Ventilator-Associated Pneumonia in COVID-19 Patients: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGPPE | aerosol generation personal protective equipment |
ARDS | severe acute respiratory syndrome |
BAL | bronchoalveolar lavage |
BMI | body mass index |
COPD | chronic obstructive pulmonary disease |
COVID-19 | coronavirus infectious disease 2019 |
eGFR | glomerular filtration rate |
ICU | intensive care unit |
MDR | multidrug resistant |
OTI | orotracheal intubation |
SAPS-II | simplified acute physiology score II |
SARS-CoV-2 | severe acute respiratory syndrome-coronavirus 2 |
VAP | ventilator-associated pneumonia |
References
- WHO. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 6 June 2021).
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Gamberini, L.; Tonetti, T.; Spadaro, S.; Zani, G.; Mazzoli, C.A.; Capozzi, C.; Giampalma, E.; Bacchi Reggiani, M.L.; Bertellini, E.; Castelli, A.; et al. Factors influencing liberation from mechanical ventilation in coronavirus disease 2019: Multicenter observational study in fifteen Italian ICUs. J. Intensive Care 2020, 8, 80. [Google Scholar] [CrossRef]
- Craven, D.E.; Hudcova, J.; Lei, Y. Diagnosis of ventilator-associated respiratory infections (VARI): Microbiologic clues for trachea bronchitis (VAT) and pneumonia (VAP). Clin. Chest Med. 2011, 32, 547–557. [Google Scholar] [CrossRef]
- Ramírez-Estrada, S.; Lagunes, L.; Peña-López, Y.; Vahedian-Azimi, A.; Nseir, S.; Arvaniti, K.; Bastug, A.; Totorika, I.; Oztoprak, N.; Bouadma, L.; et al. Assessing predictive accuracy for outcomes of ventilator-associated events in an international cohort: The EUVAE study. Intensive Care Med. 2018, 44, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, C.; Zhang, S.; Zhong, Y. Risk Factors of Ventilator-Associated Pneumonia in Critically III Patients. Front. Pharmacol. 2019, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Wałaszek, M.; Kosiarska, A.; Gniadek, A.; Kołpa, M.; Wolak, Z.; Dobroś, W.; Siadek, J. The risk factors for hospital-acquired pneumonia in the Intensive Care Unit. Przegl. Epidemiol. 2016, 70, 15–20. [Google Scholar] [PubMed]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Makris, D.; Artigas, A.; Bouchereau, M.; Lambiotte, F.; Metzelard, M.; Cuchet, P.; Boulle Geronimi, C.; et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intensive Care Med. 2021, 47, 188–198. [Google Scholar] [CrossRef]
- Luyt, C.E.; Sahnoun, T.; Gautier, M.; Vidal, P.; Burrel, S.; Pineton de Chambrun, M.; Chommeloux, J.; Desnos, C.; Arzoine, J.; Nieszkowska, A.; et al. Ventilator-associated pneumonia in patients with SARS-CoV-2-associated acute respiratory distress syndrome requiring ECMO: A retrospective cohort study. Ann. Intensive Care 2020, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Razazi, K.; Arrestier, R.; Haudebourg, A.F.; Benelli, B.; Carteaux, G.; Decousser, J.W.; Fourati, S.; Woerther, P.L.; Schlemmer, F.; Charles-Nelson, A.; et al. Risks of ventilator-associated pneumonia and invasive pulmonary aspergillosis in patients with viral acute respiratory distress syndrome related or not to Coronavirus 19 disease. Crit. Care 2020, 24, 699. [Google Scholar] [CrossRef]
- Ippolito, M.; Misseri, G.; Catalisano, G.; Marino, C.; Ingoglia, G.; Alessi, M.; Consiglio, E.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Ventilator-Associated Pneumonia in Patients with COVID-19: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 545. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Battaglini, D.; Enrile, E.M.; Dentone, C.; Vena, A.; Robba, C.; Ball, L.; Bartoletti, M.; Coloretti, I.; Di Bella, S.; et al. Incidence and Prognosis of Ventilator-Associated Pneumonia in Critically Ill Patients with COVID-19: A Multicenter Study. J. Clin. Med. 2021, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Nseir, S.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Makris, D.; Boulle Geronimi, C.; et al. Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: A planned ancillary analysis of the coVAPid cohort. Crit. Care 2021, 25, 177. [Google Scholar] [CrossRef]
- LOI N° 2012-300 du 5 Mars 2012 Relative aux Recherches Impliquant la Personne Humaine (1). Journal Officiel de la République Française. Available online: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000025441587&categorieLien=id (accessed on 14 May 2021).
- Deplanque, D.; Sénéchal-Cohen, S.; Lemaire, F. Participants of Giens Xxxii Round Table No. 5. FrenchJardé’slaw and European regulation on drug trials: Harmonization and implementation of new rules. Thérapie 2017, 72, 73–80. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/case-definition-and-european-surveillance-human-infection-novel-coronavirus-2019-ncov (accessed on 27 June 2020).
- Chastre, J.; Luyt, C.E. Does this patient have VAP? Intensive Care Med. 2016, 42, 1159–1163. [Google Scholar] [CrossRef]
- Dennesen, P.J.; van der Ven, A.J.; Kessels, A.G.; Ramsay, G.; Bonten, M.J. Resolution of infectious parameters after antimicrobial therapy in patients with ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2001, 163, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P.E.; Levin, A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members: Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guidelines. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrick, T.L.; Smith, R.L.; McElearney, S.T.; Evans, H.L.; Smith, P.W.; Pruett, T.L.; Young, J.S.; Sawyer, R.G. Differences in early- and late-onset ventilator-associated pneumonia between surgical and trauma patients in a combined surgical or trauma intensive care unit. J. Trauma 2008, 64, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Weiss, E.; Wafa, E.; Adrie, C.; Zahar, J.R.; Timsit, J.F. Treatment of severe hospital-acquired and ventilator-associated pneumonia: A systematic review of inclusion and judgment criteria used in randomized controlled trials. Crit. Care 2017, 21, 162. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.; Rodriguez-Watson, C.; Albayrak, A.; Asubonteng, J.; Belli, A.; Brown, T.; Cho, K.; Das, R.; Eldridge, E.; Gatto, N.; et al. COVID-19 Evidence Accelerator: A parallel analysis to describe the use of Hydroxychloroquine with or without Azithromycin among hospitalized COVID-19 patients. PLoS ONE 2021, 16, e0248128. [Google Scholar] [CrossRef]
- Strazzulla, A.; Postorino, M.C.; Purcarea, A.; Chakvetadze, C.; de Farcy de Pontfarcy, A.; Tebano, G.; Pitsch, A.; Vong, L.; Jochmans, S.; Vinsonneau, C.; et al. Trimetoprim-sulfametoxazole in ventilator-associated pneumonia: A cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2163–2169. [Google Scholar] [CrossRef] [PubMed]
- Abbara, S.; Pitsch, A.; Jochmans, S.; Hodjat, K.; Cherrier, P.; Monchi, M.; Vinsonneau, C.; Diamantis, S. Impact of a multimodal strategy combining a new standard of care and restriction of carbapenems, fluoroquinolones and cephalosporins on antibiotic consumption and resistance of Pseudomonas aeruginosa in a French intensive care unit. Int. J. Antimicrob. Agents 2019, 53, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Strazzulla, A.; Postorino, M.C.; Youbong, T.; Rouyer, M.; Flateau, C.; Chakvetadze, C.; de Pontfarcy, A.; Pitsch, A.; Jochmans, S.; Belfeki, N.; et al. Trimethoprim-sulfamethoxazole as de-escalation in ventilator-associated pneumonia: A cohort study subanalysis. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1511–1516. [Google Scholar] [CrossRef]
- Danneels, P.; Postorino, M.C.; Strazzulla, A.; Belfeki, N.; Pitch, A.; Pourcine, F.; Jochmans, S.; Dubée, V.; Monchi, M.; Diamantis, S. A retrospective study on amoxicillin susceptibility in severe haemophilus influenzae pneumonia. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 2093468. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Čiginskienė, A.; Dambrauskienė, A.; Rello, J.; Adukauskienė, D. Ventilator-associated pneumonia due to drug-resistant acinetobacterbaumannii: Risk factors and mortality relation with resistance profiles, and independent predictors of in-hospital mortality. Medicina 2019, 55, 49. [Google Scholar] [CrossRef] [Green Version]
- Denis, J.B.; Lehingue, S.; Pauly, V.; Cassir, N.; Gainnier, M.; Léone, M.; Daviet, F.; Coiffard, B.; Baron, S.; Guervilly, C.; et al. Multidrug-resistant Pseudomonas aeruginosa and mortality in mechanically ventilated ICU patients. Am. J. Infect. Control 2019, 47, 1059–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Meniño, I.; Forcelledo, L.; Rosete, Y.; García-Prieto, E.; Escudero, D.; Fernández, J. Spread of OXA-48-producing Klebsiella pneumoniae among COVID-19-infected patients: The storm after the storm. J. Infect. Public Health 2021, 14, 50–52. [Google Scholar] [CrossRef]
- Hardak, E.; Avivi, I.; Berkun, L.; Raz-Pasteur, A.; Lavi, N.; Geffen, Y.; Yigla, M.; Oren, I. Polymicrobial pulmonary infection in patients with hematological malignancies: Prevalence, co-pathogens, course and outcome. Infection 2016, 44, 491–497. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-acquired infections in critically-ill COVID-19 patients. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Rolston, K.V. Polymicrobial pulmonary infections in cancer patients with underlying solid tumors. Infection 2017, 45, 245–246. [Google Scholar] [CrossRef] [PubMed]
- | Characteristics | SARS-CoV-2 | p-Value | |
---|---|---|---|---|
Yes | No | - | ||
n = 42 | n = 188 | - | ||
Patients’ Characteristics | Biological Characteristics | - | - | - |
Age (years), mean (SD) | 60 (9.7) | 634 (13.9) | 0.061 | |
Male gender, n (%) | 28 (67) | 138 (73) | 0.446 | |
BMI, mean (SD) | 31 (6.5) | 28 (6.4) | 0.017 | |
Co-Morbidities | - | - | - | |
Diabetes, n (%) | 10 (24) | 58 (31) | 0.455 | |
Heart failure, n (%) | 6 (14) | 92 (48) | <0.0001 | |
Liver cirrhosis, n (%) | 1 (2) | 34 (18) | 0.007 | |
Neoplasia, n (%) | 2 (5) | 29 (15) | 0.081 | |
eGFR <30, n (%) | 1 (2) | 30 (16) | 0.013 | |
Risk Factors of Severity | - | - | - | |
Immunosuppressive treatments *, n (%) | 2 (5) | 48 (26) | 0.002 | |
Antibiotic treatment during the last 3 months, n (%) | 12 (29) | 64 (35) | 0.474 | |
Previous antibiotic treatment in ICU, n (%) | 31 (74) | 161 (88) | 0.028 | |
MDR bacterial colonisation at admission, n (%) | 13 (31) | 24 (16) | 0.043 | |
Reason for ICU Admission | - | - | - | |
Cardiac arrest, n (%) | 0 (0) | 2 (1) | - | |
Shock, n (%) | 0 (0) | 22 (12) | - | |
ARDS, n (%) | 42 (100) | 63 (33) | NA ** | |
Gastrointestinal bleeding, n (%) | 0 (0) | 5 (3) | - | |
Impaired consciousness, n (%) | 0 (0) | 21 (11) | - | |
Others, n (%) | 0 (0) | 16 (9) | - | |
Unknown, n (%) | 0 (0) | 59 (31) | - | |
VAP Characteristics | Clinical Characteristics | - | - | - |
SAPS-II, mean (SD) | 44 (15.7) | 49 (17.5) | 0.085 | |
ARDS, n (%) | 42 (100) | 79 (59) | NA ** | |
Shock, n (%) | 29 (71) | 91 (48) | 0.0009 | |
VAP onset from OTI (days), mean (SD) | 8 (6,7) | 9 (6.3) | 0.521 | |
Early VAP, n (%) | 18 (43) | 73 (40) | 0.9 | |
Positive blood culture ***, n (%) | 11 (26) | 21 (13) | 0.038 | |
Polymicrobial culture, n (%) | 12 (28) | 24 (13) | 0.011 | |
Microbiological Isolates | - | - | - | |
Enterobactériacae, n (%) | 23 (55) | 113 (60) | 0.551 | |
Pseudomonas aeruginosa, n (%) | 8 (19) | 44 (23) | 0.554 | |
Other Gram-negative bacteria, n (%) | 7 | 20 (10) | 0.288 | |
Gram-positive bacteria, n (%) | 12 (29) | 23 (17) | 0.015 | |
First-Line Antibiotic Treatment | - | - | - | |
Amoxicillin ± clavulanic acid, n (%) | 10 (26) | 35 (19) | 0.228 | |
Piperacillin ± tazobactam, n (%) | 18 (46%) | 66 (36) | 0.274 | |
Other single molecule, n (%) | 19 (49) | 95 (52) | 0.860 | |
Association of ≥2 molecules, n (%) | 8 (21) | 26 (14) | 0.327 | |
Targeted Treatment | - | - | - | |
Amoxicillin ± clavulanic acid, n (%) | 4 (10) | 12 (6) | 0.499 | |
Piperacillin ± tazobactam, n (%) | 4 (10) | 32 (17) | 0.344 | |
Other single molecule, n (%) | 34 (83) | 149 (81) | 0.828 | |
Association of ≥2 molecules, n (%) | 3 (7) | 29 (16) | 0.218 | |
Other Treatments | - | - | - | |
Corticosteroids, n (%) | 15 (35) | 11 (15) | 0.051 | |
Extracorporeal blood purification, n (%) | 7 (17) | 5 (14) | 0.765 | |
Outcomes | Clinical Outcomes | - | - | - |
MDR bacterial acquisition, n (%) | 11 (27) | 20 (23) | 0.637 | |
Death at EoT, n (%) | 12 (29) | 34 (18) | 0.137 | |
Death in ICU, n (%) | 22 (52) | 54 (30) | 0.011 | |
VAP recurrence, n (%) | 12 (28) | 8 (4) | <0.0001 | |
Clinical improvement at day 3, n (%) | 7 (19) | 116 (68) | <0.0001 | |
Clinical improvement at day 7, n (%) | 7 (17) | 95 (72) | <0.0001 | |
Other Outcomes | - | - | - | |
Length of hospital stay (days), mean (SD) | 33 (22.0) | 30 (29.2) | 0.391 | |
Length of antibiotic treatment (days), mean (SD) | 7 (3.2) | 7 (3.6) | 0.121 |
Parameter | Or (95%CI) | p-Value |
---|---|---|
BMI | 0.992 (0.506–1.945) | 0.559 |
Cirrhosis | 1.465 (0.600–3.572) | 0.244 |
eGFR < 30 mL/min | 0.761 (0.295–1.960) | 0.708 |
Heart failure | 1.419 (0.698–2.848) | 0.070 |
Polymicrobic culture | 0.902 (0.304–2.122) | 0.535 |
Positive blood culture | 2.172 (0.929–5.021) | 0.206 |
SARS-CoV-2 | 3.309 (1.369–7.996) | 0.008 |
Shock | 2.321 (1.196–4.502) | 0.032 |
- | Characteristics | VAP | |
---|---|---|---|
Yes | No | ||
n = 42 | n = 37 | ||
Patient’s Characteristics | Biological Characteristics | - | - |
Age, mean (SD) | 60 (9.8) | 64 (12.5) | |
Male Gender, n (%) | 28 (67) | 27 (73) | |
BMI, mean (SD) | 31 (6.2) | 30 (5.5) | |
Non-caucasian, n (%) | 27 (64) | 22 (59) | |
Co-Morbidities | - | - | |
Diabetes, n (%) | 10 (24) | 13 (35.1) | |
Arterial hypertension, n (%) | 26 (62) | 25 (67.6) | |
Stroke (%) | 0(0) | 4 (10.8) | |
Heart failure, n (%) | 6 (14) | 3 (8.1) | |
eGFR <30, n (%) | 1 (2.4) | NA | |
Liver cirrhosis, n (%) | 1 (2) | 0 (0) | |
COPD, n (%) | 5 (12) | 5 (14) | |
Solid neoplasia, n (%) | 2 (5) | 2 (5) | |
Haemopathy, n (n) | 0 (0) | 2 (5) | |
COVID-19 Characteristics | Clinical Characteristics | - | - |
Corticosteroid treatment, n (%) | 15 (35) | 16 (43) | |
SAPS-II, mean (SD) | 43 (13.3) | 47 (16.9) | |
Biochemical Parameters | - | - | |
C-reactive protein (mg/L), mean (SD) | 190 (105.7) | 179 (105.8) | |
Lactate dehydrogenase (U/L), mean (SD) | 566 (285.9) | 537 (193.0) | |
Lymphocytes (G/L), mean (SD) | 0.7 (0.3) | 0.9 (0.4) | |
Neutrophils (G/L), mean (SD) | 8.3 (3.6) | 7.2 (4.0) | |
Outcomes | Death | - | - |
Death in ICU, n (%) | 22 (52) | 16 (43) | |
In-hospital death, n (%) | 21 (50) | 16 (43) | |
Other Outcomes | - | - | |
Duration of OTI (days), mean (SD) | 27 (21.6) | 12 (9.2) | |
Length of hospital stay (days), mean (SD) | 31 (21.0) | 13 (9.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouyer, M.; Strazzulla, A.; Youbong, T.; Tarteret, P.; Pitsch, A.; de Pontfarcy, A.; Cassard, B.; Vignier, N.; Pourcine, F.; Jochmans, S.; et al. Ventilator-Associated Pneumonia in COVID-19 Patients: A Retrospective Cohort Study. Antibiotics 2021, 10, 988. https://doi.org/10.3390/antibiotics10080988
Rouyer M, Strazzulla A, Youbong T, Tarteret P, Pitsch A, de Pontfarcy A, Cassard B, Vignier N, Pourcine F, Jochmans S, et al. Ventilator-Associated Pneumonia in COVID-19 Patients: A Retrospective Cohort Study. Antibiotics. 2021; 10(8):988. https://doi.org/10.3390/antibiotics10080988
Chicago/Turabian StyleRouyer, Maxence, Alessio Strazzulla, Tracie Youbong, Paul Tarteret, Aurélia Pitsch, Astrid de Pontfarcy, Bruno Cassard, Nicolas Vignier, Franck Pourcine, Sébastien Jochmans, and et al. 2021. "Ventilator-Associated Pneumonia in COVID-19 Patients: A Retrospective Cohort Study" Antibiotics 10, no. 8: 988. https://doi.org/10.3390/antibiotics10080988
APA StyleRouyer, M., Strazzulla, A., Youbong, T., Tarteret, P., Pitsch, A., de Pontfarcy, A., Cassard, B., Vignier, N., Pourcine, F., Jochmans, S., Monchi, M., & Diamantis, S. (2021). Ventilator-Associated Pneumonia in COVID-19 Patients: A Retrospective Cohort Study. Antibiotics, 10(8), 988. https://doi.org/10.3390/antibiotics10080988