Incidence, Risk Factors and Impact on Clinical Outcomes of Bloodstream Infections in Patients Hospitalised with COVID-19: A Prospective Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Baseline and Clinical Characteristics of Patients
2.2. Clinical and Microbiological Characteristics of Community-Acquired/Healthcare-Associated Bloodstream Infections
2.3. Clinical and Microbiological Characteristics of Hospital-Acquired Bloodstream Infections
2.4. Risk Factors for Hospital-Acquired Bloodstream Infections
2.5. Clinical Outcomes of Patient with CA/HCA and HA Bloodstream Infections
3. Discussion
4. Materials and Methods
4.1. Design and Study Setting
4.2. Definitions
4.3. Data Collection
4.4. Ethical Considerations
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chertow, D.S.; Memoli, M.J. Bacterial coinfection in influenza: A grand rounds review. JAMA J. Am. Med. Assoc. 2013, 309, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.H.; Dugas, A. The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis. Influenza Other Respi. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M.; et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Battaglini, D.; Ball, L.; Brunetti, I.; Bruzzone, B.; Codda, G.; Crea, F.; De Maria, A.; Dentone, C.; Di Biagio, A.; et al. Bloodstream infections in critically ill patients with COVID-19. Eur. J. Clin. Investig. 2020, 50, e13319. [Google Scholar] [CrossRef]
- Søgaard, K.K.; Baettig, V.; Osthoff, M.; Marsch, S.; Leuzinger, K.; Schweitzer, M.; Meier, J.; Bassetti, S.; Bingisser, R.; Nickel, C.H.; et al. Community-acquired and hospital-acquired respiratory tract infection and bloodstream infection in patients hospitalized with COVID-19 pneumonia. J. Intensive Care 2021, 9, 10. [Google Scholar] [CrossRef]
- Kokkoris, S.; Papachatzakis, I.; Gavrielatou, E.; Ntaidou, T.; Ischaki, E.; Malachias, S.; Vrettou, C.; Nichlos, C.; Kanavou, A.; Zervakis, D.; et al. ICU-acquired bloodstream infections in critically ill patients with COVID-19. J. Hosp. Infect. 2021, 107, 95–97. [Google Scholar] [CrossRef]
- Cataldo, M.A.; Tetaj, N.; Selleri, M.; Marchioni, L.; Capone, A.; Caraffa, E.; Di Caro, A.; Petrosillo, N. Incidence of bacterial and fungal bloodstream infections in COVID-19 patients in intensive care: An alarming “collateral effect”. J. Glob. Antimicrob. Resist. 2020, 23, 290–291. [Google Scholar] [CrossRef]
- Cultrera, R.; Barozzi, A.; Libanore, M.; Marangoni, E.; Pora, R.; Quarta, B.; Spadaro, S.; Ragazzi, R.; Marra, A.; Segala, D.; et al. Co-infections in critically ill patients with or without COVID-19: A comparison of clinical microbial culture findings. Int. J. Environ. Res. Public Health 2021, 18, 4358. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Buetti, N.; Ruckly, S.; De Montmollin, E.; Reignier, J.; Terzi, N.; Cohen, Y.; Shiami, S.; Dupuis, C.; Timsit, J.F. COVID-19 increased the risk of ICU-acquired bloodstream infections: A case–cohort study from the multicentric OUTCOMEREA network. Intensive Care Med. 2021, 47, 180–187. [Google Scholar] [CrossRef]
- Soriano, M.C.; Vaquero, C.; Ortiz-Fernández, A.; Caballero, A.; Blandino-Ortiz, A.; De Pablo, R. Low incidence of co-infection, but high incidence of ICU-acquired infections in critically ill patients with COVID-19. J. Infect. 2021, 82, e20–e21. [Google Scholar] [CrossRef]
- Engsbro, A.L.; Israelsen, S.B.; Pedersen, M.; Tingsgaard, S.; Lisby, G.; Andersen, C.; Benfield, T. Predominance of hospital-acquired bloodstream infection in patients with COVID-19 pneumonia. Infect. Dis. 2020, 52, 919–922. [Google Scholar] [CrossRef]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of COVID-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef] [PubMed]
- Abelenda-Alonso, G.; Rombauts, A.; Gudiol, C.; Oriol, I.; Simonetti, A.; Coloma, A.; Rodríguez-Molinero, A.; Izquierdo, E.; Díaz-Brito, V.; Sanmartí, M.; et al. Immunomodulatory therapy, risk factors and outcomes of hospital-acquired bloodstream infection in patients with severe COVID-19 pneumonia: A Spanish case-control matched multicenter study (BACTCOVID). Clin. Microbiol. Infect. 2021. [Google Scholar] [CrossRef]
- Youssef, J.; Novosad, S.A.; Winthrop, K.L. Infection Risk and Safety of Corticosteroid Use. Rheum. Dis. Clin. N. Am. 2016, 42, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [CrossRef]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Bornman, C.; Zafer, M.M. Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand? J. Infect. Public Health 2021, 14, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Hong Nguyen, M. Coronavirus disease 2019, superinfections, and antimicrobial development: What can we expect? Clin. Infect. Dis. 2020, 71, 2736–2743. [Google Scholar] [CrossRef] [PubMed]
- Huttner, B.D.; Catho, G.; Pano-Pardo, J.R.; Pulcini, C.; Schouten, J. COVID-19: Don’t neglect antimicrobial stewardship principles! Clin. Microbiol. Infect. 2020, 26, 808–810. [Google Scholar] [CrossRef]
- Elzi, L.; Babouee, B.; Vögeli, N.; Laffer, R.; Dangel, M.; Frei, R.; Battegay, M.; Widmer, A.F. How to discriminate contamination from bloodstream infection due to coagulase-negative staphylococci: A prospective study with 654 patients. Clin. Microbiol. Infect. 2012, 18, E355–E361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarb, P.; Coignard, B.; Griskeviciene, J.; Muller, A.; Vankerckhoven, V.; Weist, K.; Goossens, M.M.; Vaerenberg, S.; Hopkins, S.; Catry, B.; et al. The european centre for disease prevention and control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Eurosurveillance 2012, 17, 20316. [Google Scholar] [CrossRef]
- WHO. Health Care Without Avoidable Infections. Available online: https://www.who.int/infection-prevention/publications/ipc-role/en/ (accessed on 21 April 2021).
- Koppie, T.M.; Serio, A.M.; Vickers, A.J.; Vora, K.; Dalbagni, G.; Donat, S.M.; Herr, H.W.; Bochner, B.H. Age-adjusted charlson comorbidity score is associated with treatment decisions and clinical outcomes for patients undergoing radical cystectomy for bladder cancer. Cancer 2008, 112, 2384–2392. [Google Scholar] [CrossRef]
Patients without BSI N = 1282 (94.9%) | Patients with CA/HCA-BSI N = 18 (1.3%) | Patients with HA-BSI N = 51 (3.8%) | p Value | Overall N = 1351 | |
---|---|---|---|---|---|
Gender, Male, N (%) | 797 (62.2%) | 10 (55.6%) | 35 (68.6%) | 0.541 | 842 (62.3%) |
Age, years, median (IQR) | 68 (54–80) | 75 (58–82) | 63 (57–80) | 0.444 | 68 (55–80) |
Comorbidities, N (%) | |||||
Hypertension | 619 (48.3%) | 12 (66.7%) | 25 (49.0%) | 0.300 | 656 (48.6%) |
Diabetes | 250 (19.5%) | 3 (16.7%) | 14 (27.5%) | 0.356 | 267 (19.8%) |
Cardiovascular diseases | 378 (29.5%) | 7 (38.9%) | 18 (35.3%) | 0.471 | 403 (29.8%) |
Cerebrovascular diseases | 115 (9.0%) | 4 (22.2%) | 2 (3.9%) | 0.065 | 121 (9.0%) |
COPD/asthma | 171 (13.3%) | 2 (11.1%) | 8 (15.7%) | 0.854 | 181 (13.4%) |
Chronic liver diseases | 50 (3.9%) | 0 (0.0%) | 2 (3.9%) | 0.694 | 52 (3.9%) |
Solid or haematological malignancy | 108 (8.4%) | 5 (27.8%) | 2 (3.9%) | 0.007 | 115 (8.5%) |
Chronic kidney disease | 94 (7.3%) | 2 (11.1%) | 5 (9.8%) | 0.676 | 101 (7.5%) |
HIV infection /AIDS | 12 (0.9%) | 1 (5.6%) | 1 (2.0%) | 0.126 | 14 (1.0%) |
Rheumatic Diseases | 26 (2.0%) | 0 (0.0%) | 0 (0.0%) | 0.490 | 26 (1.9%) |
Age Unadjusted Charlson score, median (IQR) | 1 (0–2) | 2 (0–3) | 1 (0–2) | 0.077 | 1 (0–2) |
Calendar period of hospital admission, N (%) | 0.553 | ||||
February–July 2020 | 555 (43.3%) | 8 (44.4%) | 26 (51.0%) | 589 (43.6%) | |
August–November 2020 | 727 (56.7%) | 10 (55.6%) | 25 (49%) | 762 (56.4%) | |
Risk factors for SARS-CoV-2 infection, N (%) | 0.142 | ||||
Close contact/household | 122 (9.5%) | 1 (5.6%) | 8 (15.7%) | 131 (9.7%) | |
Healthcare worker | 52 (4.1%) | 0 (0.0%) | 1 (2%) | 53 (3.9%) | |
Hospitalisation last 30 days/ long-term care facility | 203 (15.8%) | 7 (38.9%) | 11 (21.6%) | 221 (16.4%) | |
Unknown/other | 905 (70.6%) | 10 (55.5%) | 31 (60.7%) | 946 (70.0%) | |
COVID-19 Severity at admission, N (%) | 0.251 | ||||
Mild | 203 (15.8%) | 4 (22.2%) | 4 (7.84%) | 211 (15.6%) | |
Moderate | 498 (38.9%) | 5 (27.8%) | 13 (31.4%) | 519 (38.4%) | |
Severe | 542 (42.3%) | 9 (50.0%) | 30 (58.8%) | 581 (43.0%) | |
Critical | 39 (3.0%) | 0 (0.0%) | 1 (2%) | 40 (3.0%) | |
Pneumonia at X-ray or CT scan, N (%) | 1007 (78.6%) | 11 (61.1%) | 47 (92.2%) | 0.012 | 1065 (78.8%) |
Laboratory findings at admission Haemoglobin/dL, median (IQR) | 13.4 (12–14.7) | 11.4 (10–13.2) | 13.9 (12.3–15.1) | 0.008 | 13.4 (12–14.7) |
Platelets 103/uL, median (IQR) | 208 (161–264) | 186 (110–228) | 203.5 (161–284) | 0.102 | 207 (161–263) |
Leukocytes count, 103/uL, median (IQR) | 6.82 (5.07–9.50) | 9.94 (4.97–12.96) | 7.1 (5.28–9.84) | 0.118 | 6.85 (5.07–9.54) |
Neutrophils, 103/uL, median (IQR) | 4.96 (3.41–7.57) | 8.42 (3.64–11.60) | 5.67 (3.79–8.82) | 0.780 | 5.01 (3.42–7.66) |
Lymphocyte count, 103/uL, median (IQR) | 1.02 (0.7–1.43) | 0.83 (0.41–1.52) | 0.98 (0.63–1.34) | 0.586 | 1.02 (0.69–1.43) |
CRP, mg/L, median (IQR) | 54.7 (23.8–96.3) | 65.25 (34.1–110.5) | 65.7 (33.5–106.1) | 0.174 | 55.3 (24.4–97.3) |
LDH, U/L, median (IQR) | 292 (228–389) | 237 (205–347) | 348 (235–417) | 0.142 | 293 (226–390) |
D-Dimer, ng/mL, median (IQR) | 355 (214–688) | 496.5 (406–1911) | 383 (264–1549) | 0.051 | 358 (216–692) |
Patients without BSI N = 1282 (94.9%) | Patients with CA/HCA-BSI N = 18 (1.3%) | Patients with HA-BSI N = 51 (3.8%) | p Value | Overall N = 1351 | |
---|---|---|---|---|---|
COVID-19 treatment, N (%) | |||||
lopinavir/r or darunavir/c | 130 (10.1%) | 0 (0.0%) | 7 (13.7%) | 0.253 | 137 (10.1%) |
remdesivir | 136 (10.6%) | 2 (11.1%) | 6 (11.8%) | 0.964 | 144 (10.7%) |
hydroxychloroquine +/− azithromycin | 414 (32.3%) | 5 (27.8%) | 20 (39.2%) | 0.534 | 439 (32.5%) |
heparin prophylaxis | 874 (68.2%) | 10 (55.6%) | 41 (80.4%) | 0.091 | 925 (68.5%) |
corticosteroids | 584 (45.6%) | 6 (33.3%) | 33 (64.7%) | 0.015 | 623 (46.1%) |
immunomodulators | 57 (4.5%) | 0 (0.0%) | 3 (5.9%) | 0.581 | 60 (4.4%) |
Highest grade of O2 therapy, N (%) | <0.001 | ||||
IMV | 83 (6.5%) | 0 (0.0%) | 11 (21.6%) | 94 (7.0%) | |
NIMV | 73 (5.7%) | 1 (5.6%) | 10 (19.6%) | 84 (6.2%) | |
CPAP | 360 (28.1%) | 1 (5.6%) | 14 (27.5%) | 375 (27.8%) | |
O2 low/high flow | 541 (42.2%) | 12 (66.7%) | 14 (27.5%) | 567 (42.0%) | |
No O2 therapy | 225 (17.6%) | 4 (22.2%) | 2 (3.9%) | 231 (17.1%) | |
Length of hospital stay, Median days (IQR) | 9 (5–17) | 12.5 (7–29) | 27 (21–35) | <0.001 | 10 (5–18) |
ICU admission, N (%) | 90 (7.0%) | 0 (0.0%) | 11 (21.6%) | <0.001 | 101 (7.5%) |
Death, N (%) | 319 (24.9%) | 6 (33.3%) | 16 (31.4%) | 0.421 | 341 (25.2%) |
Total Episodes of BSI N = 82 (100%) | Episodes of CA/HCA-BSI N = 18 (22%) | Episodes of HA-BSI N = 64 (78%) | p Value | |
---|---|---|---|---|
Origin of sepsis | 0.535 | |||
Respiratory | 6 (7.4%) | 0 (0.0%) | 6 (9.4%) | |
Urinary | 30 (36.6%) | 6 (33.3%) | 24 (37.5%) | |
Catheter-related | 18 (21.9%) | 5 (27.8%) | 13 (20.3%) | |
Intra-abdominal | 11 (13.4%) | 4 (22.2%) | 7 (10.9%) | |
Cutaneous | 2 (2.4%) | 0 (0.0%) | 2 (3.1%) | |
Other/unknown | 15 (18.3%) | 3 (16.7%) | 12 (18.8%) | |
Gram | 0.721 | |||
Positive | 41 (48.8%) | 10 (50.0%) | 31 (48.4%) | |
Negative | 41 (48.8%) | 10 (50.0%) | 31 (48.4%) | |
Fungi | 2 (2.4%) | 0 (0.0%) | 2 (3.2%) | |
Causative agents, N (%) | 0.448 | |||
Staphylococcus aureusa | 11 (13.3%) | 2 (10%) | 9 (14.3%) | |
Coagulase-negative staphylococcib | 12 (14.4%) | 5 (25%) | 7 (11.1%) | |
Enterococcus faeciumc | 6 (7.3%) | 1 (5%) | 5 (8%) | |
Enterococcus faecalis | 7 (8.4%) | 1 (5%) | 6 (9.5%) | |
Streptococcus pneumoniae | 1 (1.2%) | 0 (0%) | 1 (1.6%) | |
Corynebacterium spp. d | 2 (2.4%) | 0 (0%) | 2 (3.2%) | |
Escherichia colie | 10 (12%) | 2 (10%) | 8 (12.7%) | |
Klebsiella spp. f | 7 (8.4%) | 3 (15%) | 4 (6.3%) | |
Enterobacter cloacaeg | 6 (7.3%) | 0 (0%) | 6 (9.5%) | |
Proteus mirabilis | 1 (1.2%) | 1 (5%) | 0 (0%) | |
Pseudomonas spp. h | 6 (7.3%) | 2 (10%) | 4 (6.3%) | |
Acinetobacter baumannii | 1 (1.2%) | 0 (0%) | 1 (1.6%) | |
Stenotrophomonas maltophilia | 2 (2.4%) | 0 (0%) | 2 (3.2%) | |
Serratia marcescens | 5 (6%) | 1 (5%) | 4 (6.3%) | |
Raoultella ornithinolytica | 1 (1.2%) | 1 (5%) | 0 (0%) | |
Bacterioides fragilis | 1 (1.2%) | 0 (0%) | 1 (1.6%) | |
Listeria monocytogenes | 1 (1.2%) | 0 (0%) | 1 (1.6%) | |
Campylobacter jejuni | 1 (1.2%) | 0 (0%) | 1 (1.6%) | |
Lactobacillus casei | 1 (1.2%) | 1 (5%) | 0 (0%) | |
Candida spp. i | 2 (2.4%) | 0 (0%) | 2 (3.2%) | |
Fever at onset of BSI (T°C > 37.5) | 58 (69.9%) | 10 (50%) | 48 (76.2%) | 0.026 |
Hypotension at onset of BSI | 20 (24.1%) | 3 (15.0%) | 17 (27.0%) | 0.275 |
Laboratory findings at onset, median (IQR) | ||||
WBC, 103/Ul | 11.62 (7.09–15.38) | 11.14 (6.78–14.38) | 11.96 (7.34–15.82) | 0.537 |
N, 103/Ul | 9.82 (6.01–13.65) | 8.48 (4.27–13.19) | 10.11 (6.63–13.65) | 0.489 |
CRP, mg/L | 104.6 (53.8–118.2) | 88.9 (30.45–112.9) | 105.5 (67.9–119.3) | 0.237 |
PCT, ug/L | 1.02 (0.18–5.02) | 22.35 (2.59–48.55) | 0.79 (0.16–2.94) | 0.005 |
Onset in ICU, N (%) | 15 (18.1%) | 0 (0.0%) | 15 (23.8%) | 0.016 |
Days from admission to BSI, median (IQR) | 13 (8–19) | 0 (0–0) | 11 (4–16) | <0.001 |
Appropriate empiric ATB | 49 (57.8%) | 12 (60%) | 37 (57.8%) | 0.822 |
Appropriate targeted ATBj | 74 (88.0%) | 18 (90.0%) | 56 (87.5%) | 0.136 |
Vasoactive agents use | 8 (9.6%) | 0 (0.0%) | 8 (12.7%) | 0.094 |
OR | 95% CI | p Value | AOR * | 95% CI | p Value | |
---|---|---|---|---|---|---|
Age, per 10 years older | 1.03 | 0.87–1.22 | 0.713 | 1.03 | 0.83–1.29 | 0.764 |
Gender, male (vs. female) | 1.33 | 0.73–2.43 | 0.415 | 1.04 | 0.55–1.94 | 0.908 |
Charlson age unadjsuted, per one-point raise index | 1.10 | 0.87–1.39 | 0.352 | 1.16 | 0.88–1.53 | 0.288 |
Max O2-tp (vs. no O2-tp or high/low flow O2) | ||||||
NIMV/C-PAP | 2.65 | 1.39–5.05 | 0.003 | 2.09 | 1.06–4.12 | 0.034 |
IMV | 6.34 | 2.84–14.13 | <0.001 | 5.13 | 2.08–12.65 | <0.001 |
Calendar Period of Admission, August–November 2020 (vs. February–July 2020) | 0.73 | 0.41–1.28 | 0.279 | 0.65 | 0.33–1.27 | 0.213 |
Anti-inflammatory treatment | ||||||
Corticosteroids | 2.19 | 1.22–3.93 | 0.009 | 2.11 | 1.06–4.19 | 0.032 |
Immunomodulators | 1.34 | 0.41–4.44 | 0.629 | 0.96 | 0.28–3.29 | 0.946 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cona, A.; Tavelli, A.; Renzelli, A.; Varisco, B.; Bai, F.; Tesoro, D.; Za, A.; Biassoni, C.; Battaglioli, L.; Allegrini, M.; et al. Incidence, Risk Factors and Impact on Clinical Outcomes of Bloodstream Infections in Patients Hospitalised with COVID-19: A Prospective Cohort Study. Antibiotics 2021, 10, 1031. https://doi.org/10.3390/antibiotics10091031
Cona A, Tavelli A, Renzelli A, Varisco B, Bai F, Tesoro D, Za A, Biassoni C, Battaglioli L, Allegrini M, et al. Incidence, Risk Factors and Impact on Clinical Outcomes of Bloodstream Infections in Patients Hospitalised with COVID-19: A Prospective Cohort Study. Antibiotics. 2021; 10(9):1031. https://doi.org/10.3390/antibiotics10091031
Chicago/Turabian StyleCona, Andrea, Alessandro Tavelli, Andrea Renzelli, Benedetta Varisco, Francesca Bai, Daniele Tesoro, Alessandro Za, Caterina Biassoni, Lodovica Battaglioli, Marina Allegrini, and et al. 2021. "Incidence, Risk Factors and Impact on Clinical Outcomes of Bloodstream Infections in Patients Hospitalised with COVID-19: A Prospective Cohort Study" Antibiotics 10, no. 9: 1031. https://doi.org/10.3390/antibiotics10091031
APA StyleCona, A., Tavelli, A., Renzelli, A., Varisco, B., Bai, F., Tesoro, D., Za, A., Biassoni, C., Battaglioli, L., Allegrini, M., Viganò, O., Gazzola, L., Bini, T., Marchetti, G. C., & d’Arminio Monforte, A. (2021). Incidence, Risk Factors and Impact on Clinical Outcomes of Bloodstream Infections in Patients Hospitalised with COVID-19: A Prospective Cohort Study. Antibiotics, 10(9), 1031. https://doi.org/10.3390/antibiotics10091031