Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides
Abstract
:1. Introduction
2. Results
2.1. Stapled Peptides Design and Synthesis
2.2. Helicity Degree
2.3. Protease Stability Analysis
2.4. Determination of MIC for Candida Species
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. HPLC
4.3. Stapled Peptides Synthesis
4.4. Circular Dichroism
4.5. Chymotrypsin Digestion Assay
4.6. Strains and Medium
4.7. Determination of MIC for Candida Species
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nicola, A.M.; Albuquerque, P.; Paes, H.C.; Fernandes, L.; Costa, F.F.; Kioshima, E.S.; Abadio, A.K.R.; Bocca, A.L.; Felipe, M.S. Antifungal drugs: New insights in research & development. Pharmacol. Ther. 2019, 195, 21–38. [Google Scholar]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling Human Fungal Infections. Science 2012, 336, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2021, 121, 3390–3411. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Scully, C.C.G.; de Graaf, C.; Brown, A.J.H.; Maguire, J.J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 2020, 19, 389–413. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 2021, 50, 4932–4973. [Google Scholar] [CrossRef]
- Shahmiri, M.; Enciso, M.; Mechler, A. Controls and constrains of the membrane disrupting action of Aurein 1.2. Sci. Rep. 2015, 5, 16378. [Google Scholar] [CrossRef] [Green Version]
- Lorenzón, E.N.; Sanches, P.R.; Nogueira, L.G.; Bauab, T.M.; Cilli, E.M. Dimerization of aurein 1.2: Effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids 2013, 44, 1521–1528. [Google Scholar] [CrossRef]
- Migoń, D.; Jaśkiewicz, M.; Neubauer, D.; Bauer, M.; Sikorska, E.; Kamysz, E.; Kamysz, W. Alanine Scanning Studies of the Antimicrobial Peptide Aurein 1.2. Probiotics Antimicrob. Proteins 2019, 11, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Rezaei Araghi, R.; Keating, A.E. Designing helical peptide inhibitors of protein-protein interactions. Curr. Opin. Struct. Biol. 2016, 39, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Han, M.F.; Liu, C.; Liu, T.Y.; Feng, Y.F.; Zou, Y.; Li, B.; Liao, H.L. Design, synthesis, and antiproliferative activities of stapled melittin peptides. RSC Adv. 2017, 7, 17514–17518. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, S.; Zhang, W.D.; Hu, H.G. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem. Rev. 2020, 120, 10079–10144. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zou, Y.; Hu, H.G. Different stapling-based peptide drug design: Mimicking α-helix as inhibitors of protein-protein interaction. Chin. Chem. Lett. 2018, 29, 1088–1092. [Google Scholar] [CrossRef]
- Liu, T.; Cong, W.; Ye, L.; Xu, X.; Liao, X.; Xie, G.; Cheng, Z.; Hu, H.; Li, X.; Liao, H. Rational design of stapled peptides targeting phosphorylated GSK3β for regulating osteoclast differentiation. RSC Adv. 2020, 10, 7758–7763. [Google Scholar] [CrossRef]
- Walensky, L.D.; Bird, G.H. Hydrocarbon-Stapled Peptides: Principles, Practice, and Progress. J. Med. Chem. 2014, 57, 6275–6288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Li, Y.H.; Li, X.; Zou, Y.; Liao, H.L.; Liu, L.; Chen, Y.G.; Bierer, D.; Hu, H.G. A novel peptide stapling strategy enables the retention of ring-closing amino acid side chains for the Wnt/β-catenin signalling pathway. Chem. Sci. 2017, 8, 7368–7373. [Google Scholar] [CrossRef] [Green Version]
- Klein, M. Stabilized helical peptides: Overview of the technologies and its impact on drug discovery. Expert Opin. Drug Discov. 2017, 12, 1117–1125. [Google Scholar] [CrossRef]
- Hood, C.A.; Fuentes, G.; Patel, H.; Page, K.; Menakuru, M.; Park, J.H. Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J. Pept. Sci. 2008, 14, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdine, G.L.; Hilinski, G.J. Stapled peptides for intracellular drug targets. Methods Enzym. 2012, 503, 3–33. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Chai, X.Y.; Gao, F.; Wang, C.; Tang, H.; Li, X.; Liu, Y.; Hu, H.G. Design, synthesis, and biological evaluation of stapled ascaphin-8 peptides. Bioorg. Med. Chem. 2021, 40, 116158. [Google Scholar] [CrossRef]
- Wang, D.; Chen, K.; Kulp Iii, J.L.; Arora, P.S. Evaluation of biologically relevant short alpha-helices stabilized by a main-chain hydrogen-bond surrogate. J. Am. Chem. Soc. 2006, 128, 9248–9256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madanchi, H.; Akbari, S.; Shabani, A.A.; Sardari, S.; Farmahini Farahani, Y.; Ghavami, G.; Ebrahimi Kiasari, R. Alignment-based design and synthesis of new antimicrobial Aurein-derived peptides with improved activity against Gram-negative bacteria and evaluation of their toxicity on human cells. Drug Dev. Res. 2019, 80, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Tolbert, W.D.; Hu, H.G.; Gohain, N.; Zou, Y.; Niu, F.; He, W.X.; Yuan, W.; Su, J.C.; Pazgier, M.; et al. Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Chem. Sci. 2019, 10, 1522–1530. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.K.; Qing, J.; Guo, Y.; Wang, Y.J.; Cui, L.J.; He, T.H.; Zhang, L.; Liu, L. Stapled peptide-based membrane fusion inhibitors of hepatitis C virus. Bioorg. Med. Chem. 2013, 21, 3547–3554. [Google Scholar] [CrossRef]
Peptide | C. albicans | C. tropicalis | C. glabrata | C. auris | C. krusei | C. parapsilosis | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
SC5314 | 901 | 904 | ATCC 20026 | 895 | ATCC 1182 | 896 | 918 | 919 | ATCC 2340 | ATCC 22010 | |
Sau-1 | >64 | 32 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | 128 |
Sau-2 | >64 | >128 | >128 | >128 | 16 | >128 | 128 | >128 | >128 | >128 | >128 |
Sau-3 | >64 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Sau-4 | >64 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Sau-5 | 16 | >128 | >128 | >128 | 16 | >128 | >128 | >128 | >128 | >128 | >128 |
Sau-6 | >64 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Sau-7 | >64 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Sau-8 | >64 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Sau-9 | >64 | >128 | >128 | >128 | 32 | >128 | >128 | >128 | >128 | >128 | >128 |
Aurein1.2 | >64 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Fluconazole | 0.5 | >64 | >64 | 1 | >128 | 2 | >128 | >128 | >128 | 64 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Wang, R.; Chen, S.; Zou, Y.; Yan, L.; Zhao, L.; Li, X. Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides. Antibiotics 2021, 10, 956. https://doi.org/10.3390/antibiotics10080956
Zheng M, Wang R, Chen S, Zou Y, Yan L, Zhao L, Li X. Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides. Antibiotics. 2021; 10(8):956. https://doi.org/10.3390/antibiotics10080956
Chicago/Turabian StyleZheng, Mengjun, Ruina Wang, Si Chen, Yan Zou, Lan Yan, Linjing Zhao, and Xiang Li. 2021. "Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides" Antibiotics 10, no. 8: 956. https://doi.org/10.3390/antibiotics10080956
APA StyleZheng, M., Wang, R., Chen, S., Zou, Y., Yan, L., Zhao, L., & Li, X. (2021). Design, Synthesis and Antifungal Activity of Stapled Aurein1.2 Peptides. Antibiotics, 10(8), 956. https://doi.org/10.3390/antibiotics10080956