Rapid Molecular Diagnosis of Tuberculosis and Its Resistance to Rifampicin and Isoniazid with Automated MDR/MTB ELITe MGB® Assay
Abstract
:1. Introduction
2. Results
2.1. Performances of MDR/MTB ELITe MGB® Assay on Routine Clinical Specimens
2.2. Retrospective Study: Performances of MDR/MTB ELITe MGB® Assay in Detecting Resistance Mutations in rpoB, katG, and Pro-inhA on Well-Defined Isolates
3. Discussion
4. Materials and Methods
4.1. Clinical Specimen Processing
4.2. DNAs Extracted from Strains
4.3. Genotypic DST
4.4. MDR/MTB ELITe MGB® Kit on ELITe InGenius® System (ELITechGroup Molecular Diagnostics, Bothell, WA, USA)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Consolidated Guidelines on Drug-Resistant Tuberculosis Treatment; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Laurenzo, D.; Mousa, S.A. Mechanisms of Drug Resistance in Mycobacterium tuberculosis and Current Status of Rapid Molecular Diagnostic Testing. Acta Trop. 2011, 119, 5–10. [Google Scholar] [CrossRef] [PubMed]
- McGrath, M.; Gey van Pittius, N.C.; van Helden, P.D.; Warren, R.M.; Warner, D.F. Mutation Rate and the Emergence of Drug Resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2014, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yew, W.-W. Mechanisms of Drug Resistance in Mycobacterium tuberculosis: Update 2015. Int. J. Tuberc. Lung Dis. 2015, 19, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R. InhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis. Science 1994, 263, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telenti, A.; Imboden, P.; Marchesi, F.; Matter, L.; Schopfer, K.; Bodmer, T.; Lowrie, D.; Colston, M.J.; Cole, S. Detection of Rifampicin-Resistance Mutations in Mycobacterium tuberculosis. Lancet 1993, 341, 647–651. [Google Scholar] [CrossRef]
- Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The Catalase—Peroxidase Gene and Isoniazid Resistance of Mycobacterium tuberculosis. Nature 1992, 358, 591–593. [Google Scholar] [CrossRef]
- Hillemann, D.; Haasis, C.; Andres, S.; Behn, T.; Kranzer, K. Validation of the FluoroType MTBDR Assay for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Complex Isolates. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [Green Version]
- Bisognin, F.; Lombardi, G.; Finelli, C.; Re, M.C.; Dal Monte, P. Simultaneous Detection of Mycobacterium tuberculosis Complex and Resistance to Rifampicin and Isoniazid by MDR/MTB ELITe MGB® Kit for the Diagnosis of Tuberculosis. PLoS ONE 2020, 15, e0232632. [Google Scholar] [CrossRef] [PubMed]
- Hodille, E.; Genestet, C.; Delque, T.; Ruffel, L.; Benito, Y.; Fredenucci, I.; Rasigade, J.-P.; Lina, G.; Dumitrescu, O. The MTB/MDR ELITe MGB® Kit: Performance Assessment for Pulmonary, Extra-Pulmonary, and Resistant Tuberculosis Diagnosis, and Integration in the Laboratory Workflow of a French Center. Pathogens 2021, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Opota, O.; Mazza-Stalder, J.; Greub, G.; Jaton, K. The Rapid Molecular Test Xpert MTB/RIF Ultra: Towards Improved Tuberculosis Diagnosis and Rifampicin Resistance Detection. Clin. Microbiol. Infect. 2019, 25, 1370–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekyere, J.O.; Maphalala, N.; Malinga, L.A.; Mbelle, N.M.; Maningi, N.E. A Comparative Evaluation of the New Genexpert MTB/RIF Ultra and Other Rapid Diagnostic Assays for Detecting Tuberculosis in Pulmonary and Extra Pulmonary Specimens. Sci. Rep. 2019, 9, 16587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brossier, F.; Veziris, N.; Truffot-Pernot, C.; Jarlier, V.; Sougakoff, W. Performance of the Genotype MTBDR Line Probe Assay for Detection of Resistance to Rifampin and Isoniazid in Strains of Mycobacterium tuberculosis with Low- and High-Level Resistance. J. Clin. Microbiol. 2006, 44, 3659–3664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brossier, F.; Veziris, N.; Jarlier, V.; Sougakoff, W. Performance of MTBDR plus for Detecting High/Low Levels of Mycobacterium tuberculosis Resistance to Isoniazid. Int. J. Tuberc. Lung Dis. 2009, 13, 260–265. [Google Scholar] [PubMed]
- Brossier, F.; Sougakoff, W.; Aubry, A.; Bernard, C.; Cambau, E.; Jarlier, V.; Mougari, F.; Raskine, L.; Robert, J.; Veziris, N. Molecular Detection Methods of Resistance to Antituberculosis Drugs in Mycobacterium tuberculosis. Med. Mal. Infect. 2017, 47, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin. Infect. Dis. 2017, 64, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, M.; Sergeant, E. EpiR: Tools for the Analysis of Epidemiological Data, v 1.0.4. 2019. Available online: https://CRAN.R-project.org/package=epiR (accessed on 23 August 2019).
- Gamer, M. Irr: Various Coefficients of Interrater Reliability and Agreement, v. 0.84.1. 2019. Available online: https://CRAN.R-project.org/package=irr (accessed on 16 July 2012).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 5 July 2019).
- Makhado, N.A.; Matabane, E.; Faccin, M.; Pinçon, C.; Jouet, A.; Boutachkourt, F.; Goeminne, L.; Gaudin, C.; Maphalala, G.; Beckert, P.; et al. Outbreak of Multidrug-Resistant Tuberculosis in South Africa Undetected by WHO-Endorsed Commercial Tests: An Observational Study. Lancet Infect. Dis. 2018, 18, 1350–1359. [Google Scholar] [CrossRef]
- Ng, K.C.S.; Supply, P.; Cobelens, F.G.J.; Gaudin, C.; Gonzalez-Martin, J.; de Jong, B.C.; Rigouts, L. How Well Do Routine Molecular Diagnostics Detect Rifampin Heteroresistance in Mycobacterium tuberculosis? J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TB Diagnosis | ELITe MTB (n = 242) | Microscopic Examination (n = 238) | ||
---|---|---|---|---|
Positive (n) | Negative (n) | Positive (n) | Negative (n) | |
Positive | 40 1 | 4 | 29 | 13 |
Negative | 5 1 | 193 2 | 15 | 182 |
Sensitivity, % | 90.9 | 69.0 | ||
(95% CI) | (78.3–97.5) | (52.9–82.4) | ||
Specificity, % | 97.5 | 92.3 | ||
(95% CI) | (94.2–99.2) | (87.6–95.7) | ||
Cohen’s Kappa | 0.88 | 0.60 | ||
(95% CI) | (0.80–0.96) | (0.47–0.74) |
gDST | MDR/MTB ELITe | |||||
---|---|---|---|---|---|---|
Resistant (n) | Susceptible (n) | Uninterpretable (InGenius® and Operator) | Sensitivity (Interpreted) % (95% CI) | Specificity (Interpreted) % (95% CI) | Cohen’s Kappa (Interpreted) (95% CI) | |
rpoB | ||||||
Mutated | 6 1 | 1 2 | 2 | 85.7 (85.7) | 96.0 (100.0) | 0.82 (0.90) |
Wild-type | 1 3 | 24 6 | 6 | (42.1–99.7) | (79.6–99.9) | (0.57–1.0) |
katG | ||||||
Mutated | 5 4 | 0 | 2 | 100 (100) | 100 (100) | 1.0 (1.0) |
Wild-type | 0 | 27 6 | 6 | (47.8–100) | (87.2–100) | (1.0–1.0) |
pro-inhA | ||||||
Mutated | 5 5 | 0 | 0 | 100 (100) | 100 (100) | 1.0 (1.0) |
Wild-type | 0 | 27 6 | 8 | (47.8–100) | (87.2–100) | (1.0–1.0) |
Resistance Phenotype | Mutation in | ||
---|---|---|---|
rpoB | katG | inhA Promoter | |
MDR | Val251Phe; Gln432Pro; Asp435Val; Asp435Tyr; Asp435Tyr + Ser441Thr; Asp435Tyr + Gln429Arg; Asp435Tyr + Met433Ile; Asp435Glu + His445Asn; His445Cys; His445Asp; His445Leu; His445Arg; His445Tyr; Ser450Leu; Leu452Pro | Ser315Thr Trp689Gly | −15C > T −8T > A |
Mono RIF-R | Ser450Leu, His445Tyr | Ser140Gly 1 | |
Mono INH-R | Asn438Asp 2 | Arg249Pro | −60C > G |
Susceptible | Leu430Pro | Ser315Gly 3 |
gDST | MDR/MTB ELITe Results | ||||
---|---|---|---|---|---|
Resistant (n) | Susceptible (n) | Sensitivity (Interpreted), % (95% CI) | Specificity (Interpreted), % (95% CI) | Cohen’s Kappa (Interpreted), (95% CI) | |
rpoB | |||||
Mutated | 41 | 1 1 | 97.6 (97.6) | 100.0 (100) | 0.95 (0.95) |
Wild-type | 0 | 12 | (87.4–100) | (73.5–100.0) | (0.85–1.0) |
katG | |||||
Mutated | 34 2 | 3 3 | 91.8 (94.3) | 100.0 (94.7) | 0.88 (0.88) |
Wild-type | 0 | 17 | (78.0–98.3) | (80.4–100.0) | (0.74–1.0) |
pro-inhA | |||||
Mutated | 14 | 1 4 | 93.3 (93.3) | 100.0 (100.0) | 0.95 (0.95) |
Wild-type | 0 | 39 | (68.0–99.9) | (90.9–100.0) | (0.86–1.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ok, V.; Aubry, A.; Morel, F.; Bonnet, I.; Robert, J.; Sougakoff, W. Rapid Molecular Diagnosis of Tuberculosis and Its Resistance to Rifampicin and Isoniazid with Automated MDR/MTB ELITe MGB® Assay. Antibiotics 2021, 10, 797. https://doi.org/10.3390/antibiotics10070797
Ok V, Aubry A, Morel F, Bonnet I, Robert J, Sougakoff W. Rapid Molecular Diagnosis of Tuberculosis and Its Resistance to Rifampicin and Isoniazid with Automated MDR/MTB ELITe MGB® Assay. Antibiotics. 2021; 10(7):797. https://doi.org/10.3390/antibiotics10070797
Chicago/Turabian StyleOk, Vichita, Alexandra Aubry, Florence Morel, Isabelle Bonnet, Jérôme Robert, and Wladimir Sougakoff. 2021. "Rapid Molecular Diagnosis of Tuberculosis and Its Resistance to Rifampicin and Isoniazid with Automated MDR/MTB ELITe MGB® Assay" Antibiotics 10, no. 7: 797. https://doi.org/10.3390/antibiotics10070797
APA StyleOk, V., Aubry, A., Morel, F., Bonnet, I., Robert, J., & Sougakoff, W. (2021). Rapid Molecular Diagnosis of Tuberculosis and Its Resistance to Rifampicin and Isoniazid with Automated MDR/MTB ELITe MGB® Assay. Antibiotics, 10(7), 797. https://doi.org/10.3390/antibiotics10070797