Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding
Abstract
:1. Introduction
2. Results
2.1. Odorous Compounds and MRSA Prevalence in the Environment
2.2. Distribution of SCCmec Elements and MRSA Grouping
2.3. Toxin Genes Profiling of MRSA Isolates
2.4. Antimicrobial Susceptibility and MRD Pattern of MRSA Isolates
2.5. Spa Typing and Phylogenetic Clustering of MRSA Isolates
3. Discussion
4. Materials and Methods
4.1. Study Area and Sampling Information
4.2. Sampling Procedure and Environmental Parameters Analysis
4.3. Isolation and Selective Cultivation of MRSA Isolates
4.4. DNA Extraction and PCR Detection of MRSA Isolates
4.5. Antibiotic Susceptibility Tests
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-J.; Huang, Y.-C. New epidemiology of Staphylococcus aureus infection in Asia. Clin. Microbiol. Infect. 2014, 20, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Craft, K.; Nguyen, J.; Berg, L.; Townsend, S. Methicillin-Resistant Staphylococcus aureus (MRSA): Antibiotic-Resistance and the Biofilm Phenotype. MedChemComm 2019, 10, 1231–1241. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Papadopoulos, T.; Angelidis, A.; Boukouvala, E.; Zdragas, A.; Papa, A.; Hadjichristodoulou, C.; Sergelidis, D. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 2018, 69, 43–50. [Google Scholar] [CrossRef]
- Huijbers, P.; Blaak, H.; De Jong, M.; Graat, E.; Vandenbroucke-Grauls, C.; de Roda Husman, A.M. Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review. Environ. Sci. Technol. 2015, 49, 11993–12004. [Google Scholar] [CrossRef]
- Chao, C.; Wan, M.-P.; Morawska, L.; Johnson, G.; Ristovski, Z.; Hargreaves, M.; Mengersen, K.; Steve, C.; Li, Y.; Xie, X.; et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol. Sci. 2009, 40, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Lindsley, W.; Blachere, F.; Thewlis, R.; Vishnu, A.; Davis, K.; Cao, G.; Palmer, J.; Clark, K.; Fisher, M.; Khakoo, R.; et al. Measurements of Airborne Influenza Virus in Aerosol Particles from Human Coughs. PLoS ONE 2010, 5, e15100. [Google Scholar] [CrossRef]
- Klous, G.; Anke, H.; Heederik, D.J.; Coutinho, R.A. Human–livestock contacts and their relationship to transmission of zoonotic pathogens, a systematic review of literature. One Health 2016, 2, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Garcia Graells, C.; Antoine, J.; Larsen, J.; Catry, B.; Skov, R.; Denis, O. Livestock veterinarians at high risk of acquiring methicillin-resistant Staphylococcus aureus ST398. Epidemiol. Infect. 2011, 140, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Rosen, K.; Rösler, U.; Merle, R.; Friese, A. Persistent and Transient Airborne MRSA Colonization of Piglets in a Newly Established Animal Model. Front. Microbiol. 2018, 9, 1542. [Google Scholar] [CrossRef] [Green Version]
- Chon, J.; Sung, K.; Khan, S. Methicillin-Resistant Staphylococcus aureus (MRSA) in Food- Producing and Companion Animals and Food Products. Front. Staphylococcus aureus 2017, 8, 47–102. [Google Scholar]
- Grema, H. Methicillin Resistant Staphylococcus aureus (MRSA): A Review. Adv. Anim. Vet. Sci. 2015, 3, 79–98. [Google Scholar] [CrossRef] [Green Version]
- Vanamala, K.; Tatiparti, K.; Bhise, K.; Sau, S.; Scheetz, M.; Rybak, M.; Andes, D.; Iyer, A. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov. Today 2020, 26, 31–43. [Google Scholar] [CrossRef]
- Hashemizadeh, Z.; Hadi, N.; Mohebi, S.; Kalantar-Neyestanaki, D.; Bazargani, A. Characterization of SCCmec, spa types and Multi Drug Resistant of methicillin-resistant Staphylococcus aureus isolates among inpatients and outpatients in a referral hospital in Shiraz, Iran. BMC Res. Notes 2019, 12, 614. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.; Nuno, S.; Borges, V.; Gomes, P.; Vieira, L.; Caniça, M.; Torres, C.; Igrejas, G.; Poeta, P. MRSA CC398 recovered from wild boar harboring new SCCmec type IV J3 variant. Sci. Total Environ. 2020, 722, 137845. [Google Scholar] [CrossRef]
- Goudarzi, M.; Seyedjavadi, S.; Nasiri, M.J.; Goudarzi, H.; Nia, R.; Dabiri, H. Molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bacteremia based on MLST, SCCmec, spa, and agr locus types analysis. Microb. Pathog. 2017, 104, 328–335. [Google Scholar] [CrossRef]
- Kang, K.M.; Park, J.H.; Kim, S.H.; Yang, S.J. Potential role of host defense antimicrobial peptide resistance in increased virulence of health care-associated MRSA strains of sequence type (ST) 5 versus livestock-associated and community-associated MRSA strains of ST72. Comp. Immunol. Microbiol. Infect. Dis. 2019, 62, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Alkharsah, K.; Rehman, S.; Alkhamis, F.; Alnimr, A.; Diab, A.; Al-Ali, A. Comparative and molecular analysis of MRSA isolates from infection sites and carrier colonization sites. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Boswihi, S.; Udo, E.; Mathew, B.; Noronha, B.; Lis Verghese, T.; Tappa, S. Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Patients Admitted to Kuwait Hospitals in 2016–2017. Front. Microbiol. 2020, 10, 2912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deurenberg, R.; Stobberingh, E. The evolution of Staphylococcus aureus. Infect Genet Evol 8:747-763. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2008, 8, 747–763. [Google Scholar] [CrossRef]
- Darban-Sarokhalil, D.; Khoramrooz, S.S.; Marashifard, M.; Malek Hosseini, S.A.A.; Parhizgari, N.; Yazdanpanah, M.; Gharibpour, F.; Mirzaii, M.; Sharifi, B.; Haeili, M. Molecular characterization of Staphylococcus aureus isolates from southwest of Iran using spa and SCCmec typing methods. Microb. Pathog. 2016, 98, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Yin, S.; You, B.; Gong, Y.; Huang, G.; Yang, Z.; Zhang, Y.; Chen, Y.; Chen, J.; Yuan, Z.-Q.; et al. Antimicrobial resistance and virulence genes profiling of methicillin-resistant Staphylococcus aureus isolates in a burn center: A 5-year study. Microb. Pathog. 2017, 114, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Kozajda, A.; Jeżak, K.; Kapsa, A. Airborne Staphylococcus aureus in different environments—A review. Environ. Sci. Pollut. Res. 2019, 26, 34741–34753. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Lu, Q.; Cheng, Y.; Wen, G.; Luo, Q.; Shao, H.; Zhang, T. High concentration of coagulase-negative staphylococci carriage among bioaerosols of henhouses in Central China. BMC Microbiol. 2020, 20, 21. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhu, Y.-S.; Guo, C.; Xia, Y.; Guo, Z.-M.; Li, Q.-L.; Lu, J.-H. A Comparative Study of Associated Microbiota between Pig Farm and Pig Slaughterhouse in Guangdong, China. Curr. Microbiol. 2020, 77, 3310–3320. [Google Scholar] [CrossRef]
- Karwowska, E. Microbiological air contamination in farming environment. Pol. J. Environ. Stud. 2005, 14, 445–449. [Google Scholar]
- Alvarado, C.; Gandara, A.; Flores, C.; Perez, H.; Green, C.; Hurd, W.; Gibbs, S. Seasonal Changes in Airborne Fungi and Bacteria at a Dairy Cattle Concentrated Animal Feeding Operation in the Southwest United States. J. Environ. Health 2009, 71, 40–44. [Google Scholar]
- Lin, J.; Yeh, K.-S.; Liu, H.-T.; Lin, J.-H. Staphylococcus aureus Isolated from Pork and Chicken Carcasses in Taiwan: Prevalence and Antimicrobial Susceptibility. J. Food Prot. 2009, 72, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chai, T.; Xia, X.; Gao, Y.; Cai, Y.; Li, X.; Miao, Z.; Sun, L.; Hao, H.; Rösler, U.; et al. Formation and transmission of Staphylococcus aureus (including MRSA) aerosols carrying antibiotic-resistant genes in a poultry farming environment. Sci. Total Environ. 2012, 426, 139–145. [Google Scholar] [CrossRef]
- Chen, M.; Tianlei, Q.; Sun, Y.; Song, Y.; Wang, X.; Gao, M. Diversity of tetracycline- and erythromycin-resistant bacteria in aerosols and manures from four types of animal farms in China. Environ. Sci. Pollut. Res. 2019, 26, 24213–24222. [Google Scholar] [CrossRef]
- Benrabia, I.; Taha Mossadak, H.; Shehata, A.; Neubauer, H.; Wareth, G. Methicillin-Resistant Staphylococcus Aureus (MRSA) in Poultry Species in Algeria: Long-Term Study on Prevalence and Antimicrobial Resistance. Vet. Sci. 2020, 7, 54. [Google Scholar] [CrossRef]
- Skóra, J.; Matusiak, K.; Wojewódzki, P.; Nowak, A.; Sulyok, M.; Ligocka, A.; Okrasa, M.; Hermann, J.; Gutarowska, B. Evaluation of Microbiological and Chemical Contaminants in Poultry Farms. Int. J. Environ. Res. Public Health 2016, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Radon, K.; Danuser, B.; Iversen, M.; Monsó, E.; Weber, C.; Hartung, J.; Donham, K.; Palmgren, U.; Nowak, D. Air contaminants in different European farming environments. Ann. Agric. Environ. Med. AAEM 2002, 9, 41–48. [Google Scholar]
- Yang, W.; Guo, M.; Liu, G.; Yu, G.; Wang, P.; Wang, H. Detection and analysis of fine particulate matter and microbial aerosol in chicken houses in Shandong Province, China. Poult. Sci. 2017, 97, 995–1005. [Google Scholar] [CrossRef]
- Van der Heyden, C.; Demeyer, P.; Volcke, E. Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: State-of-the-art and perspectives. Biosyst. Eng. 2015, 134, 74–93. [Google Scholar] [CrossRef]
- Quarles, C.; Fagerberg, D. Evaluation of Ammonia Stress and Coccidiosis on Broiler Performance. Poult. Sci. 1979, 58, 465–468. [Google Scholar] [CrossRef]
- Beker, A.; Vanhooser, S.; Swartzlander, J.; Teeter, R. Atmospheric Ammonia Concentration Effects on Broiler Growth and Performance. J. Appl. Poult. Res. 2004, 13, 5–9. [Google Scholar] [CrossRef]
- Zhong, Z.; Duan, H.; Miao, Z.; Li, X.; Yao, M.; Yuan, W.; Wang, W.; Li, Q.; Zucker, B.A.; Schlenker, G. REP-PCR tracking of the origin and spread of airborne Staphylococcus aureus in and around chicken house. Indoor Air 2009, 19, 511–516. [Google Scholar] [CrossRef]
- Gałęcki, R.; Dąbrowski, M.; Bakuła, T.; Obremski, K.; Nowak, A.; Gutarowska, B. The Influence of the Mineral-Microbial Preparation on Ammonia Concentration and Productivity in Laying Hens Houses. Atmosphere 2019, 10, 751. [Google Scholar] [CrossRef] [Green Version]
- Butaye, P.; Argudín, M.Á.; Smith, T. Livestock-Associated MRSA and Its Current Evolution. Curr. Clin. Microbiol. Rep. 2016, 3, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Van Alen, S.; Kaspar, U.; Idelevich, E.A.; Kock, R.; Becker, K. Increase of zinc resistance in German human derived livestock-associated MRSA between 2000 and 2014. Vet. Microbiol. 2018, 214, 7–12. [Google Scholar] [CrossRef]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing and companion animals—A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Stefani, S.; Chung, D.R.; Lindsay, J.; Friedrich, A.; Kearns, A.; Westh, H.; Mackenzie, F. Meticillin-Resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. Int. J. Antimicrob. Agents 2012, 39, 273–282. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Zhang, F.; Wu, Q.; Zhang, J.; Pang, R.; Zeng, H.; Yang, X.; Chen, M.; Wang, J.; et al. Prevalence and Characterization of Food-Related Methicillin-Resistant Staphylococcus aureus (MRSA) in China. Front. Microbiol. 2019, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Nemeghaire, S.; Roelandt, S.; Argudín, M.Á.; Haesebrouck, F.; Butaye, P. Characterization of methicillin-resistant Staphylococcus aureus from healthy carrier chickens. Avian Pathol. 2013, 42, 342–346. [Google Scholar] [CrossRef]
- Tsai, H.-C.; Tao, C.-W.; Hsu, B.-M.; Yang, Y.-Y.; Tseng, Y.-C.; Huang, T.-Y.; Huang, s.-W.; Kuo, Y.-J.; Chen, J.S. Multidrug-resistance in methicillin-resistant Staphylococcus aureus (MRSA) isolated from a subtropical river contaminated by nearby livestock industries. Ecotoxicol. Environ. Saf. 2020, 200, 110724. [Google Scholar] [CrossRef]
- Hsu, B.M.; Chen, J.S.; Lin, I.C.; Hsu, G.J.; Koner, S.; Hussain, B.; Huang, S.W.; Tsai, H.C. Molecular and Anti-Microbial Resistance (AMR) Profiling of Methicillin-Resistant Staphylococcus aureus (MRSA) from Hospital and Long-Term Care Facilities (LTCF) Environment. Antibiotics 2021, 10, 748. [Google Scholar] [CrossRef]
- Frana, T.; Beahm, A.; Hanson, B.; Kinyon, J.; Layman, L.; Karriker, L.; Ramirez, A.; Smith, T. Isolation and Characterization of Methicillin-Resistant Staphylococcus aureus from Pork Farms and Visiting Veterinary Students. PLoS ONE 2013, 8, e53738. [Google Scholar] [CrossRef] [Green Version]
- Bukowski, M.; Wladyka, B.; Dubin, G. Exfoliative Toxins of Staphylococcus aureus. Toxins 2010, 2, 1148–1165. [Google Scholar] [CrossRef] [Green Version]
- Sila, J.; Sauer, P.; Kolar, M. Comparison of the prevalence of genes coding for enterotoxins, exfoliatins, Panton-Valentine leukocidin and TSST-1 between methicillin-resistant and methicillin-susceptible isolates of Staphylococcus Aureus at the University Hospital in Olomouc. Biomed. Pap. Med. Fac. Univ. Palacký Olomouc Czechoslov. 2009, 153, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marek, A.; Pyzik, E.; Stepien-Pysniak, D.; Urban-Chmiel, R.; Jarosz, L.S. Association Between the Methicillin Resistance of Staphylococcus aureus Isolated from Slaughter Poultry, Their Toxin Gene Profiles and Prophage Patterns. Curr. Microbiol. 2018, 75, 1256–1266. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Matsumori, Y.; Tanabe, T.; Saito, H.; Shimizu, A.; Kawano, J. A new type of staphylococcal toxin from a Staphylococcus aureus strain isolated from a horse with plegmon. Infect. Immun. 1994, 62, 3780–3785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, T.; Nishifuji, K.; Sasaki, M.; Fudaba, Y.; Aepfelbacher, M.; Takata, T.; Ohara, M.; Komatsuzawa, H.; Amagai, M.; Sugai, M. Identification of the Staphylococcus aureus etd Pathogenicity Island Which Encodes a Novel Exfoliative Toxin, ETD, and EDIN-B. Infect. Immun. 2002, 70, 5835–5845. [Google Scholar] [CrossRef] [Green Version]
- Szafraniec, G.; Szeleszczuk, P.; Dolka, B. A Review of Current Knowledge on Staphylococcus agnetis in Poultry. Animals 2020, 10, 1421. [Google Scholar] [CrossRef]
- Liu, B.; Sun, H.; Pan, Y.; Zhai, Y.; Cai, T.; Yuan, X.; Gao, Y.; He, D.; Liu, J.; Yuan, L.; et al. Prevalence, resistance pattern, and molecular characterization of Staphylococcus aureus isolates from healthy animals and sick populations in Henan Province, China. Gut Pathog. 2018, 10, 31. [Google Scholar] [CrossRef]
- Li, H.; Andersen, P.S.; Stegger, M.; Sieber, R.N.; Ingmer, H.; Staubrand, N.; Dalsgaard, A.; Leisner, J.J. Antimicrobial Resistance and Virulence Gene Profiles of Methicillin-Resistant and -Susceptible Staphylococcus aureus From Food Products in Denmark. Front. Microbiol. 2019, 10, 2681. [Google Scholar] [CrossRef]
- Hoque, M.; Das, Z.; Rahman, A.; Haider, M.G.; Islam, M. Molecular characterization of Staphylococcus aureus strains in bovine mastitis milk in Bangladesh. Int. J. Vet. Sci. Med. 2018, 6, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Friedrich, A.; Lubritz, G.; Weilert, M.; Peters, G.; Eiff, C. Prevalence of Genes Encoding Pyrogenic Toxin Superantigens and Exfoliative Toxins among Strains of Staphylococcus aureus Isolated from Blood and Nasal Specimens. J. Clin. Microbiol. 2003, 41, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins 2018, 10, 252. [Google Scholar] [CrossRef] [Green Version]
- Ababaf, S.; Ghasemian, A.; Motamedi, H.; Nojoomi, F. Prevalence of enterotoxins B and C in clinical isolates of Staphylococcus aureus from Southwest of Iran. Immunopathol. Persa 2018, 4, e24. [Google Scholar] [CrossRef]
- Lauderdale, T.-L.; Shiau, Y.-R.; Wang, H.-Y.; Lai, J.-F.; Huang, I.W.; Chen, P.-C.; Chen, H.-Y.; Lai, S.-S.; Liu, Y.-F.; Ho, M. Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan: Brief report. Environ. Microbiol. 2007, 9, 819–823. [Google Scholar] [CrossRef]
- Den, W.; Chen, C.H. Airborne and Surface-Bound Microbial Contamination in Two Intensive Care Units of a Medical Center in Central Taiwan. Aerosol. Air Qual. Res. 2013, 13, 1060–1069. [Google Scholar]
- Jorgensen, J. New Consensus Guidelines from the Clinical and Laboratory Standards Institute for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. Clin. Infect. Dis. 2007, 44, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Kahlmeter, G.; Liljequist, B.; Paterson, D.L.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2011, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Sakoulas, G.; Gold, H.S.; Venkataraman, L.; DeGirolami, P.C.; Eliopoulos, G.M.; Qian, Q. Methicillin-Resistant Staphylococcus aureus: Comparison of Susceptibility Testing Methods and Analysis of mecA-Positive Susceptible Strains. J. Clin. Microbiol. 2001, 39, 3946–3951. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.C.; Lencastre, H.n.d. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; McClure, J.-A.; Elsayed, S.; Louie, T.; Conly, J.M. Novel Multiplex PCR Assay for Characterization and Concomitant Subtyping of Staphylococcal Cassette Chromosome mec Types I to V in Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5026–5033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Mediavilla, J.R.; Oliveira, D.C.; Willey, B.M.; de Lencastre, H.; Kreiswirth, B.N. Multiplex Real-Time PCR for Rapid Staphylococcal Cassette Chromosome mec Typing. J. Clin. Microbiol. 2009, 47, 3692–3706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhowmik, D.; Das, B.J.; Pandey, P.; Chetri, S.; Chanda, D.D.; Bhattacharjee, A. An array of multiplex PCR assays for detection of staphylococcal chromosomal cassette mec (SCCmec) types among staphylococcal isolates. J. Microbiol. Methods 2019, 166, 105733. [Google Scholar] [CrossRef]
- Asghar, A.H. Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from tertiary care hospitals. Pak. J. Med. Sci. 2014, 30, 698. [Google Scholar] [CrossRef] [PubMed]
- Fooladi, A.A.I.; Ashrafi, E.; Tazandareh, S.G.; Koosha, R.Z.; Rad, H.S.; Amin, M.; Soori, M.; Larki, R.A.; Choopani, A.; Hosseini, H.M. The distribution of pathogenic and toxigenic genes among MRSA and MSSA clinical isolates. Microb. Pathog. 2015, 81, 60–66. [Google Scholar] [CrossRef] [PubMed]
Sampling | Sampling | Wind Speed | Wind | BioStage | MRSA | MRSA |
---|---|---|---|---|---|---|
Period | Sites | (m/s) | Direction | (CFU/m3) | Air | Stool |
1st (June 2019) | Chicken shed 1 | N/A | southeast | 2.63 × 103 | + | + |
Chicken shed 2 | N/A | southeast | 1.63 × 103 | + | + | |
Exposure plaza | N/A | southeast | 3.04 × 102 | + | + | |
2nd (December 2019) | Chicken shed 1 | 0.4–0.6 | northwest | 2.36 × 103 | + | + |
Chicken shed 2 | 0.4–0.6 | northwest | 2.65 × 103 | + | + | |
Exposure plaza | 0.4–0.6 | northwest | 6.86 × 102 | + | + | |
3rd (March 2020) | Chicken shed 1 | 1.9–2.2 | northwest | 1.53 × 103 | + | + |
Chicken shed 2 | 1.9–2.0 | north | 1.81 × 103 | + | + | |
Exposure plaza | 1.0–1.2 | west | 7.67 × 102 | + | + |
Sampling Sites | SCCmec I | SCCmec II | SCCmec III | SCCmec IV | SCCmec V | SCCmec VIII | PVL | HA-MRSA (I, II, III) | CA-MRSA (IV + PVL, V + PVL) | LA-MRSA (IV, V) | Others |
---|---|---|---|---|---|---|---|---|---|---|---|
Chicken shed 1 (n = 16) | 10 (62.5%) | 0 (0%) | 0 (0%) | 1 (6.3%) | 0 (0%) | 5 (31.25%) | 0 (0%) | 10 (62.5%) | 0 (0%) | 1 (6.3%) | 5 (31.25%) |
Chicken shed 2 (n = 16) | 12 (75%) | 0 (0%) | 0 (0%) | 4 (25%) | 0 (0%) | 0 (0%) | 0 (0%) | 12 (75%) | 0 (0%) | 4 (25%) | 0 (0%) |
Exposure plaza (n = 15) | 11 (73.3%) | 0 (0%) | 0 (0%) | 4 (26.7%) | 0 (0%) | 0 (0%) | 0 (0%) | 11 (73.3%) | 0 (0%) | 4 (26.7%) | 0 (0%) |
Stool (n = 10) | 6 (60%) | 0 (0%) | 0 (0%) | 2 (20%) | 0 (0%) | 2 (20%) | 0 (0%) | 6 (60%) | 0 (0%) | 2 (20%) | 2 (20%) |
Total MRSA isolates (n = 57) | 39 (68.4%) | 0 (0%) | 0 (0%) | 11 (19.3%) | 0 (0%) | 7 (12.3%) | 0 (0%) | 39 (68.4%) | 0 (0%) | 11 (19.3%) | 7 (12.3%) |
Sampling Sites | entA | entB | entC | entD | entE | eta | etb | tsst-1 |
---|---|---|---|---|---|---|---|---|
Chicken shed 1 (n = 16) | 0 (0%) | 0 (0%) | 5 (31.25%) | 0 (0%) | 0 (0%) | 16 (100%) | 14 (87.5%) | 0 (0%) |
Chicken shed 2 (n = 16) | 0 (0%) | 0 (0%) | 2 (12.5%) | 0 (0%) | 0 (0%) | 16 (100%) | 9 (56.25%) | 0 (0%) |
Exposure plaza (n = 15) | 0 (0%) | 0 (0%) | 3 (20%) | 0 (0%) | 0 (0%) | 15 (100%) | 10 (66.7%) | 0 (0%) |
Stool (n = 10) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 10 (100%) | 7 (70%) | 0 (0%) |
Total MRSA isolates (n = 57) | 0 (0%) | 0 (0%) | 10 (17.5%) | 0 (0%) | 0 (0%) | 57 (100%) | 40 (70.2%) | 0 (0%) |
Sampling Sites | C | CIP | DA | E | G | RA | S/T | T | MDR |
---|---|---|---|---|---|---|---|---|---|
Chicken shed 1 (n = 16) | 16 (100%) | 16 (100%) | 16 (100%) | 16 (100%) | 0 (0%) | 0 (0%) | 6 (37.5%) | 16 (100%) | 16 (100%) |
Chicken shed 2 (n = 16) | 16 (100%) | 16 (100%) | 16 (100%) | 16 (100%) | 0 (0%) | 2 (12.5%) | 5 (31.2%) | 16 (100%) | 16 (100%) |
Exposure plaza (n = 15) | 15 (100%) | 15 (100%) | 15 (100%) | 15 (100%) | 0 (0%) | 4 (26.7%) | 6 (40%) | 15 (100%) | 15 (100%) |
Stool (n = 10) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 0 (0%) | 1 (10%) | 2 (20%) | 10 (100%) | 10 (100%) |
Total MRSA isolates (n = 57) | 57 (100%) | 57 (100%) | 57 (100%) | 57 (100%) | 0 (0%) | 7 (12.3%) | 19 (33.3%) | 57 (100%) | 57 (100%) |
Sampling Sites | Chicken Shed 1 | Chicken Shed 2 | Exposure Plaza | Stool | Total MDR Isolates |
---|---|---|---|---|---|
C-CIP-DA-E-RA-T-S/T (7 antimicrobial drugs) | 0 | 2 | 3 | 1 | 6 |
C-CIP-DA-E-T-S/T (6 antimicrobial drugs) | 6 | 3 | 3 | 1 | 14 |
C-CIP-DA-E-RA-T (6 antimicrobial drugs) | 0 | 0 | 1 | 0 | |
C-CIP-DA-E-T (5 antimicrobial drugs) | 10 | 11 | 8 | 8 | 37 |
Total MDR isolates | 16 | 16 | 15 | 10 | 57 |
Sampling Sites | t002 | t548 | New Type |
---|---|---|---|
Chicken shed 1 (n = 16) | 14 (87.5%) | 2 (12.5%) | 0 (0%) |
Chicken shed 2 (n = 16) | 13 (81.25%) | 3 (18.75%) | 0 (0%) |
Exposure plaza (n = 15) | 11 (73.3%) | 4 (26.7%) | 0 (0%) |
Stool (n = 10) | 8 (80%) | 0 (0%) | 2 (20%) |
Total MRSA isolates (n = 57) | 46 (80.7%) | 9 (15.8%) | 2 (3.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, C.-W.; Chen, J.-S.; Hsu, B.-M.; Koner, S.; Hung, T.-C.; Wu, H.-M.; Rathod, J. Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding. Antibiotics 2021, 10, 917. https://doi.org/10.3390/antibiotics10080917
Tao C-W, Chen J-S, Hsu B-M, Koner S, Hung T-C, Wu H-M, Rathod J. Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding. Antibiotics. 2021; 10(8):917. https://doi.org/10.3390/antibiotics10080917
Chicago/Turabian StyleTao, Chi-Wei, Jung-Sheng Chen, Bing-Mu Hsu, Suprokash Koner, Tung-Che Hung, Han-Ming Wu, and Jagat Rathod. 2021. "Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding" Antibiotics 10, no. 8: 917. https://doi.org/10.3390/antibiotics10080917
APA StyleTao, C. -W., Chen, J. -S., Hsu, B. -M., Koner, S., Hung, T. -C., Wu, H. -M., & Rathod, J. (2021). Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding. Antibiotics, 10(8), 917. https://doi.org/10.3390/antibiotics10080917