Chemical Constituents and Biological Activities of Croton heliotropiifolius Kunth
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Compositionof Croton heliotropiifolius
2.2. Antioxidant Activity Determined by Thin-Layer Chromatography (TLC)
2.3. Antifungal Effects of C. heliotropiifolius against C. albicans
2.4. Minimum Fungicidal Concentration (MFC)
2.5. Effects of Croton heliotropiifolius Extract on Fungal Morphology
2.6. Antiparasitic and Cytotoxic Effects of C. heliotropiifolius
3. Discussion
4. Materials and Methods
4.1. Botanical Material
4.2. Extract Preparation
4.3. Phytochemical Analysis
4.3.1. Qualitative Analysis
4.3.2. Ultra-Efficiency Liquid Chromatography Coupled with a Quadrupole/Time-of-Flight System (UPLC-QTOF)
4.4. Analysis of Antioxidant Activity by Thin-Layer Chromatography (TLC)
4.5. Antifungal Potential Analysis
4.5.1. Cell Cultures
4.5.2. Drugs and Reagents
4.5.3. Determination of Intrinsic Antifungal Effect
4.5.4. Minimum Fungicidal Concentration (MFC) Determination
4.5.5. Analysis of Antifungal Resistance Modulation
4.5.6. Effects of C. heliotropiifolius Extract on Fungal Morphology
4.6. Antiparasitic Activity Analysis
4.6.1. Anti-Leishmania Activity Determination
4.6.2. In Vitro Susceptibility of Trypanosoma cruzi Epimastigotes
4.6.3. In Vitro Cytotoxicity Study
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patwardhan, B.; Vaidya, A.D.B. Natural products drug discovery: Accelerating the clinical candidate development using reverse pharmacology approaches. Indian J. Exp. Biol. 2010, 48, 220–227. [Google Scholar]
- Patwardhan, B.; Mashelkar, R.A. Traditional medicine-inspired approaches to drug discovery: Can Ayurveda show the way forward? Drug Discov. Today 2009, 14, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.A.; Bolzani, V.S. Planejamento racional de fármacos baseado em produtos naturais. Quím Nova 2001, 24, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Costa-Lotufo, L.V.; Montenegro, R.C.; Alves, A.P.N.; Madeira, S.V.F.; Pessoa, C.; Moraes, M.E.A.; Moraes, M.O.A. Contribuição dos produtos naturais como fonte de novos fármacos anticâncer: Estudos no laboratório nacional de oncologia experimental da Universidade Federal do Ceará. Rev. Virtual Quim. 2010, 2, 47–58. [Google Scholar]
- Costa, A.R.; Almeida-Bezerra, J.W.; Cruz, R.P.D.; Freitas, M.A.; Silva, V.B.; Neto, J.C.; Santos, A.T.L.; Morais-Braga, M.F.B.; Silva, L.A.; Rocha, M.I.; et al. In vitro antibiotic and modulatory activity of Mesosphaerum suaveolens (L.) Kuntze against Candida strains. Antibiotics 2020, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.C.; Santos, A.T.L.; Machado, A.J.T.; Bezerra, C.F.; Freitas, T.S.; Coutinho, H.D.M.; Morais-Braga, M.F.B.; Bezerra, J.W.A.; Duarte, A.E.; Kamdem, J.P.; et al. Chemical composition and anti-Candida potential of the extracts of Tarenaya spinosa (Jacq.) Raf. (Cleomaceae). Comp. Immunol. Microbiol. Infect. Dis. 2019, 64, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.S.M.; Bezerra, J.W.A.; Kamdem, J.P.; Boligon, A.A.; Anraku, M.M.; Silva, A.R.P.; Fidelis, K.R.; Leite, N.F.; Pinho, A.I.; Coutinho, H.D.M.; et al. Polyphenolic composition, antibacterial, modulator and neuroprotective activity of Tarenaya spinosa (Jacq.) Raf. (Cleomaceae). Asian Pac. J. Trop. 2019, 9, 12–17. [Google Scholar] [CrossRef]
- Bezerra, J.W.A.; Coronel, C.; Gomez, M.C.V.; Rolón, M.; Nunez, C.V.; Da Silva, D.R.; Da Silva, L.A.; Rodrigues, F.C.; Boligon, A.A.; Souza, M.A.; et al. Evaluation of antiparasitary, cytotoxic and antioxidant activity and chemical analysis of Tarenaya spinosa (Jacq.) Raf. (Cleomaceae). S. Afr. J. Bot. 2019, 124, 546–555. [Google Scholar] [CrossRef]
- Eix, E.F.; Nett, J.E. How biofilm growth affects Candida-host interactions. Front. Microbiol. 2020, 11, 1437. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Microbiol. Spectr. 2017, 5, 813–843. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J.R.; Casadevall, A.; Perfect, J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect Med. 2014, 5, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Nasution, A.I. Virulence factor and pathogenicity of Candida albicans in oral candidiasis. World J. Dent. 2013, 4, 267–271. [Google Scholar] [CrossRef]
- World Health Organization. Doenças Tropicais Negligenciadas. 2018. Available online: https://www.paho.org/bra/index.php?option=com_joomlabook&view=topic&id=37&Itemid=232 (accessed on 2 November 2019).
- Valverde, R. Doenças Negligenciadas. Fundação Oswaldo Cruz—Ministério da Saúde. 2013. Available online: https://agencia.fiocruz.br/doen%C3%A7as-negligenciadas (accessed on 2 November 2019).
- Liguori, I.; Russo, G.; Cursio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Alkadi, H. A review on free radicals and antioxidants. Infect Disord. Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef]
- Wink, M.M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012, 17, 12771–12791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, U.P.; Medeiros, P.M.; Almeida, A.L.S.; Monteiro, J.M.; Neto, E.M.D.F.L.; Melo, J.G.; Santos, J.P. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: A quantitative approach. J. Ethnopharmacol. 2007, 114, 325–354. [Google Scholar] [CrossRef]
- Flora do Brasil 2020 em Construção. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/ (accessed on 2 February 2019).
- Reis, L.T.C.; Silva, M.R.D.; Costa, S.L.; Velozo, E.D.S.; Batista, R.; Lima, S.T.C. Estrogen and thyroid hormone receptor activation by medicinal plants from Bahia, Brazil. Medicines 2018, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, M.E.; Ulisses, A.V.R.A.; Ribeiro, D.A.; Oliveira, L.G.S.; Macêdo, D.G.; Sousa, F.D.F.S.; Menezes, A.R.A.; Sampaio, E.V.S.B.; Souza, M.M.A. Plant species as a therapeutic resource in areas of the savanna in the state of Pernambuco, Northeast Brazil. J. Ethnopharmacol. 2015, 171, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Roque, A.A.; Rocha, R.M.; Loiola, M.I.B. Uso e diversidade de plantas medicinais da Caatinga na comunidade rural de Laginhas, município de Caicó, Rio Grande do Norte (nordeste do Brasil). Rev. Bras. Plantas Med. 2010, 12, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Vasco-Dos-Santos, D.R.; Santos, J.V.D.; ANDRADE, W.; Santos-Lima, T.H.A.Y.S.E.; Lima, L.N.; Dias-Lima, A.G.; Andrade, M.J.G.; Vannier-Santos, M.A.; Moura, G.J.B.; Nunes, E.D.S. Antiparasitic plants used by the Kantaruré-Batida indigenous community (NE-Brazil): Ethnobotany and local knowledge-erosion risks. Ambient. Soc. 2018, 21, 1–20. [Google Scholar] [CrossRef]
- Fernandes, P.A.S. Etnobotânica de Plantas Medicinais da Comunidade Baixa do Maracujá (Crato-CE) e Análise química e antifúngica de Croton heliotropiifolius Kunth. Master’s degree, Regional University of Cariri—URCA, Crato, Ceará, Brazil, 2019. [Google Scholar]
- Asif, H.; Qadir, M.I. An Overview to candidiasis—A Candida infection. Int. J. Adv. Res. Micro. Biol. Immunol. 2019, 2, 6–8. [Google Scholar]
- World Health Organization. Skin NTDs—Spectrum of Skin NTDs. 2019. Available online: https://www.who.int/neglected_diseases/skin-ntds/en/ (accessed on 2 November 2019).
- Kumar, S.; Chandra, P.; Bajpai, V.; Singh, A.; Srivastava, M.; Mishra, D.K.; Kumar, B. Rapid qualitative and quantitative analysis of bioactive compounds from Phyllanthus amarus using LC/MS/MS techniques. Ind. Crops Prod. 2015, 69, 143–152. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Khatib, A.; Tan, C.P.; Ismail, I.S.; Shaari, K.; Ismail, A.; Lajis, N.H. Phytochemical and biological features of Phyllanthus niruri and Phyllanthus urinaria harvested at different growth stages revealed by 1H NMR-based metabolomics. Ind. Crops Prod. 2015, 77, 602–613. [Google Scholar] [CrossRef]
- Yang, Z.; Hou, J.J.; QI, P.; Yang, M.; Yan, B.P.; BI, Q.R.; Feng, R.H.; Yang, W.Z.; Wu, W.Y.; Guo, D.A. Colon-derived uremic biomarkers induced by the acute toxicity of Kansui radix: A metabolomics study of rat plasma and intestinal contents by UPLC-QTOF-MSE. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1026, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.M.; Maria-Ferreira, D.; Dal Lin, F.T.; Kimura, A.; Santana-Filho, A.P.; Werner, M.F.D.P.; Iacomini, M.; Sassaki, G.L.; Cipriani, T.R.; Souza, L.M. Phytochemical analysis and anti-inflammatory evaluation of compounds from an aqueous extract of Croton cajucara Benth. J. Pharm. Biomed. Anal. 2017, 145, 821–830. [Google Scholar] [CrossRef]
- Sousa, A.H.; Silva-Junio, J.N.; Guedes, M.L.; Braz-Filho, R.; Costa-Lotufo, L.V.; Araújo, A.J.; Silveira, E.R.; Lima, M.A. New terpenoids from Croton limae (Euphorbiaceae). J Braz. Chem. 2015, 26, 1565–1572. [Google Scholar] [CrossRef]
- Coelho, P.L.; Amparo, J.A.; da Silva, A.B.; da Silva, K.C.; Braga-de-Souza, S.; Barbosa, P.R.; Lopes, G.P.F.; Costa, S.L. Apigenin from croton betulaster Müll restores the immune profile of microglia against glioma cells. Phytother. Res. 2019, 33, 3191–3202. [Google Scholar] [CrossRef]
- Formagio, A.S.N.; Masetto, T.E.; Vieira, M.C.; Zárate, N.A.H.; De Matos, A.I.N.; Volobuff, C.R.F. Potencial alelopático e antioxidante de extratos vegetais. Biosci. J. 2014, 30, 629–638. [Google Scholar]
- Hidalgo, P.S.P.; Nunomura, R.C.S.; Nunomura, S.M. Plantas oleaginosas amazônicas: Química e atividade antioxidante de patauá (Oenocarpus bataua Mart.). Rev. Virtual Quím. 2016, 8, 130–140. [Google Scholar] [CrossRef]
- Freitas Filho, J.R.; De Frtei, J.R.; Lino, F.R.L.; De Freitas, J.C.R.; Da Silva, L.P.; De Souza, J.S. Investigando a cinza da casca do arroz como fase estacionária em cromatografia: Uma proposta para aulas de Química Orgânica Experimental na Graduação. In XV Encontro Nacional de Ensino de Química; Universidade de Brasília: Brasília, Brazil, 2010; Abstract 0070-2; Available online: http://www.xveneq2010.unb.br/resumos/R0070-2.pdf (accessed on 21 April 2016).
- Salatino, A.; Salatino, M.L.F.; Negri, G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J. Braz. Chem. Soc. 2007, 18, 11–33. [Google Scholar] [CrossRef]
- Alviano, W.S.; Mendonça-Filho, R.R.; Alviano, D.S.; Bizzo, H.R.; Souto-Padrón, T.; Rodrigues, M.L.; Bolognese, A.M.; Alviano, C.S.; Souza, M.M.G. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Immunol. 2005, 20, 101–105. [Google Scholar] [CrossRef]
- Athikomkulchai, S.; Prawat, H.; Thasana, N.; Ruangrungsi, N.; Ruchirawat, S. COX-1, COX-2 inhibitors and antifungal agents from Croton hutchinsonianus. Chem. Pharm. Bull. 2006, 54, 262–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vuuren, S.F.; Viljoen, A.M. In vitro evidence of phyto-synergy for plant part combinations of Croton gratissimus (Euphorbiaceae) used in African traditional healing. J. Ethnopharmacol. 2008, 119, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Reuben, K.D.; Abdulrahman, F.I.; Akan, J.C.; Sodipo, O.A. Phytochemical screening and antimicrobial studies of ethyl acetate extract of Croton zambesicus Muell Arg. stem bark. Pacific J. Sci. Tech. 2009, 10, 842–849. [Google Scholar]
- Tene, M.; Ndontsa, B.L.; Tane, P.; Tamokou, J.D.; Kuiate, J.R. Antimicrobial diterpenoids and triterpenoids from the stem bark of Croton macrostachys. Int. J. Biol. Chem. Sci. 2009, 3, 538–544. [Google Scholar] [CrossRef]
- Barbieri, D.S.V.; Tonial, F.; Lopez, P.V.; Maia, B.H.S.; Santos, G.D.; Ribas, M.O.; Glienke, G.; Vicente, V.A. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch. Oral. Biol. 2014, 59, 887–896. [Google Scholar] [CrossRef]
- Obey, J.K.; Von Wright, A.; Orjala, J.; Kauhanen, J.; Tikkanen-Kaukanen, C. Antimicrobial activity of Croton macrostachyus stem bark extracts against several human pathogenic bacteria. J. Pathogs. 2016, 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.M.F.; Queiroz, E.F.D.; Zeraik, M.L.; Marti, G.; Favre-Godal, Q.; Simões-Pires, C.; Marcourt, L.; Carrupt, P.A.; Cuendet, M.; Paulo, M.Q.; et al. Antifungals and acetylcholinesterase inhibitors from the stem bark of Croton heliotropiifolius. Phytochem. Lett. 2014, 10, 6. [Google Scholar] [CrossRef]
- Alencar, G.O.; Calixto-Júnior, J.T.; Boligon, A.A.; Athayde, M.L.; Bezerra, C.A.; Molas, C.C.; Rolon, M.; Gomez, C.V.; Coutinho, H.D.M.; Barreto, M.F.R. Atividade antiparasitária e citotóxica do extrato etanólico de folhas de Croton heliotropiifolius Kunth (Euphorbiaceae). Rev. Bras. Pl. Med. 2016, 18, 797–803. [Google Scholar] [CrossRef]
- Souza, A.A.M.; Brasil, D.D.S.B.; Rodrigues, C.C.; Almeida, S.M.F.; Silva, N.M.M.; Rêgo, J.D.A. Avaliação de atividades antioxidantes em plantas do gênero Croton. Braz. Appl. Sci. Rev. 2020, 4, 2217–2235. [Google Scholar] [CrossRef]
- Rodrigues, O.G.; Angélico, E.C.; Costa, J.G.M.; Lucena, M.D.F.A.; Neto, V.Q.; Silva, W.W. Avaliação da atividade antioxidante dos extratos botânicos de Croton heliotrpiifolius Kunth. e Croton blanchetianus Baill. Agropecuária Científica no Semiárido 2017, 12, 237–241. [Google Scholar]
- Aquino, V.V.F.; Costa, J.G.M.; Angélico, E.C.; Medeiros, R.S.; Lucena, M.D.F.A.; Rodrigues, O.G. Metabólitos secundários e ação antioxidante de Croton heliotripifolius e Croton blanchetianus. Acta Bras. 2017, 1, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.A. Perfil Fitoquímico e Atividade Toxicológica do Extrato Etanólico da Casca do Caule de Croton Heliotropiifolius Kunth (Euphobiacea). Master’s Thesis, Federal University of Pernambuco—UFPE, Recife, Pernambuco, Brazil, 2020. [Google Scholar]
- Silva, J.A.G. Investigação Fitoquímica e Biológica de Folhas do Croton heliotropiifolius Kunth (Euphorbiaceae). Master’s Thesis, Federal University of Pernambuco—UFPE, Recife, Pernambuco, Brazil, 2017. [Google Scholar]
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorantla, J.N.; Kumar, S.N.; Nisha, G.V.; Sumandu, A.S.; Dileep, C.; Sudaresan, A.; Kumar, M.M.S.; Lankalapalli, R.S.; Kumar, B.D. Purification and characterization of antifungal phenazines from a fluorescent Pseudomonas strain FPO4 against medically important fungi. J. Mycol. Med. 2014, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Cabezas-Pizarro, J.; Redondo-Solano, M.; Umaña-Gamboa, C.; Arias-Echandi, M.L. Antimicrobial activity of different sodium and potassium salts of carboxylic acid against some common foodborne pathogens and spoilage-associated bacteria. Revista. Arg. Microbiol. 2018, 50, 56–61. [Google Scholar] [CrossRef]
- Serpa, R.; França, E.; Maia, L.; Andrade, C.; Diniz, A.; Furlaneto, M. In vitro antifungal activity of the flavonoid baicalein against Candida species. J. Med. Microbiol. 2012, 61, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jucá, M.M.; Cysne-Filho, F.M.S.; Almeida, J.C.; Mesquita, D.S.; Barriga, J.R.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; et al. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res. 2020, 34, 692–705. [Google Scholar] [CrossRef]
- Araújo, F.M.; Dantas, M.C.; Silva, L.S.; Aona, L.Y.; Tavares, I.F.; Souza-Neta, L.C. Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind. Crops Prod. 2017, 105, 203–206. [Google Scholar] [CrossRef]
- McDougall, G.J.; Allwood, J.W.; Pereira-Caro, G.; Brown, E.M.; Verrall, S.; Stewart, D.; Latimer, C.; McMullan, G.; Lawther, R.; O’Connor, G.; et al. Novel colon-available triterpenoids identified in raspberry fruits exhibit antigenotoxic activities in vitro. Mol. Nut. Food Res. 2016, 61, 36. [Google Scholar] [CrossRef]
- Lim, C.S.Y.; Rosli, R.; Seow, H.F.; Chong, P.P. Candida and invasive candidiasis: Back to basics. Eur. J. Clin. Microbiol. Infect Dis. 2012, 31, 21–31. [Google Scholar] [CrossRef]
- Moreira, L.S.; Doria, A.C.O.C.; Santos, T.B.; Figueira, F.R.; Sorge, C.D.P.C.; Silva, A.M.; Khouri, S. Estudo da resistência aos antifúngicos de leveduras isoladas de candidúrias de um hospital de médio porte. Revista Univap 2017, 23, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.S.; Bernardes, R.C.; Magalhães, L.M.; Siqueira, F.S.; Khouri, S. Perfil de Sensibilidade de Amostras Isoladas de Casos de Candidurias Hospitalares aos Antifúngicos Convencionas; XIII Encontro Latino Americano De Iniciação Científica: São José dos Campos, Brazil, 2009. [Google Scholar]
- Al Thaqafi, A.H.O.; Farahat, F.M.; Al Harbi, M.I.; Al Amri, A.F.W.; Perfect, J.R. Predictors and outcomes of Candida bloodstream infection: Eight-year surveillance, western Saudi Arabia. Int. J. Infect Dis. 2014, 21, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Rang, H.P.; Ritter, J.M.; Flower, R.J.; Henderson, G. Fármacos antifúngicos. In Farmacologia, 8th ed.; Elsevier: Rio de Janeiro, Brazil, 2016; 760p. [Google Scholar]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef]
- Vieira, F.; Nascimento, T. Resistência a Fármacos Antifúngicos por Candida e Abordagem Terapêutica. Rev. Port Farmacoter. 2017, 9, 29–36. [Google Scholar] [CrossRef]
- Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. Mycol. Med. 2017, 27, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.F.; Rocha, J.E.; Silva, M.K.N.; Freitas, T.S.; Sousa, A.K.; Santos, A.T.L.; Cruz, R.P.; Ferreira, M.H.; Silva, J.C.P.S.; Machado, A.J.T.; et al. Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.). Food Chem. Toxicol. 2018, 119, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Leite, T.R.; Silva, M.A.P.; Santos, A.C.B.D.; Coutinho, H.D.M.; Duarte, A.E.; Costa, J.G.M. Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm. Biol. 2017, 55, 2015–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, C.S.; Oliveira-Tintino, C.D.M.; Tintino, S.R.; Galvão, H.B.F.; Da Costa, J.G.M.; Coutinho, H.D.M.; Menezes, I.R.A. Chemical composition, antibacterial and modulatory action of the essential oil of Croton rhamnifolioides leaves Pax and Hoffman. Biosci. J. 2016, 32, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
- Gow, N.A.; Van De Veerdonk, F.L.; Brown, A.J.; Netea, M.G. Candida albicans morphogenesis and host defence: Discriminating invasion from colonization. Nat. Rev. Microbiol. 2012, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, B.; Kuźma, Ł.; Micota, B.; Budzyńska, A.; Wysokińska, H.; Kłys, A.; Wieckowska-Szakiela, M.; Różalska, B. New biological potential of abietane diterpenoids isolated from Salvia austriaca against microbial virulence factors. Microb. Pathog. 2016, 98, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.J.; Ansuategui, M.; Bermejo, P. Active antifungal substances from natural sources. Arkivoc 2007, 7, 116–145. [Google Scholar] [CrossRef]
- Morais-Braga, M.F.B.; Carneiro, J.N.P.; Machado, A.J.T.; Sales, D.L.; Dos Santos, A.T.; Boligon, A.A.; Athayde, M.L.; Menezes, I.R.A.; Souza, D.S.L.; Costa, J.G.M.; et al. Phenolic composition and medicinal usage of Psidium guajava Linn.: Antifungal activity or inhibition of virulence? Saudi J. Biol. Sci. 2017, 24, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Ramos, S.C.S.; Oliveira, J.C.S.; Câmara, C.A.G.; Castelar, I.; Carvalho, A.F.F.U.; Lima-Filho, J.V. Antibacterial and cytotoxic properties of some plant crude extracts used in Northeastern folk medicine. Braz. J. Pharmacog. 2009, 19, 376–381. [Google Scholar] [CrossRef]
- Ratner, B.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed.; Academic Press: New York, NY, USA, 2004. [Google Scholar]
- Matos, F.J.A. Farmácias Vivas, 4th ed.; Editora UFC: Fortaleza, Brazil, 2002; pp. 36–40. [Google Scholar]
- Masters, K. Spray Drying Handbook, 5th ed.; Longman Scientific & Technical: New York, NY, USA, 1991. [Google Scholar]
- Sousa, E.O.; Miranda, C.M.B.A.; Nobre, C.B.; Boligon, A.A.; Athayde, M.L.; Costa, J.G.M. Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Ind. Crops Prod. 2015, 70, 7–15. [Google Scholar] [CrossRef]
- Andrade, J.C.; Silva, A.R.P.; Santos, A.T.L.; Freitas, M.A.; Carneiro, J.N.P.; Gonçalo, M.I.P.; Morais-Braga, M.F.B. UPLC-MS-ESI-QTOF characterization and evaluation of the antibacterial and modulatory antibiotic activity of Ziziphus joazeiro Mart. aqueous extracts. S. Afr. J. Bot. 2019, 123, 105–112. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espin, J.C.; Wichers, H.J. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem. Anal. 2000, 11, 330–338. [Google Scholar] [CrossRef]
- Collins, C.H. Desenvolvimento da Cromatografia em Camada Delgada. Sci. Chromatogr. 2010, 2, 5–12. [Google Scholar]
- Pereira, M.A. Perfil Cromatográfico das Substâncias Fenólicas Presentes em Extratos de mel de Assa Peixe e a Avaliação de Seu Poder Antioxidante. Ph.D. Thesis, Rural Universit of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil, 2010. [Google Scholar]
- NCCLS. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 2nd ed.; CLSI: Wayne, PA, USA, 2002. [Google Scholar]
- Stoppa, M.A.; Casemiro, L.A.; Vinholis, A.H.C.; Cunha, W.R.; Silva, M.L.A.; Martins, C.H.G.; Furtado, N.A.J.C. Estudo comparativo entre as metodologias preconizadas pelo CLSI e pelo EUCAST para avaliação da atividade antifúngica. Quím. Nova 2009, 32, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Javadpour, M.M.; Juban, M.M.; LO, W.C.; Bishop, S.M.; Alberty, J.B.; Cowell, S.M.; Becker, C.L.; Mclaughlin, M.L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem. 1996, 39, 3107–3113. [Google Scholar] [CrossRef]
- Morais-Braga, M.F.B.; Sales, D.L.; Carneiro, J.N.P.; Machado, A.J.T.; Santos, A.T.L.; Freitas, M.A.; Martins, G.M.A.B.; Leite, N.F.; Matos, Y.M.L.S.; Tintino, S.R.; et al. Psidium guajava L. and Psidium brownianum Mart ex DC.: Chemical composition and anti-Candida effect in association with fluconazole. Microb. Pathog. 2016, 95, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E.J.; Klepser, M.E.; Ernst, M.E.; Messer, S.A.; Pfaller, M.A. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn. Microbiol. Infect Dis. 1999, 33, 75–80. [Google Scholar] [CrossRef]
- Coutinho, H.D.M.; Costa, J.G.M.; Lima, E.O.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and Chlorpromazine. Chemotherapy 2008, 54, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Sidrim, J.J.C.; Rocha, M.F.G. Micologia Médica à Luz de Autores Contemporâneos, 1st ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Mendes, J.M. Investigação da Atividade Antifúngica do óleo Essencial de Eugenia caryophyllata Thunb. Sobre Cepas de Candida tropicalis. Master’s Thesis, Federal University of Paraíba—UFPB, João Pessoa, Paraíba, Brazil, 2011. [Google Scholar]
- Carneiro, J.N.P.; Cruz, R.P.; Silva, J.C.P.; Rocha, J.E.; Freitas, T.S.; Sales, D.L.; Bezerra, C.F.; Almeida, W.O.; Costa, J.G.M.; Silva, L.E.; et al. Piper diospyrifolium Kunth.: Chemical analysis and antimicrobial (intrinsic and combined) activities. Microb. Pathog. 2019, 136, 103700. [Google Scholar] [CrossRef]
- Mikus, J.; Steverding, D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue®. Parasitol Int. 2000, 48, 265–269. [Google Scholar] [CrossRef]
- Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592–2597. [Google Scholar] [CrossRef] [Green Version]
- Le-Senne, A.; Muelas-Serrano, S.; Fernández-Portillo, C.; Escario, J.A.; Gómez-Barrio, A. Biological characterization of a beta-galactosidase expressing clone of Trypanosoma cruzi CL strain. Mem. Inst. Oswaldo Cruz. 2002, 97, 1101–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolón, M.; Seco, E.M.; Vega, C.; Nogal, J.J.; Escario, J.A.; Gómez-Barrio, A.; Malpartida, F. Selective activity of polyenemacrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int. J. Antimicrob. Agents 2006, 28, 104–109. [Google Scholar] [CrossRef] [PubMed]
SAMPLE | Special Metabolite Classes (SMC) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SMC 1 | SMC 2 | SMC 3 | SMC 4 | SMC 5 | SMC 6 | SMC 7 | SMC 8 | SMC 9 | SMC 10 | |
PRESENCE | + | - | + | - | - | + | - | - | - | + |
Peak | RT mina | [M–H]− Obs.b | [M–H]− Calc.b | Ions (MS/MS) | Emp. Formula | Ppm (error) c | Putative Name | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 2.78 | 272.9554 | 272.9551 | - | C8H2N2O7Cl | 1.1 | Unknown | - |
2 | 3.15 | 191.0549 | 191.0556 | - | C7H11O6 | −3.7 | Quinic acid | [28,29] |
3 | 3.45 | 133.0141 | 133.0137 | 115 | C4H5O5 | 2.3 | Malic acid | [29] |
4 | 3.78 | 191.0185 | 191.0192 | 111 | C6H7O7 | −3.7 | Citric acid | [30] |
5 | 4.50 | 463.0894 | 463.0877 | 301 | C21H19O12 | 3.7 | Quercetin -O-glucoside | [29,31] |
6 | 4.89 | 457.1339 | 457.1346 | 171 | C20H25O12 | 0.3 | Unknown | - |
7 | 5.07 | 447.0914 | 447.0927 | 285 | C21H19O11 | Kaempferol-O-glucoside | [32] | |
8 | 5.20 | 253.0347 | 253.0348 | 137 | C11H9O7 | −0.4 | Hydroxy- benzoic acid derivative | [28] |
9 | 5.56 | 335.2234 | 335.2222 | - | C20H11O4 | 3.6 | Diterpene | - |
10 | 5.75 | 357.1323 | 357.1338 | 327, 313 | C20H21O6 | −4.2 | Pinoresinol isomer | [28] |
11 | 6.00 | 335.2220 | 335.2222 | - | C20H31O4 | −0.6 | Diterpene | - |
12 | 6.35 | 301.0359 | 301.0348 | - | C15H9O7 | 3.7 | Quercetin | [29,31] |
13 | 6.45 | 269.0450 | 269.0450 | - | C15H9O5 | 0.0 | Apigenin | [33] |
14 | 6.71 | 303.1958 | 303.1960 | - | C19H27O3 | -0.7 | Diterpene | - |
15 | 6.96 | 303.1950 | 303.1960 | - | C19H27O3 | −3.3 | Diterpene | - |
16 | 7.86 | 317.2115 | 317.2117 | - | C20H29O3 | −0.6 | Diterpene | - |
STRAIN | AECHR IC50 (μg/mL) | FCZ IC50 (μg/mL) | AECHR* + FCZ IC50 (μg/mL) |
---|---|---|---|
INCQS 40006 | 5459.3 | 8 | 1.7 |
URM 5974 | 4385.3 | 1.7 | 1.6 |
AECHR (μg/mL) | %AE T. cruzi | %AP L. braziliensis | %AP L. infantum | %Cit. Fibroblasts |
---|---|---|---|---|
1000 | 33.67 ± 0.49a | 0.00 ± 1.06a | 0.00 ± 0.29a | 14.66 ± 7.35 |
500 | 13.12 ± 0.70b | 0.00 ± 0.02a | 0.00 ± 0.31a | - |
250 | 8.66 ± 0.95c | 0.00 ± 7.99a | 0.00 ± 1.15a | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, P.A.d.S.; Silva, J.C.P.d.; Lima Sales, D.; Ribeiro, P.R.V.; Sousa de Brito, E.; Kerntopf, M.R.; Delmondes, G.d.A.; Andrade Pinheiro, J.C.; Salazar, G.J.T.; Batista, F.L.A.; et al. Chemical Constituents and Biological Activities of Croton heliotropiifolius Kunth. Antibiotics 2021, 10, 1074. https://doi.org/10.3390/antibiotics10091074
Fernandes PAdS, Silva JCPd, Lima Sales D, Ribeiro PRV, Sousa de Brito E, Kerntopf MR, Delmondes GdA, Andrade Pinheiro JC, Salazar GJT, Batista FLA, et al. Chemical Constituents and Biological Activities of Croton heliotropiifolius Kunth. Antibiotics. 2021; 10(9):1074. https://doi.org/10.3390/antibiotics10091074
Chicago/Turabian StyleFernandes, Priscilla Augusta de Sousa, Josefa Carolaine Pereira da Silva, Débora Lima Sales, Paulo Riceli Vasconcelos Ribeiro, Edy Sousa de Brito, Marta Regina Kerntopf, Gyllyandeson de Araújo Delmondes, Jacqueline Cosmo Andrade Pinheiro, Gerson Javier Torres Salazar, Francisco Lucas Alves Batista, and et al. 2021. "Chemical Constituents and Biological Activities of Croton heliotropiifolius Kunth" Antibiotics 10, no. 9: 1074. https://doi.org/10.3390/antibiotics10091074
APA StyleFernandes, P. A. d. S., Silva, J. C. P. d., Lima Sales, D., Ribeiro, P. R. V., Sousa de Brito, E., Kerntopf, M. R., Delmondes, G. d. A., Andrade Pinheiro, J. C., Salazar, G. J. T., Batista, F. L. A., Alves Magalhães, F. E., Gomez, M. C. V., Rolón, M., Coronel, C., Ribeiro-Filho, J., Almeida-Bezerra, J. W., Siyadatpanah, A., Nissapatorn, V., Pereira, M. d. L., ... Morais-Braga, M. F. B. (2021). Chemical Constituents and Biological Activities of Croton heliotropiifolius Kunth. Antibiotics, 10(9), 1074. https://doi.org/10.3390/antibiotics10091074