Supplementation of Live Yeast, Mannan Oligosaccharide, and Organic Selenium during the Adaptation Phase of Newly Arrived Beef Cattle: Effects on Health Status, Immune Functionality, and Growth Performance
Abstract
:1. Introduction
2. Results
2.1. Health Status
2.2. Hematological Parameters Related to Immune Function
2.3. Growth and Slaughtering Performance
2.4. Chemical Composition of Feces
3. Discussion
4. Materials and Methods
4.1. Animal, Groups and Animal Care
4.2. Feeding Protocol
4.3. Experimental Parameters
4.3.1. Health Status
4.3.2. Blood Samples and Hematological Parameters to Evaluate Immune Function
4.3.3. Growth and Slaughtering Performance
4.3.4. Chemical Composition of Feces
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug. Resist. 2019, 20, 3903–3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug. Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, P. Book review: Tackling drug-resistant infections globally. Arch. Pharm. Pract. 2016, 7, 110. [Google Scholar] [CrossRef]
- Woolhouse, M.; Ward, M.; van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Phil. Trans. R. Soc. B 2015, 370, 20140083. [Google Scholar] [CrossRef] [PubMed]
- More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Vet. J. 2020, 73, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossi, S.; Compiani, R.; Baldi, G.; Sgoifo Rossi, C.A. Effect of Yucca Schidigera inclusion in milk replacer for veal calves on health status, antimicrobial use and growth performancer. Large Anim. Rev. 2021. under pubblication. [Google Scholar]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Sgoifo Rossi, C.A.; Compiani, R.; Baldi, G.; Muraro, M.; Marden, J.P.; Rossi, R.; Pastorelli, G.; Corino, C.; Dell′Orto, V. Organic selenium supplementation improves growth parameters, immune and antioxidant status of newly received beef cattle. J. Anim. Feed Sci. 2017, 26, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Sgoifo Rossi, C.A.; Compiani, R.; Baldi, G.; Bonfanti, M. Individuazione e valutazione dei fattori di rischio per la BRD nel bovino da carne da ristallo. Large Anim. Rev. 2013, 19, 65–72. [Google Scholar]
- Ferroni, L.; Lovito, C.; Scoccia, E.; Dalmonte, G.; Sargenti, M.; Pezzotti, G.; Maresca, C.; Forte, C.; Magistrali, C.F. Antibiotic Consumption on Dairy and Beef Cattle Farms of Central Italy Based on Paper Registers. Antibiotics 2020, 9, 273. [Google Scholar] [CrossRef]
- Dell′Anno, M.; Reggi, S.; Caprarulo, V.; Hejna, M.; Sgoifo Rossi, C.A.; Callegari, M.L.; Baldi, A.; Rossi, L. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets. Animals 2021, 11, 1693. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Abd El-Hack, M.E.; Barkat, R.A.; Gabr, A.A.; Foda, M.A.; Noreldin, A.E.; Khafaga, A.F.; El-Sabrout, K.; et al. Potential role of important nutraceuticals in poultry performance and health—A comprehensive review. Res. Vet. Sci. 2021, 137, 9–29. [Google Scholar] [CrossRef]
- Tassinari, M.; Pastò, L.F.; Sardi, L.; Andrieu, S. Effects of Mannan Oligosaccharides in the Diet of Beef. In Proceedings of the 13th ISAH-2007, Tartu, Estonia, 17–21 June 2007; pp. 810–815. [Google Scholar]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of nutraceuticals during the transition period of dairy cows: A review. J. Anim. Sci. Biotechnol. 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Keyser, S.A.; McMeniman, J.P.; Smith, D.R.; MacDonald, J.C.; Galyean, M.L. Effects of Saccharomyces cerevisiae subspecies boulardii CNCM I-1079 on feed intake by healthy beef cattle treated with florfenicol and on health and performance of newly received beef heifers. J. Anim. Sci. 2007, 85, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Broadway, P.R.; Carroll, J.A.; Sanchez, N.C. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review. Microorganisms 2015, 3, 417–427. [Google Scholar] [CrossRef]
- Garcia Diaz, T.; Ferriani Branco, A.; Jacovaci, F.A.; Cabreira Jobim, C.; Pratti Daniel, J.L.; Iank Bueno, A.V.; Gonçalves Ribeiro, M. Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE 2018, 13, e0207127. [Google Scholar] [CrossRef] [PubMed]
- Grossi, S.; Rossi, L.; De Marco, M.; Sgoifo Rossi, C.A.S. The effect of different sources of selenium supplementation on the meat quality traits of young charolaise bulls during the finishing phase. Antioxidants 2021, 10, 596. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Celi, P.; Ponnampalam, E.P.; Leury, B.J.; Liu, F.; Dunshea, F.R. Antioxidant dynamics in the live animal and implications for ruminant health and product (meat/milk) quality: Role of vitamin E and selenium. Anim. Prod. Sci. 2014, 54, 1525–1536. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Velichko, O.A. Selenium in poultry nutrition: From sodium selenite to organic selenium sources. J. Poult. Sci. 2018, 55, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krehbiel, C.R. Bovine Respiratory Disease Influences on Nutrition and Nutrient Metabolism. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 361–373. [Google Scholar] [CrossRef]
- Burdick Sanchez, N.C.; Broadway, P.R.; Carroll, J.A. Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals 2021, 11, 371. [Google Scholar] [CrossRef]
- Goff, J.P. Transition cow immune function and interaction with metabolic diseases. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 11–13 April 2008; pp. 45–57. [Google Scholar]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Fernandez, M.V.; Baumgard, L.H. Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2360–2374. [Google Scholar] [CrossRef] [Green Version]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Fernandez, M.V.; Baumgard, L.H. Technical note: A procedure to estimate glucose requirements of an activated immune system in steers. J. Anim. Sci. 2016, 94, 4591–4599. [Google Scholar] [CrossRef]
- Finck, D.N.; Ribeiro, F.R.B.; Burdick, N.C.; Parr, S.L.; Carroll, J.A.; Young, T.R.; Bernhard, B.C.; Corley, J.R.; Estefan, A.G.; Rathmann, R.J.; et al. Yeast supplementation alters the performance and health status of receiving cattle. Prof. Anim. Sci. 2014, 30, 333–341. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [Green Version]
- Adili, S.; Sadeghi, A.A.; Chamani, M.; Shawrang, P.; Forodi, F. Auto-lysed yeast and yeast extract effects on dry matter intake, blood cells counts, IGG titer and gene expression of IL-2 in lactating dairy cows under heat stress. Acta Sci. Anim. Sci. 2020, 42, 1–7. [Google Scholar] [CrossRef]
- Xia, W.H.; Wang, L.; Niu, X.D.; Wang, J.H.; Wang, Y.M.; Li, Q.L.; Wang, Z.Y. Supplementation with beta-1,3-glucan improves productivity, immunity and antioxidative status in transition Holstein cows. Res. Vet. Sci. 2021, 134, 120–126. [Google Scholar] [CrossRef]
- Volman, J.J.; Ramakers, J.D.; Plat, J. Dietary modulation of immune function by β-glucans. Physiol. Behav. 2008, 94, 276–284. [Google Scholar] [CrossRef]
- Burdick Sanchez, N.C.; Young, T.R.; Carroll, J.A.; Corley, J.R.; Rathmann, R.J.; Johnson, B.J. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate Immun. 2013, 19, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Burdick Sanchez, N.C.; Young, T.R.; Carroll, J.A.; Corley, J.R.; Rathmann, R.J.; Johnson, B.J. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate Immun. 2014, 20, 104–112. [Google Scholar] [CrossRef]
- Burdick Sanchez, N.C.; Carroll, J.A.; Broadway, P.R.; Edrington, T.S.; Yoon, I.; Belknap, C.R. Some aspects of the acute phaseimmune response to a lipopolysaccharide (LPS) challenge are mitigated by supplementation with a Saccharomyces cerevisiaefermentation product in weaned beef calves. Transl. Anim. Sci. 2020, 4, txaa156. [Google Scholar] [CrossRef] [PubMed]
- Doležal, P.; Dvorácek, J.; Doležal, J.; Cermáková, J.; Zeman, L.; Szwedziak, K. Effect of feeding yeast culture on ruminalfermentation and blood indicators of Holstein dairy cows. Acta Vet. 2011, 80, 139–145. [Google Scholar] [CrossRef]
- Pinloche, E.; McEwan, N.; Marden, J.P.; Bayourthe, C.; Auclair, E.; Newbold, C.J. The Effects of a Probiotic Yeast on the Bacterial Diversity and Population Structure in the Rumen of Cattle. PLoS ONE 2013, 8, e67824. [Google Scholar]
- Kumprechtova, D.; Illek, J.; Julien, C.; Homolka, P.; Jancik, F.; Auclair, E. Effect of live yeast (Saccharomyces cerevisiae) supplementation on rumen fermentation and metabolic profile of dairy cows in early lactation. J. Anim. Physiol. Anim. Nutr. 2019, 103, 447–455. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; Liu, J.; Wang, J. Effects of Saccharomyces cerevisiae fermentation productson performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J. Anim. Sci. Biotechnol. 2017, 8, 36. [Google Scholar] [CrossRef]
- Crossland, W.L.; Norris, A.B.; Tedeschi, L.O.; Callaway, T.R. Effects of active dry yeast on ruminal pH characteristics and energy partitioning of finishing steers under thermoneutral or heat-stressed environment. J. Anim. Sci. 2018, 96, 2861–2876. [Google Scholar] [CrossRef]
- Smith, Z.K.; Karges, K.; Aguilar, A. Evaluation of an active live yeast (Levucell Saccharomyces cerevisiae, CNCM l-1077) on receiving and backgrounding period growth performance and efficiency of dietary net energy utilization in low health risk beef steers. Transl. Anim. Sci. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- McKiernan, W.A. Muscle scoring beef cattle. NSW DPI Primefact 2007, 328, 1–15. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle, 8th ed.; National Academy Press: Washington, DC, USA, 2016. [Google Scholar]
- Baggott, D.; Casartelli, A.; Fraisse, F.; Manavella, C.; Marteau, R.; Rehbein, S.; Wiedemann, M.; Yoon, S. Demonstration of the metaphylactic use of gamithromycin against bacterial pathogens associated with bovine respiratory disease in a multicentre farm trial. Vet. Rec. 2011, 168, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Stear, M.J. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees). Parasitology 2005, 130, 727. [Google Scholar] [CrossRef]
- Amadori, M.; Archetti, I.L.; Frasnelli, M.; Bagni, M.; Olzi, E.; Caronna, G.; Lanteri, M. An immunological approach to the evalua tion of welfare in Holstein Frisian cattle. J. Vet. Med. Ser. B 1997, 44, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Gershwin, L.J.; Gunther, R.A.; Anderson, M.L.; Woolums, A.R.; McArthur-Vaughan, K.; Randel, K.E. Bovine respiratory syncytial virus specific IgE is associated with interleukin-2 and-4, and interferon-γ expression in pulmonary lymph of experimentally infected calves. Am. J. Vet. Res. 2000, 61, 291–298. [Google Scholar] [CrossRef]
- Godson, D.L.; Campos, M.; Attah-Poku, S.K.; Redmond, M.J.; Cordeiro, D.M.; Sethi, M.S.; Harland, R.J.; Babiuk, L.A. Serum haptoglobin as an indicator of the acute phase response in bovine respiratory disease. Vet. Immunol. Immunopathol. 1996, 51, 277–292. [Google Scholar] [CrossRef]
- Nikunen, S.; Härtel, H.; Orro, T.; Neuvonen, E.; Tanskanen, R.; Kivelä, S.L.; Sankari, S.; Aho, P.; Pyörälä, S.; Saloniemi, H.; et al. Association of bovine respiratory disease with clinical status and acute phase proteins in calves. Comp. Immunol. Microbiol. Infect. Dis. 2007, 30, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, K.; Yamanaka, H.; Hisaeda, K.; Taharaguchi, S.; Kirisawa, R.; Iwai, H. Concentration of IL-6 in serum and whey from healthy and mastitic cows. Vet. Res. Commun. 2001, 25, 99–108. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International (2000), 20th ed.; AOAC: Arlington, VA, USA, 2006. [Google Scholar]
- Rode, L.M.; Yang, W.Z.; Beauchemin, K.A. Fibrolytic enzyme supplements for dairy cows in early lactation. J. Dairy Sci. 1999, 82, 2121–2126. [Google Scholar] [CrossRef]
- Vyas, D.; McGeough, E.J.; Mohammed, R.; McGinn, S.M.; McAllister, T.A.; Beauchemin, K.A. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet. Animal 2014, 8, 1807–1815. [Google Scholar] [CrossRef]
BRD 1 | Other Pathologies | |||||||
---|---|---|---|---|---|---|---|---|
Group | First Episode, % (n) | I° Relapse 2, % (n) | II° Relapse, % (n) | III° Relapse, % (n) | Total, % (n) | Infirmary 3, % (n) | Lameness, % (n) | Mortality, % (n) |
Control 4 | 60.2 (293) | 14.2 (69) | 2.1 (10) | 0.0 (0) | 76.5 (372) | 0.4 (2) | 0.2 (1) | 0.8 (4) |
Treatment 4 | 51.2 (281) | 7.8 (43) | 1.3 (7) | 0.5 (3) | 60.8 (334) | 0.0 (0) | 0.0 (0) | 0.7 (4) |
p value | 0.003 | 0.001 | 0.325 | 0.102 | <0.0001 | 0.132 | 0.288 | 0.864 |
Day | Control 1 | Treatment 1 | SEM 2 | p Value |
---|---|---|---|---|
BHV-1 3 serum neutralization, log(dilution) | ||||
d0 | 0.00 | 0.00 | 0.745 | 0.878 |
d30 | 0.59 | 0.71 | 0.045 | 0.031 |
Serum bactericidal activity, % | ||||
d0 | 71.23 | 70.76 | 0.64 | 0.608 |
d30 | 80.86 | 84.30 | 0.713 | 0.0012 |
γ-interferon, pg/mL | ||||
d0 | 16.73 | 17.46 | 0.88 | 0.559 |
d30 | 14.20 | 13.43 | 0.52 | 0.302 |
haptoglobin, mg/mL | ||||
d0 | 0.45 | 0.39 | 0.043 | 0.323 |
d30 | 0.23 | 0.19 | 0.029 | 0.361 |
LBP 4, ng/mL | ||||
d0 | 7295.17 | 7010.11 | 474.03 | 0.672 |
d30 | 6342.15 | 6404.14 | 489.36 | 0.928 |
IL6 5, ng/mL | ||||
d0 | 0.082 | 0.076 | 0.016 | 0.775 |
d30 | 0.079 | 0.091 | 0.017 | 0.635 |
Parameter | Control 1 | Treatment 1 | SEM 2 | p Value |
---|---|---|---|---|
Live weight, kg (±ds) | ||||
d0 | 325.47 (±21.44) | 323.76 (±23.74) | 0.936 | 0.186 |
d30 | 349.55 (±20.95) | 350.64 (±26.83) | 0.941 | 0.429 |
d186 | 514.81 (±24.81) | 519.01 (±32.40) | 1.057 | 0.006 |
ADG 3, kg/head/day | ||||
ADG0–186 | 1.018 (±0.15) | 1.049 (±21.44) | 0.023 | 0.100 |
ADG0–30 | 0.803 (±0.14) | 0.896 (±0.18) | 0.007 | <0.0001 |
ADG30–186 | 1.059 (±0.15) | 1.079 (±0.12) | 0.006 | 0.034 |
Parameter | Control 1 | Treatment 1 | SEM 2 | p Value |
---|---|---|---|---|
Cold carcass weight, kg | 300.90 (±15.73) | 303.68 (±20.95) | 0.074 | 0.600 |
Dressing percentage, % | 58.40 (±0.02) | 58.50 (±0.03) | 0.0007 | 0.588 |
Carcass SEUROP | ||||
% of carcass conformation R- good | 9.11 | 6.06 | - | 0.172 |
% of carcass conformation U-very good | 86.18 | 89.36 | - | 0.172 |
% of carcass conformation E-excellent | 4.76 | 4.59 | - | 0.172 |
% of carcass fatness 2-slight | 51.97 | 48.03 | - | 0.960 |
% of carcass fatness 3-medium important | 52.11 | 47.89 | - | 0.960 |
Parameter | Group | SEM 2 | p Value | |
---|---|---|---|---|
Control 1 | Treatment 1 | |||
Dry matter 3, % | 20.18 | 21.07 | 0.331 | 0.0570 |
CP 4, % d.m.2 | 13.11 | 12.96 | 0.311 | 0.6857 |
EE 5, % d.m. | 2.88 | 2.97 | 0.170 | 0.5499 |
ADF 6, % d.m. | 33.11 | 30.66 | 0.456 | 0.0003 |
NDF 7, % d.m. | 56.88 | 53.45 | 0.540 | <0.0001 |
Starch, % d.m. | 8.24 | 5.11 | 0.151 | <0.0001 |
Feed, kg | Adaptation, d0–d30 | Fattening, d30–d186 |
---|---|---|
Raw materials, as fed (kg 1) | ||
Wheat bran | 0.60 | 0.60 |
Hay | 1.10 | ---- |
Straw | 0.80 | 0.40 |
Corn silage | 8.00 | 9.50 |
Corn meal | 1.80 | 2.20 |
Sunflower meal 28% CP 2 | 0.20 | 1.20 |
Soy bean meal 48% CP | 0.20 | 0.50 |
Mineral and vitamins mix | 0.18 | 0.23 |
Nutritional values | ||
As fed, kg | 12.78 | 14.63 |
d.m. 3, kg | 6.30 | 7.80 |
UFV/kg d.m. | 0.89 | 0.92 |
CP, % d.m. | 12.69 | 16.44 |
Lipids, % d.m. | 3.57 | 3.49 |
Crude fiber, % d.m. | 17.71 | 17.45 |
NDF 4, % d.m. | 39.64 | 34.55 |
Starch, % d.m. | 31.46 | 33.43 |
Calcium, % d.m. | 0.72 | 0.85 |
Phosphorus, % d.m. | 0.41 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossi, S.; Dell’Anno, M.; Rossi, L.; Compiani, R.; Sgoifo Rossi, C.A. Supplementation of Live Yeast, Mannan Oligosaccharide, and Organic Selenium during the Adaptation Phase of Newly Arrived Beef Cattle: Effects on Health Status, Immune Functionality, and Growth Performance. Antibiotics 2021, 10, 1114. https://doi.org/10.3390/antibiotics10091114
Grossi S, Dell’Anno M, Rossi L, Compiani R, Sgoifo Rossi CA. Supplementation of Live Yeast, Mannan Oligosaccharide, and Organic Selenium during the Adaptation Phase of Newly Arrived Beef Cattle: Effects on Health Status, Immune Functionality, and Growth Performance. Antibiotics. 2021; 10(9):1114. https://doi.org/10.3390/antibiotics10091114
Chicago/Turabian StyleGrossi, Silvia, Matteo Dell’Anno, Luciana Rossi, Riccardo Compiani, and Carlo Angelo Sgoifo Rossi. 2021. "Supplementation of Live Yeast, Mannan Oligosaccharide, and Organic Selenium during the Adaptation Phase of Newly Arrived Beef Cattle: Effects on Health Status, Immune Functionality, and Growth Performance" Antibiotics 10, no. 9: 1114. https://doi.org/10.3390/antibiotics10091114
APA StyleGrossi, S., Dell’Anno, M., Rossi, L., Compiani, R., & Sgoifo Rossi, C. A. (2021). Supplementation of Live Yeast, Mannan Oligosaccharide, and Organic Selenium during the Adaptation Phase of Newly Arrived Beef Cattle: Effects on Health Status, Immune Functionality, and Growth Performance. Antibiotics, 10(9), 1114. https://doi.org/10.3390/antibiotics10091114