Molecular Characterization of Cephalosporin and Fluoroquinolone Resistant Salmonella Choleraesuis Isolated from Patients with Systemic Salmonellosis in Thailand
Abstract
:1. Introduction
2. Results and Discussions
2.1. Antimicrobial Susceptibility and ESBL-Producing S. Choleraesuis Isolates
2.2. Characterization of the ESBL, QRDR and PMQR Genes
2.3. PFGE Analysis
3. Materials and Methods
3.1. Data Source and Salmonella Strains
3.2. Antimicrobial Susceptibility Testing
3.3. Characterization of ESBL, QRDR and PMQR Genes
3.4. Pulse-Field gel Electrophoresis (PFGE)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, L.H.; Chiu, C.H. Salmonella: Clinical importance and evolution of nomenclature. Chang Gung Med. J. 2007, 30, 210–219. [Google Scholar]
- Collard, J.M.; Place, S.; Denis, O.; Rodriguez-Villalobos, H.; Vrints, M.; Weill, F.X.; Baucheron, S.; Cloeckaert, A.; Struelens, M.; Bertrand, S. Travel-acquired salmonellosis due to Salmonella Kentucky resistant to ciprofloxacin, ceftriaxone and co-trimoxazole and associated with treatment failure. J. Antimicrob. Chemother. 2007, 60, 190–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauderdale, T.L.; Aarestrup, F.M.; Chen, P.C.; Lai, J.F.; Wang, H.Y.; Shiau, Y.R.; Huang, I.W.; Hung, C.L. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn. Microbiol. Infect. Dis. 2006, 255, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, R.S.; Bangtrakulnonth, A.; Pulsrikarn, C.; Pornreongwong, S.; Hasman, H.; Song, S.W.; Aarestrup, F.M. Antimicrobial resistance and molecular epidemiology of Salmonella Rissen from animals, food products and patients in Thailand and Denmark. Foodborne Pathog. Dis. 2008, 5, 605–619. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, D.A.; Tyler, S.; Christianson, S.; McGeer, A.; Muller, M.P. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob. Agents Chemother. 2004, 48, 3758–3764. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Martínez, J.M.; Cano, M.E.; Velasco, C.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: An update. J. Infect. Chemother. 2011, 17, 149–182. [Google Scholar] [CrossRef] [PubMed]
- Giraud, E.; Baucheron, S.; Cloeckaert, A. Resistance to fluoroquinoloes in Salmonella: Emerging mechanisms and resistance prevention strategies. Microbes Infect. 2006, 8, 1937–1944. [Google Scholar] [CrossRef]
- Kulwichit, W.; Chatsuwan, T.; Unhasuta, C.; Pulsrikarn, C.; Bangtrakulnonth, A.; Chongthaleong, A. Drug-resistant nontyphoidal Salmonella bacteremia, Thailand. Emerg. Infect. Dis. 2007, 13, 501–502. [Google Scholar] [CrossRef]
- Lee, H.Y.; Su, L.H.; Tsai, M.H.; Kim, S.W.; Chang, H.H.; Jung, S.I.; Park, K.H.; Perera, J.; Carlos, C.; Tan, B.H.; et al. High rate of reduced susceptibility to ciprofloxacin and ceftriaxone among nontyphoid Salmonella clinical isolates in Asia. Antimicrob. Agents Chemother. 2009, 53, 2696–2699. [Google Scholar] [CrossRef] [Green Version]
- Luk-In, S.; Chatsuwan, T.; Pulsrikarn, C.; Bangtrakulnonth, A.; Rirerm, U.; Kulwichit, W. High prevalence of ceftriaxone resistance among invasive Salmonella enterica serotype Choleraesuis isolates in Thailand: The emergence and increase of CTX-M-55 in ciprofloxacin-resistant S. Choleraesuis isolates. Int. J. Med. Microbiol. 2018, 308, 447–453. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Bangtrakulnonth, A.; Pulsrikarn, C.; Pornruangwong, S.; Noppornphan, G.; Emborg, H.D.; Aarestrup, F.M. Risk factors and epidemiology of the ten most common Salmonella serovars from patients in Thailand: 2002–2007. Foodborne Pathog. Dis. 2009, 6, 1009–1019. [Google Scholar] [CrossRef]
- Kiratisin, P. Bacteraemia due to non-typhoidal Salmonella in Thailand: Clinical and microbiological analysis. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Chiou, C.S.; Lauderdale, T.L.; Tsai, S.H.; Wu, J.J. Cephalosporin and ciprofloxacin resistance in Salmonella, Taiwan. Emerg. Infect. Dis. 2005, 11, 947–950. [Google Scholar] [CrossRef]
- Chiu, C.H.; Su, L.H.; Chu, C.; Chia, J.H.; Wu, T.L.; Lin, T.Y.; Lee, Y.S.; Ou, J.T. Isolation of Salmonella enterica serotype Choleraesuis resistant to ceftriaxone and ciprofloxacin. Lancet 2004, 363, 1285–1286. [Google Scholar] [CrossRef] [Green Version]
- Li, W.C.; Huang, F.Y.; Liu, C.P.; Weng, L.C.; Wang, N.Y.; Chiu, N.C.; Chiang, C.S. Ceftriaxone resistance of nontyphoidal Salmonella enterica isolates in Northern Taiwan attributable to production of CTX-M-14 and CMY-2 beta-lactamases. J. Clin. Microbiol. 2005, 43, 3237–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirichote, P.; Hasman, H.; Pulsrikarn, C.; Schønheyder, H.C.; Samulioniené, J.; Pornruangmong, S.; Bangtrakulnonth, A.; Aarestrup, F.M.; Hendriksen, R.S. Molecular characterization of extended spectrum cephalosporinase—Producing Salmonella enterica serovar Choleraesuis isolates from patients in Thailand and Denmark. J. Clin. Microbiol. 2010, 48, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Chen, Q.; Yu, X.; Li, Q.; Ding, B.; Yang, L.; Chen, C.; Qin, Z.; Parsons, C.; Zhang, X.; et al. High prevalence of extended-spectrum beta-lactamases among Salmonella enterica Typhimurium isolates from pediatric patients with diarrhea in China. PLoS ONE 2011, 6, e16801. [Google Scholar] [CrossRef] [Green Version]
- Kiratisin, P.; Apisarnthanarak, A.; Saifon, P.; Laesripa, C.; Kitphati, R.; Mundy, L.M. The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum β-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand. Diagn. Microbiol. Infect. Dis. 2007, 58, 349–355. [Google Scholar] [CrossRef]
- Shi, W.F.; Zhou, J.; Qin, J.P. Transconjugation and genotyping of the plasmid-mediated AmpC beta-lactamase and extended-spectrum beta-lactamase genes in Klebsiella pneumoniae. Chin. Med. J. 2009, 122, 1092–1096. [Google Scholar]
- Cartelle, M.; Del Mar Tomas, M.; Pertega, S.; Beceiro, A.; Dominguez, M.A.; Velasco, D.; Molina, F.; Villanueva, R.; Bou, G. Risk factors for colonization and infection in a hospital outbreak caused by a strain of Klebsiella pneumoniae with reduced susceptibility to expanded-spectrum cephalosporins. J. Clin. Microbiol. 2004, 42, 4242–4249. [Google Scholar] [CrossRef] [Green Version]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance: The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Cloeckaert, A.; Chaslus-Dancla, E. Mechanisms of quinolone resistance in Salmonella. Vet. Res. 2001, 32, 291–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [Green Version]
- Minor, L.; Popoff, M.Y. Request for an opinion; designation of Salmonella enterica sp. Nor, nom. Rev, as the type and only species of the genus Salmonella. Int. J. Syst. Bacteriol. 1987, 37, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; Approved standard, M31-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Olesen, I.; Hasman, H.; Aarestrup, F.M. Prevalence of β-lactamases among ampicillin resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb. Drug Resist. 2004, 10, 334–340. [Google Scholar] [CrossRef]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. Beta-lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, F.; Miró, E. Update on CTX-M-type β-lactamases. Rev. Med. Microbiol. 2002, 13, 63–73. [Google Scholar] [CrossRef]
- Le, Q.P.; Ueda, S.; Nguyen, T.N.; Dao, T.V.; van Hoang, T.A.; Tran, T.T.; Hirai, I.; Nakayama, T.; Kawahara, R.; Do, T.H.; et al. Characteristics of extended-spectrum β-lactamase-producing Escherichia coli in retail meats and shrimp at a local market in Vietnam. Foodborne Pathog. Dis. 2015, 12, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Munday, C.J.; Ensor, V.M.; Liu, W.E.; Hawkey, P.M. Multiplex PCR detection of CTX-M gene. Clin. Microbiol. Infect. 2004, 10, 248. [Google Scholar]
- Wiuff, C.; Madsen, M.; Baggesen, D.L.; Aarestrup, F.M. Quinolone resistance among Salmonella enterica from cattle, broilers, and swine in Denmark. Microb. Drug Resist. 2000, 6, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V.; Weill, F.X.; Poirel, L.; Fabre, L.; Soussy, C.J.; Nordmann, P. Prevalence of qnr genes in Salmonella in France. J. Antimicrob. Chemother. 2007, 59, 751–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.H.; Robicsek, A.; Jacoby, G.A.; Sahm, D.; Hooper, D.C. Prevalence in the United States of aac(6′)Ib-cr enconding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 2006, 50, 3953–3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribot, E.; Fair, M.A.; Gautom, R.; Cameron, D.N.; Hunter, S.B.; Swaminathan, B.; Barrett, T.J. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog. Dis. 2006, 3, 59–67. [Google Scholar] [CrossRef] [Green Version]
Antimicrobial | Group | % Resistant (Isolate) | % Intermediate (Isolate) | % Sensitive (Isolate) |
---|---|---|---|---|
AMP | penicillin | 100 (62) | 0 | 0 |
AMC | β-lactam/β-lactam inhibitor combination | 43.4 (30) | 0 | 51.6 (32) |
ATM | monobactam | 43.5 (27) | 12.9 (8) | 43.5 (27) |
FEP | cephalosporin | 8.1 (5) | 21.0 (13) | 71.0 (44) |
CAZ | cephalosporin | 62.9 (42) | 6.4 (4) | 25.8 (16) |
FOX | cephalosporin | 40.3 (25) | 4.8 (3) | 54.8 (34) |
CTX | cephalosporin | 100.0 (62) | 0 | 0 |
CPD | cephalosporin | 98.4 (61) | 0 | 0 |
KF | cephalosporin | 100 (62) | 0 | 0 |
CXM | cephalosporin | 80.6 (53) | 12.9 (8) | 1.6 (1) |
CRO | cephalosporin | 100.0 (62) | 0 | 0 |
EFT | cephalosporin | 96.8 (60) | 3.2 (2) | 0 |
CIP | fluoroquinolone | 14.6 (9) | 67.7 (42) | 17.7 (11) |
CHL | phenicol | 83.9 (52) | 9.7 (6) | 6.4 (4) |
NA | quinolone | 100.0 (62) | 0 | 0 |
NOR | fluoroquinolone | 0.0 (0) | 0 | 100 (62) |
S | aminoglycoside | 64.5 (43) | 19.3 (12) | 11.3 (11) |
TET | tetracycline | 100.0 (62) | 0 | 0 |
STX | folate Pathway inhibitor | 11.3 (7) | 1.61 (1) | 87.1 (54) |
Antimicrobial Resistance Patterns | No. of Isolate (%) | |
---|---|---|
ESBL | Non-ESBL | |
9 antimicrobial resistance AMP-NA-TET-KF-CXM-EFT-CRO-CPD-CTX | 3(4.8%) | - |
10 antimicrobial resistance AMP-NA-CHL-TET-KF-CXM-EFT-CRO-CPD-CTX AMP-NA-CHL-S-TET-KF-CXM-EFT-CPD-CTX | 6(9.6%) 1(1.6%) | - - |
11 antimicrobial resistance AMP-NA-CHL-S-TET-KF-CXM-EFT-CRO-CPD-CTX AMP-NA-ATM-CHL-TET-STX-KF-EFT-CRO-CPD-CTX AMP-NA-TET-KF-FEP-CXM-CAZ-EFT-CRO-CPD-CTX AMP-NA-ATM-TET-KF-CXM-CAZ-EFT-CRO-CPD-CTX AMP-NA-ATM-CHL-TET-KF-CXM-EFT-CRO-CPD-CTX AMP-AMC-NA-CHL-TET-KF-CXM-EFT-CRO-CPD-CTX AMP-CIP-NA-TET-STX-KF-CXM-EFT-CRO-CPD-CTX AMP-AMC-NA-S-TET-KF-FOX-CAZ-CRO-CPD-CTX | 4(6.4%) 1(1.6%) 1(1.6%) 1(1.6%) 1(1.6%) 1(1.6%) 1(1.6%) - | - - - - - - - 1(1.6%) |
12 antimicrobial resistance AMP-CIP-NA-ATM-CHL-TET-KF-CXM-EFT-CRO-CPD-CTX AMP-AMC-NA-CHL-S-TET-KF-FOX-CAZ-CRO-CPD-CTX AMP-NA-S-TET-KF-FEP-CXM-CAZ-EFT-CRO-CPD-CTX AMP-AMC-NA-CHL-S-TET-KF-CAZ-EFT-CRO-CPD-CTX AMP-AMC-NA-TET-KF-FOX-CXM-CAZ-EFT-CRO-CPD-CTX | 1(1.6%) 1(1.6%) 1(1.6%) - - | - - - 2(3.2%) 1(1.6%) |
13 antimicrobial resistance AMP-NA-ATM-CHL-TET-STX-KF-CXM-CAZ-EFT-CRO-CPD-CTX AMP-NA-ATM-CHL-S-TET-KF-CXM-CAZ-EFT-CRO-CPD-CTX AMP-NA-ATM-S-TET-STX-KF-CXM-CAZ-EFT-CRO-CPD-CTX AMP-CIP-NA-ATM-CHL-S-TET-KF-CXM-EFT-CRO-CPD-CTX AMP-AMC-NA-CHL-S-TET-KF-FOX-CAZ-EFT-CRO-CPD-CTX | 2(3.2%) 2(3.2%) 1(1.6%) 1(1.6%) - | - - - - 3(4.8%) |
14 antimicrobial resistance AMP-AMC-NA-CHL-S-TET-KF-FOX-CXM-CAZ-EFT-CRO-CPD-CTX AMP-CIP-NA-ATM-CHL-S-TET-KF-CXM-CAZ-EFT-CRO-CPD-CTX AMP-AMC-NA-ATM-CHL-S-TET-KF-FOX-CAZ-EFT-CRO-CPD-CTX | 4(6.4%) 4(6.4%) 1(1.6%) | 4(6.4%) - - |
15 antimicrobial resistance AMP-AMC-NA-ATM-CHL-S-TET-KF-FOX-CXM-CAZ-EFT-CRO-CPD-CTX AMP-AMC-NA-CHL-S-TET-STX-KF-FOX-CXM-CAZ-EFT-CRO-CPD-CTX AMP-NA-ATM-CHL-S-TET-STX-KF-FEP-CXM-CAZ-EFT-CRO-CPD-CTX AMP-AMC-NA-ATM-CHL-S-TET-KF-FEP-CXM-CAZ-EFT-CRO-CPD-CTX | 2(3.2%) 1(1.6%) 1(1.6%) - | 6(9.6%) - - 1(1.6%) |
16 antimicrobial resistance AMP-AMC-CIP-NA-ATM-CHL-S-TET-KF-FOX-CXM-CAZ-EFT-CRO-CPD-CTX AMP-AMC-CIP-NA-ATM-CHL-S-TET-KF-FEP-CXM-CAZ-EFT-CRO-CPD-CTX | 1(1.6%) 1(1.6%) | - - |
LabID | MIC CIP (32–0.002µg/mL) | QRDR Mutation in: | PMQR | MIC Cephalosporin (256–0.016 µg/mL) | ESBL Gene | ||||
---|---|---|---|---|---|---|---|---|---|
gyrA | parC | CTX | CAZ | CRO | CPD | ||||
SH1007 | 0.25 | D87Y | T57S | qnrA, qnrS1 | 128 | 1.5 | ≥256 | 96 | blaCTX-M-14, blaACC-1, blaCMY-2 |
SH2609 | 2 | D87G | T57S | qnrB, qnrS1, aac(6′)-lb-cr | ≥256 | 32 | ≥256 | ≥256 | blaCTX-M-55 |
SH2789 | 0.5 | D87Y | T57S | qnrA, qnrB, qnrS1, aac(6′)-lb-cr | 64 | 1 | ≥256 | 32 | blaCTX-M-14, blaACC-1, blaCMY-2 |
SH735 | 2 | D87Y | T57S | qnrS1, aac(6′)-lb-cr | 64 | 32 | ≥256 | 32 | blaACC-1, blaCMY-2 |
SH575 | 2 | D87G | T57S | qnrA, qnrB, qnrS1, aac(6′)-lb-cr | ≥256 | 48 | ≥256 | ≥256 | blaCTX-M-55, blaTEM-1 |
SH1423 | 0.5 | D87G | T57S | qnrS1, qnrB, aac(6′)-lb-cr | ≥256 | 32 | ≥256 | ≥256 | blaCTX-M-55 |
SH577 | 2 | D87G | T57S | qnrA, qnrB, qnrS1 | ≥256 | 32 | ≥256 | ≥256 | blaCTX-M-55, blaTEM-1 |
SH1424 | 0.12 | D87G | T57S | qnrA, qnrB, qnrS1, aac(6′)-lb-cr | ≥256 | 48 | ≥256 | ≥256 | blaCTX-M-15 |
SH1456 | 0.25 | D87G | T57S | qnrA, qnrS1, aac(6′)-lb-cr | ≥256 | 32 | ≥256 | ≥256 | blaCTX-M-55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriyapai, P.; Pulsrikarn, C.; Chansiri, K.; Nyamniyom, A.; Sriyapai, T. Molecular Characterization of Cephalosporin and Fluoroquinolone Resistant Salmonella Choleraesuis Isolated from Patients with Systemic Salmonellosis in Thailand. Antibiotics 2021, 10, 844. https://doi.org/10.3390/antibiotics10070844
Sriyapai P, Pulsrikarn C, Chansiri K, Nyamniyom A, Sriyapai T. Molecular Characterization of Cephalosporin and Fluoroquinolone Resistant Salmonella Choleraesuis Isolated from Patients with Systemic Salmonellosis in Thailand. Antibiotics. 2021; 10(7):844. https://doi.org/10.3390/antibiotics10070844
Chicago/Turabian StyleSriyapai, Pichapak, Chaiwat Pulsrikarn, Kosum Chansiri, Arin Nyamniyom, and Thayat Sriyapai. 2021. "Molecular Characterization of Cephalosporin and Fluoroquinolone Resistant Salmonella Choleraesuis Isolated from Patients with Systemic Salmonellosis in Thailand" Antibiotics 10, no. 7: 844. https://doi.org/10.3390/antibiotics10070844
APA StyleSriyapai, P., Pulsrikarn, C., Chansiri, K., Nyamniyom, A., & Sriyapai, T. (2021). Molecular Characterization of Cephalosporin and Fluoroquinolone Resistant Salmonella Choleraesuis Isolated from Patients with Systemic Salmonellosis in Thailand. Antibiotics, 10(7), 844. https://doi.org/10.3390/antibiotics10070844