADD |
9 | Urine | OXA | 2 | 0.25 | 2 | ≤0.5625 | ADD | ≤0.5313 | ADD |
Colistin-resistant strains | |||||||||
10 | Blood | OXA + NDM | 8 | 8 | 1 | ≤0.75 | ADD | ≤1.002 | IND |
11 | Blood | OXA + NDM | 8 | 8 | 1 | 2 | IND | ≤1.0039 | IND |
12 | Blood | OXA + NDM | 8 | 16 | 4 | ≤0.75 | ADD | ≤0.5313 | ADD |
13 | Blood | OXA + NDM | 4 | 8 | 1 | ≤0.75 | ADD | ≤1.002 | IND |
14 | Blood | OXA | 2 | 2 | 8 | 0.5 | SYN | ≤1.0625 | IND |
15 | Blood | OXA + NDM | 2 | ≤0.03125 | 2 | ≤0.75 | ADD | ≤1.0625 | IND |
16 | Blood | OXA | 0.5 | 0.125 | 0.5 | 0.75 | ADD | ≤0.5313 | ADD |
17 | Blood | OXA | 16 | 64 | 2 | 0.75 | ADD | 0.75 | ADD |
18 | Blood | OXA + NDM | 32 | 0.25 | 2 | 0.75 | ADD | ≤1.0156 | IND |
19 | Blood | OXA | 2 | 0.125 | 2 | ≤0.625 | ADD | ≤1.0625 | IND |
20 | Blood | OXA + NDM | 4 | 0.0625 | 2 | ≤0.5625 | ADD | 0.625 | ADD |
21 | Blood | OXA + NDM | 8 | ≤0.03125 | 2 | ≤0.5625 | ADD | 0.375 | SYN |
22 | Blood | OXA + NDM | 8 | 0.125 | 1 | ≤0.75 | ADD | 0.625 | ADD |
23 | Blood | OXA + NDM | 16 | 0.125 | 1 | 0.75 | ADD | 0.75 | ADD |
24 | Sputum | OXA + NDM | 2 | ≤0.03125 | 1 | ≤0.75 | ADD | ≤1.0625 | IND |
25 | Sputum | NDM | 8 | 4 | 2 | 0.75 | ADD | 0.75 | ADD |
26 | Urine | OXA | 2 | 0.125 | 1 | ≤0.75 | ADD | ≤0.5313 | ADD |
27 | Sputum | OXA | 2 | 0.125 | 1 | 0.75 | ADD | 0.75 | ADD |
28 | Urine | OXA | 32 | 0.5 | 1 | ≤0.5 | SYN | ≤0.2656 | SYN |
29 | Sputum | OXA + NDM | 16 | 4 | 1 | 0.625 | ADD | ≤1.001 | IND |
30 | Sputum | OXA | 4 | 2 | 0.5 | ≤0.75 | ADD | ≤0.625 | ADD |
31 | Urine | OXA + NDM | 8 | 0.5 | 0.5 | ≤0.5313 | ADD | 0.625 | ADD |
32 | Urine | OXA + NDM | 4 | 0.25 | 0.5 | ≤1.125 | IND | ≤1.0313 | IND |
33 | Sputum | OXA | 2 | 0.125 | 0.5 | ≤1.125 | IND | ≤0.5625 | ADD |
34 | Urine | OXA | 2 | 2 | 1 | 0.375 | SYN | ≤0.5313 | ADD |
35 | Sputum | OXA | 4 | 0.25 | 1 | ≤0.5625 | ADD | ≤0.5313 | ADD |
36 | Sputum | OXA | 16 | 0.5 | 1 | ≤1.0078 | IND | ≤0.5156 | ADD |
37 | Sputum | OXA + NDM | 2 | 0.125 | 0.5 | ≤1.0625 | IND | 1 | ADD |
38 | Sputum | OXA | 1 | 0.125 | 0.5 | 0.75 | ADD | 0.625 | ADD |
39 | Sputum | OXA + NDM | 8 | 2 | 0.5 | ≤0.5156 | ADD | ≤1.002 | IND |
40 | Sputum | OXA | 2 | 2 | 1 | ≤0.625 | ADD | 0.5 | SYN |
41 | Sputum | OXA | 2 | 0.125 | 1 | 0.75 | ADD | 0.75 | ADD |
42 | Penis | OXA + NDM | 32 | 2 | 1 | 0.625 | ADD | 0.5313 | ADD |
43 | Peritoneal fluid | OXA + NDM | 32 | 2 | 2 | ≤1.0078 | IND | 1 | ADD |
44 | Urine | OXA + NDM | 1 | 0.125 | 0.5 | ≤1.125 | IND | 1 | ADD |
45 | Urine | OXA | 8 | 0.25 | 2 | ≤0.5156 | ADD | ≤0.5156 | ADD |
46 | Sputum | OXA + NDM | 1 | 0.25 | 0.5 | 0.75 | ADD | 0.625 | ADD |
47 | Sputum | OXA + NDM | 4 | 0.25 | 2 | ≤1.25 | IND | 0.75 | ADD |
48 | Bronchoalveolar lavage | OXA | 8 | 2 | 2 | ≤0.5625 | ADD | 0.5 | SYN |
49 | Sputum | Not detected | 2 | 0.5 | 16 | ≤0.625 | ADD | 0.5313 | ADD |
MIC50 | 4 | 0.25 | 1 | ||||||
MIC90 | 16 | 8 | 2 | ||||||
Min | 0.25 | ≤0.031 | 0.5 | ||||||
Max | 32 | 64 | 16 |
Antibiotic Combination | Synergism | Additive Effect | Indifference |
---|---|---|---|
No (%) | No (%) | No (%) | |
Tigecycline + Amikacin | |||
OXA + NDM | - | 15 | 6 |
OXA | 4 | 20 | 2 |
NDM | - | 1 | - |
Not detect of studied genes | - | 1 | - |
Total | 4 (8.2) | 37 (75.5) | 8 (16.3) |
Tigecycline + Gentamicin | |||
OXA + NDM | 1 | 11 | 9 |
OXA | 3 | 21 | 2 |
NDM | - | 1 | - |
Not detect of studied genes | - | 1 | - |
Total | 4 (8.2) | 34 (69.4) | 11 (22.4) |
Dosage Regimens | PTA (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
TGC MIC (µg/mL) | ||||||||||
LD | MD | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 |
200 mg | 100 mg q 12 h | 100 | 100 | 100 | 100 | 100 | 53 | 0 | 0 | 0 |
200 mg | 100 mg q 24 h | 100 | 100 | 100 | 100 | 55 | 0 | 0 | 0 | 0 |
400 mg | 100 mg q 12 h | 100 | 100 | 100 | 100 | 100 | 55 | 0 | 0 | 0 |
400 mg | 100 mg q 24 h | 100 | 100 | 100 | 99.99 | 55 | 0 | 0 | 0 | 0 |
400 mg | 200 mg q 12 h | 100 | 100 | 100 | 100 | 100 | 100 | 54 | 0 | 0 |
400 mg | 200 mg q 24 h | 100 | 100 | 100 | 100 | 100 | 55 | 0 | 0 | 0 |
Dosage Regimens | PTA (%) | CFR (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMK MIC (µg/mL) | AUC0–24 > 700 | AMK (mono) | AMK (with TGC) | ||||||||||
LD | MD | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | |||
Creatinine clearance 0–9 mL/min | |||||||||||||
15 mg/kg | 7.5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 100 | 67 | 0 | 0 | 0 | 11.1 | 32.1 | 95.9 |
20 mg/kg | 7.5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 100 | 70 | 0 | 0 | 0 | 13.4 | 32.9 | 96.3 |
25 mg/kg | 7.5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 100 | 70 | 0 | 0 | 0 | 15.4 | 33.2 | 96.4 |
Creatinine clearance 10–25 mL/min | |||||||||||||
20 mg/kg | 10 mg/kg q 48 h | 100 | 100 | 100 | 100 | 100 | 89 | 0 | 0 | 0 | 24.9 | 39.3 | 98.6 |
20 mg/kg | 15 mg/kg q 48 h | 100 | 100 | 100 | 100 | 100 | 99 | 5 | 0 | 0 | 53.1 | 43.2 | 99.9 |
25 mg/kg | 10 mg/kg q 48 h | 100 | 100 | 100 | 100 | 100 | 90 | 0 | 0 | 0 | 26.8 | 39.6 | 98.8 |
25 mg/kg | 15 mg/kg q 48 h | 100 | 100 | 100 | 100 | 100 | 99 | 5 | 0 | 0 | 55.7 | 43.3 | 99.9 |
Creatinine clearance 26–50 mL/min | |||||||||||||
20 mg/kg | 12 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 99 | 7 | 0 | 0 | 84.2 | 43.5 | 99.9 |
20 mg/kg | 15 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 19 | 0 | 0 | 92.7 | 45.2 | 100 |
25 mg/kg | 12 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 7 | 0 | 0 | 84.2 | 43.6 | 99.9 |
25 mg/kg | 15 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 21 | 0 | 0 | 92.7 | 45.4 | 100 |
Creatinine clearance 51–90 mL/min | |||||||||||||
25 mg/kg | 15 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 18 | 0 | 0 | 91.9 | 45.1 | 100 |
25 mg/kg | 20 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 46 | 0 | 0 | 97.6 | 48.5 | 100 |
30 mg/kg | 15 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 18 | 0 | 0 | 91.7 | 45.1 | 100 |
30 mg/kg | 20 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 47 | 0 | 0 | 97.8 | 48.7 | 100 |
Creatinine clearance 91–130 mL/min | |||||||||||||
25 mg/kg | 15 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 22 | 0 | 0 | 91.3 | 46 | 100 |
25 mg/kg | 20 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 53 | 0 | 0 | 97.9 | 49 | 100 |
30 mg/kg | 15 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 23 | 0 | 0 | 91.9 | 46 | 100 |
30 mg/kg | 20 mg/kg q 24 h | 100 | 100 | 100 | 100 | 100 | 100 | 52 | 0 | 0 | 97.7 | 49 | 100 |
Dosage Regimens | PTA (%) | CFR (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GEN MIC (µg/mL) | AUC0–24 > 700 | GEN (mono) | GEN
(with TGC) | ||||||||||
LD | MD | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | |||
Creatinine clearance 0–9 mL/min | |||||||||||||
3 mg/kg | 2.5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 99 | 42 | 0 | 0 | 0 | 42.7 | 76.2 | 100 |
5 mg/kg | 2.5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 99 | 41 | 0 | 0 | 0 | 43.3 | 76.0 | 100 |
7 mg/kg | 2.5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 99 | 42 | 0 | 0 | 0 | 43.8 | 76.2 | 100 |
Creatinine clearance 10–25 mL/min | |||||||||||||
5 mg/kg | 4 mg/kg q 48 h | 100 | 100 | 100 | 100 | 91 | 8 | 0 | 0 | 0 | 6.4 | 70.7 | 100 |
7 mg/kg | 3 mg/kg q 48 h | 100 | 100 | 100 | 100 | 78 | 3 | 0 | 0 | 0 | 2.4 | 69.8 | 100 |
7 mg/kg | 5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 97 | 17 | 0 | 0 | 0 | 13.0 | 72.0 | 100 |
8 mg/kg | 3 mg/kg q 48 h | 100 | 100 | 100 | 100 | 78 | 3 | 0 | 0 | 0 | 2.3 | 69.8 | 100 |
8 mg/kg | 5 mg/kg q 48 h | 100 | 100 | 100 | 100 | 96 | 17 | 0 | 0 | 0 | 13.2 | 72.2 | 100 |
Creatinine clearance 26–50 mL/min | |||||||||||||
5 mg/kg | 3 mg/kg q 24 h | 100 | 100 | 100 | 100 | 78 | 3 | 0 | 0 | 0 | 1.9 | 69.8 | 100 |
5 mg/kg | 4 mg/kg q 24 h | 100 | 100 | 100 | 100 | 92 | 8 | 0 | 0 | 0 | 6.0 | 70.6 | 100 |
7 mg/kg | 3 mg/kg q 24 h | 100 | 100 | 100 | 100 | 79 | 3 | 0 | 0 | 0 | 2.3 | 69.8 | 100 |
7 mg/kg | 4 mg/kg q 24 h | 100 | 100 | 100 | 100 | 91 | 8 | 0 | 0 | 0 | 6.5 | 70.7 | 100 |
8 mg/kg | 3 mg/kg q 24 h | 100 | 100 | 100 | 100 | 79 | 3 | 0 | 0 | 0 | 2.3 | 69.8 | 100 |
8 mg/kg | 4 mg/kg q 24 h | 100 | 100 | 100 | 100 | 92 | 9 | 0 | 0 | 0 | 6.6 | 70.8 | 100 |
Creatinine clearance 51–90 mL/min | |||||||||||||
7 mg/kg | 5 mg/kg q 24 h | 100 | 100 | 100 | 100 | 92 | 6 | 0 | 0 | 0 | 3.1 | 70.4 | 100 |
7 mg/kg | 6 mg/kg q 24 h | 100 | 100 | 100 | 100 | 96 | 12 | 0 | 0 | 0 | 5.8 | 71.3 | 100 |
8 mg/kg | 5 mg/kg q 24 h | 100 | 100 | 100 | 100 | 92 | 6 | 0 | 0 | 0 | 3.6 | 70.4 | 100 |
8 mg/kg | 6 mg/kg q 24 h | 100 | 100 | 100 | 100 | 96 | 12 | 0 | 0 | 0 | 6.4 | 71.3 | 100 |
8 mg/kg | 7 mg/kg q 24 h | 100 | 100 | 100 | 100 | 98 | 19 | 0 | 0 | 0 | 10.6 | 72.6 | 100 |
Creatinine clearance 91–130 mL/min | |||||||||||||
7 mg/kg | 5 mg/kg q 24 h | 100 | 100 | 100 | 100 | 89 | 5 | 0 | 0 | 0 | 3.2 | 70 | 100 |
7 mg/kg | 6 mg/kg q 24 h | 100 | 100 | 100 | 100 | 94 | 11 | 0 | 0 | 0 | 6.8 | 71 | 100 |
8 mg/kg | 5 mg/kg q 24 h | 100 | 100 | 100 | 100 | 88 | 6 | 0 | 0 | 0 | 3.4 | 70 | 100 |
8 mg/kg | 6 mg/kg q 24 h | 100 | 100 | 100 | 100 | 94 | 11 | 0 | 0 | 0 | 6.2 | 71 | 100 |
8 mg/kg | 7 mg/kg q 24 h | 100 | 100 | 100 | 100 | 97 | 18 | 0 | 0 | 0 | 9.7 | 72 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nulsopapon, P.; Nasomsong, W.; Pongchaidecha, M.; Changpradub, D.; Juntanawiwat, P.; Santimaleeworagun, W. The Synergistic Activity and Optimizing Doses of Tigecycline in Combination with Aminoglycosides against Clinical Carbapenem-Resistant Klebsiella pneumoniae Isolates. Antibiotics 2021, 10, 736. https://doi.org/10.3390/antibiotics10060736
Nulsopapon P, Nasomsong W, Pongchaidecha M, Changpradub D, Juntanawiwat P, Santimaleeworagun W. The Synergistic Activity and Optimizing Doses of Tigecycline in Combination with Aminoglycosides against Clinical Carbapenem-Resistant Klebsiella pneumoniae Isolates. Antibiotics. 2021; 10(6):736. https://doi.org/10.3390/antibiotics10060736
Chicago/Turabian StyleNulsopapon, Parnrada, Worapong Nasomsong, Manat Pongchaidecha, Dhitiwat Changpradub, Piraporn Juntanawiwat, and Wichai Santimaleeworagun. 2021. "The Synergistic Activity and Optimizing Doses of Tigecycline in Combination with Aminoglycosides against Clinical Carbapenem-Resistant Klebsiella pneumoniae Isolates" Antibiotics 10, no. 6: 736. https://doi.org/10.3390/antibiotics10060736
APA StyleNulsopapon, P., Nasomsong, W., Pongchaidecha, M., Changpradub, D., Juntanawiwat, P., & Santimaleeworagun, W. (2021). The Synergistic Activity and Optimizing Doses of Tigecycline in Combination with Aminoglycosides against Clinical Carbapenem-Resistant Klebsiella pneumoniae Isolates. Antibiotics, 10(6), 736. https://doi.org/10.3390/antibiotics10060736