High Heritabilities for Antibiotic Usage Show Potential to Breed for Disease Resistance in Finishing Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Population
2.2. Data Collection of Antimicrobial Usage
2.3. Data Collection Performance Parameters
2.4. Antibiotic Usage Parameters
2.5. Data Editing of Performance Traits
2.6. Modelling
2.7. Cross-Validation
3. Results
3.1. Descriptive Statistics
3.2. Genetic Parameters
3.3. Predictive Abilities
4. Discussion
4.1. Antibiotic Usage
4.2. Genetic Analysis of Antibiotic Usage
4.3. Limitations
4.4. Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. In Veterinary and Animal Science; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 7. [Google Scholar]
- Sarrazin, S.; Joosten, P.; Van Gompel, L.; Luiken, R.E.C.; Mevius, D.J.; A Wagenaar, J.; Heederik, D.J.J.; Dewulf, J.; Wagenaar, J.; Graveland, H.; et al. Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data. J. Antimicrob. Chemother. 2019, 74, 807–816. [Google Scholar] [CrossRef]
- Aarestrup, F. Get pigs off antibiotics. Nature 2012, 486, 465–466. [Google Scholar] [CrossRef]
- European Union. Moving towards a More Healthy and Sustainable EU Food System, a Corner Stone of the European Green Deal [Internet]. 2020. Available online: https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/european-surveillance-veterinary-antimicrobial-consumption-esvac (accessed on 20 July 2020).
- Maron, D.F.; Smith, T.J.S.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Glob. Health 2013, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Postma, M.; Vanderhaeghen, W.; Sarrazin, S.; Maes, D.; Dewulf, J. Reducing Antimicrobial Usage in Pig Production without Jeopardizing Production Parameters. Zoonoses Public Health 2017, 64, 63–74. [Google Scholar] [CrossRef]
- European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) [Internet]. 2019. Available online: https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/european-surveillance-veterinary-antimicrobial-consumption-esvac (accessed on 2 June 2020).
- FAGG. SANITEL-MED [Internet]. 2020. Available online: https://www.fagg-afmps.be/nl/SANITEL-MED (accessed on 13 August 2020).
- Maes, D.; Dewulf, J.; Boyen, F.; Haesebrouck, F. Disease identification and management on the pig farm. Achiev. Sustain. Prod. Pig Meat 2018, 93–116. [Google Scholar] [CrossRef]
- Nakov, D.; Hristov, S.; Stanković, B.; Pol, F.; Dimitrov, I.; Ilieski, V.; Mormede, P.; Hervé, J.; Terenina, E.; Lieubeau, B.; et al. Methodologies for assessing disease tolerance in pigs. Front. Vet. Sci. 2019, 5, 329. [Google Scholar] [CrossRef] [PubMed]
- Guy, S.Z.Y.; Li, L.; Thomson, P.C.; Hermesch, S. Genetic parameters for health of the growing pig using medication records. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, North Island, 11 February 2018. [Google Scholar]
- Vissche, A.H.; Janss, L.L.G.; Niewold, T.A.; de Greef, K.H. Disease incidence and immunological traits for the selection of healthy pigs a review. Vet. Q. 2002, 24, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Gross, W.G.; Siegel, P.B.; Hall, R.W.; Domermuth, C.H.; DuBoise, R.T. Production and persistence of antibodies in chickens to sheep erythrocytes. Poult. Sci. 1980, 59, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Nejsum, P.; Roepstorff, A.; Jorgensen, C.B.; Fredholm, M.; Goring, H.H.H.; Anderson, T.J.C.; Thamsborg, S.M. High heritability for Ascaris and Trichuris infection levels in pigs. Heredity 2009, 102, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putz, A. Quantifying resilience in Sows and Wean-to-Finish Pigs [Internet]. Graduate Theses and Dissertations, Iowa State University, Ames, IA, USA, 2019. Available online: https://lib.dr.iastate.edu/etd/17078 (accessed on 2 September 2020).
- Flori, L.; Gao, Y.; Laloë, D.; Lemonnier, G.; Leplat, J.-J.; Teillaud, A.; Cossalter, A.-M.; Laffitte, J.; Pinton, P.; De Vaureix, C.; et al. Immunity traits in pigs: Substantial genetic variation and limited covariation. PLoS ONE 2011, 6, e22717. [Google Scholar] [CrossRef] [Green Version]
- Clapperton, M.; Diack, A.B.; Matika, O.; Glass, E.J.; Gladney, C.D.; A Mellencamp, M.; Hoste, A.; Bishop, S.C. Traits associated with innate and adaptive immunity in pigs: Heritability and associations with performance under different health status conditions. Genet. Sel. Evol. 2009, 41, 54. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.C.; Woolliams, J.A. Genomics and disease resistance studies in livestock. Livest Sci. 2014, 166, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Guy, S.; Thomson, P.C.; Hermesch, S. Selection of pigs for improved coping with health and environmental challenges: Breeding for resistance or tolerance? Front. Genet. 2012, 3, 281. [Google Scholar] [CrossRef] [Green Version]
- Henryon, M.; Berg, P.; Jensen, J.; Andersen, S. Genetic variation for resistance to clinical and subclinical diseases exists in growing pigs. Anim. Sci. 2001, 73, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Putz, A.M.; Harding, J.C.S.; Dyck, M.K.; Fortin, F.; Plastow, G.S.; Dekkers, J.C.M. Novel resilience phenotypes using feed intake data from a natural disease challenge model in wean-to-finish pigs. Front. Genet. 2019, 9, 660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmerman, T.; Dewulf, J.; Catry, B.; Feyen, B.; Opsomer, G.; de Kruif, A.; Maes, D. Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev. Vet. Med. 2006, 74, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Callens, B.; Persoons, D.; Maes, D.; Laanen, M.; Postma, M.; Boyen, F.; Haesebrouck, F.; Butaye, P.; Catry, B.; Dewulf, J. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 2012, 106, 53–62. [Google Scholar] [CrossRef]
- AMCRA. Antibioticadoseringenlijst Varkens Maart 2020 [Internet]. 2020. Available online: https://www.amcra.be/swfiles/files/AB-doseringenlijst_varkens_maa-2020_406.pdf (accessed on 13 August 2020).
- Muñoz, F.; Sanchez, L. breedR: Statistical Methods for Forest Genetic Resources Analysts. [Internet]. 2019. Available online: https://github.com/famuvie/breedR%0A (accessed on 2 September 2020).
- Legarra, A.; Robert-Granié, C.; Manfredi, E.; Elsen, J.M. Performance of genomic selection in mice. Genetics 2008, 180, 611–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. The use of antimicrobials in global pig production: A systematic review of methods for quantification. Prev. Vet. Med. 2018, 160, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Trauffler, M.; Griesbacher, A.; Fuchs, K.; Köfer, J. Antimicrobial drug use in Austrian pig farms: Plausibility check of electronic on-farm records and estimation of consumption. Vet. Rec. 2014, 175, 402. [Google Scholar] [CrossRef] [Green Version]
- Sjölund, M.; Postma, M.; Collineau, L.; Lösken, S.; Backhans, A.; Belloc, C.; Emanuelson, U.; Beilage, E.; Stärk, K.; Dewulf, J. Quantitative and qualitative antimicrobial usage patterns in farrow-to-finish pig herds in Belgium, France, Germany and Sweden. Prev. Vet. Med. 2016, 130, 41–50. [Google Scholar] [CrossRef]
- Abdelsayed, M.; Haile-Mariam, M.; Pryce, J.E. Genetic parameters for health traits using data collected from genomic information nucleus herds. J. Dairy Sci. 2017, 100, 9643–9655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunia, M.; David, I.; Hurtaud, J.; Maupin, M.; Gilbert, H.; Garreau, H. Resistance to infectious diseases is a heritable trait in rabbits. J. Anim. Sci. 2015, 93, 5631–5638. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.F.; Ruvinsky, A. The Genetics of the Pig, 2nd ed.; CABI: Oxfordshire, UK, 2011. [Google Scholar]
- Chmielowiec-Korzeniowska, A.; Tymczyna, L.; Babicz, M. Assessment of selected parameters of biochemistry, hematology, immunology and production of pigs fattened in different seasons. Arch. Anim. Breed. 2012, 55, 469–479. [Google Scholar] [CrossRef]
- Brumm, M.C. Effect of Environment on Health. Dis. Swine 2019, 50–58. [Google Scholar] [CrossRef]
- Joyce, A.; McCarthy, C.G.P.; Murphy, S.; Walsh, F. Antibiotic resistomes of healthy pig faecal metagenomes. Microb. Genom. 2019, 5, e000272. [Google Scholar] [CrossRef]
Trait | Mean | sd | Median | Min | Max |
---|---|---|---|---|---|
Number pigs per pen at start | 6.6 | 0.6 | 7.0 | 5.0 | 8.0 |
Proportion of female pigs pen | 0.5 | 0.19 | 0.5 | 0.0 | 1.0 |
UDPen-all (mg/kg) | 1.07 | 2.79 | 0.00 | 0.00 | 41.60 |
UDPen-respiratory (mg/kg) | 0.57 | 2.11 | 0.00 | 0.00 | 41.60 |
TIADD-all | 0.11 | 0.31 | 0.00 | 0.00 | 4.32 |
TIADD-respiratory | 0.07 | 0.24 | 0.00 | 0.00 | 4.32 |
TIUDD-all | 0.15 | 0.39 | 0.00 | 0.00 | 4.00 |
TIUDD-respiratory | 0.09 | 0.30 | 0.00 | 0.00 | 3.84 |
Ntreatment-all (days) | 0.7 | 1.5 | 0.0 | 0.0 | 19.0 |
Ntreatment-respiratory (days) | 0.4 | 1.0 | 0.0 | 0.0 | 12.0 |
ABmL-all (mL) | 3.4 | 8.4 | 0.0 | 0.0 | 88.0 |
ABmL-respiratory (mL) | 2.1 | 6.9 | 0.0 | 0.0 | 88.0 |
ABmg -all (mg) | 425.9 | 1121.5 | 0.0 | 0.0 | 12,800.0 |
ABmg -respiratory (mg) | 256.8 | 911.8 | 0.0 | 0.0 | 12,800.0 |
Mortality per pen (counts) | 0.08 | 0.31 | 0.00 | 0.00 | 4.00 |
FI (kg/day) | 1.81 | 0.16 | 1.81 | 1.04 | 2.85 |
FCR | 2.40 | 0.17 | 2.38 | 1.85 | 3.79 |
Trait | Mean | sd | Median | Min | Max |
---|---|---|---|---|---|
Age at start (days) | 69.5 | 6.0 | 68.0 | 59.0 | 113.0 |
Weight start (kg) | 23.9 | 4.1 | 24.0 | 12.0 | 51.0 |
Age at slaughter (days) | 189.5 | 14.7 | 191.0 | 68.0 | 242.0 |
Weight at slaughter/death (kg) | 114.0 | 9.3 | 114.0 | 30.0 | 147.1 |
Carcass Weight (kg) | 90.4 | 6.6 | 90.2 | 44.9 | 120.1 |
Duration test (days) | 120.0 | 14.8 | 120.0 | 0.0 | 168.0 |
ADG (kg/day) | 0.759 | 0.093 | 0.758 | 0.341 | 1.149 |
Meat% (%) | 62.9 | 2.7 | 63.1 | 45.4 | 70.2 |
Trait | h2 (se) | c2 (se) | Genetic Correlations (rg) | |||
---|---|---|---|---|---|---|
UDPen-all (se) | UDPen- respiratory (se) | Ntreatment-all (se) | Ntreatment- respiratory (se) | |||
UDPen-all | 0.42 (0.06) | 0.13 (0.02) | - | 0.92 (0.03) | 0.69 (0.07) | 0.65 (0.07) |
UDPen-respiratory | 0.11 (0.05) | 0.17 (0.02) | - | 0.65 (0.08) | 0.69 (0.06) | |
Ntreatment-all | 0.25 (0.06) | 0.12 (0.02) | - | 0.95 (0.03) | ||
Ntreatment-respiratory | 0.03 (0.04) | 0.19 (0.02) | - | |||
TIADD-All | 0.37 (0.06) | 0.17 (0.02) | 0.94 (0.02) | 0.95 (0.02) | 0.72 (0.06) | 0.73 (0.06) |
TIADD-respiratory | 0.14 (0.05) | 0.16 (0.02) | 0.87 (0.04) | 0.95 (0.01) | 0.68 (0.07) | 0.75 (0.05) |
TIUDD-All | 0.18 (0.05) | 0.34 (0.03) | 0.74 (0.05) | 0.74 (0.05) | 0.86 (0.03) | 0.85 (0.02) |
TIUDD-respiratory | 0.01 (0.03) | 0.38 (0.03) | 0.65 (0.07) | 0.69 (0.05) | 0.84 (0.04) | 0.89 (0.02) |
ABmL-all | 0.32 (0.06) | 0.22 (0.03) | 0.61 (0.07) | 0.62 (0.07) | 0.92 (0.02) | 0.92 (0.03) |
ABmL-respiratory | 0.09 (0.04) | 0.29 (0.03) | 0.57 (0.08) | 0.62 (0.06) | 0.87 (0.04) | 0.93 (0.02) |
ABmg-all | 0.44 (0.06) | 0.15 (0.02) | 0.85 (0.03) | 0.84 (0.04) | 0.81 (0.05) | 0.78 (0.05) |
ABmg-respiratory | 0.15 (0.05) | 0.20 (0.02) | 0.77 (0.05) | 0.87 (0.03) | 0.75 (0.06) | 0.79 (0.04) |
Mortality | 0.13 (0.05) | 0.06 (0.02) | 0.41 (0.15) | 0.60 (0.14) | 0.08 (0.17) | 0.20 (0.15) |
FI | 0.31 (0.05) | 0.44 (0.03) | 0.03 (0.11) | 0.11 (0.10) | −0.24 (0.10) | −0.16 (0.09) |
ADG | 0.29 (0.02) | 0.21 (0.02) | −0.30 (0.10) | −0.21 (0.09) | −0.28 (0.11) | −0.10 (0.10) |
FCR | 0.24 (0.04) | 0.53 (0.03) | 0.25 (0.10) | 0.26 (0.09) | −0.08 (0.11) | −0.11 (0.09) |
Meat% | 0.58 (0.03) | 0.14 (0.02) | 0.06 (0.13) | 0.08 (0.12) | 0.45 (0.12) | 0.32 (0.11) |
Strategy | Trait | Predictive Ability (sd) | h2 (sd) | c2 (sd) |
---|---|---|---|---|
Within-familiy | UDPen-all | 0.47 (0.05) | 0.41 (0.07) | 0.12 (0.01) |
UDPen-respiratory | 0.33 (0.08) | 0.12 (0.06) | 0.17 (0.02) | |
Ntreatment-all | 0.44 (0.05) | 0.24 (0.08) | 0.11 (0.01) | |
Ntreatment-respiratory | 0.22 (0.04) | 0.06 (0.02) | 0.18 (0.02) | |
Across-family | UDPen-all | 0.25 (0.06) | 0.42 (0.08) | 0.13 (0.02) |
UDPen-respiratory | 0.14 (0.10) | 0.14 (0.06) | 0.17 (0.02) | |
Ntreatment-all | 0.22 (0.05) | 0.27 (0.06) | 0.11 (0.11) | |
Ntreatment-respiratory | 0.08 (0.06) | 0.06 (0.02) | 0.19 (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorssen, W.; Maes, D.; Meyermans, R.; Depuydt, J.; Janssens, S.; Buys, N. High Heritabilities for Antibiotic Usage Show Potential to Breed for Disease Resistance in Finishing Pigs. Antibiotics 2021, 10, 829. https://doi.org/10.3390/antibiotics10070829
Gorssen W, Maes D, Meyermans R, Depuydt J, Janssens S, Buys N. High Heritabilities for Antibiotic Usage Show Potential to Breed for Disease Resistance in Finishing Pigs. Antibiotics. 2021; 10(7):829. https://doi.org/10.3390/antibiotics10070829
Chicago/Turabian StyleGorssen, Wim, Dominiek Maes, Roel Meyermans, Jürgen Depuydt, Steven Janssens, and Nadine Buys. 2021. "High Heritabilities for Antibiotic Usage Show Potential to Breed for Disease Resistance in Finishing Pigs" Antibiotics 10, no. 7: 829. https://doi.org/10.3390/antibiotics10070829
APA StyleGorssen, W., Maes, D., Meyermans, R., Depuydt, J., Janssens, S., & Buys, N. (2021). High Heritabilities for Antibiotic Usage Show Potential to Breed for Disease Resistance in Finishing Pigs. Antibiotics, 10(7), 829. https://doi.org/10.3390/antibiotics10070829