Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Antimicrobial Resistance in P. aeruginosa
3. Treatment Guidelines for Management of P. aeruginosa Infections
3.1. Antibiotics for P. aeruginosa Infections
Guideline | Clinical Indication(s) | Antimicrobial Agent(s) | Recommendation(s) |
---|---|---|---|
European Association of Urology (EAU), 2018 [59] | cUTI, including pyelonephritis and urosepsis | Ceftazidime Cefepime Piperacillin/tazobactam Ceftolozane/tazobactam Ceftazidime/avibactam Gentamicin * Amikacin * Imipenem/cilastatin Meropenem | Treatment options for empirical antimicrobial therapy. The choice between these agents should be based on local resistance data, and the regimen should be tailored on the basis of susceptibility results. Amoxicillin, co-amoxiclav, trimethoprim and trimethoprim–sulphamethoxazole and fluoroquinolones should not be used as empiric treatment for urological patients. |
British Society for Antimicrobial Chemotherapy (BSAC)/Healthcare Infection Society (HIS)/British Infection Association (BIA), 2018 [60] | UTI, IAI | Ceftazidime Piperacillin/tazobactam Carbapenems (excluding ertapenem) Aminoglycosides Fluoroquinolones Ceftolozane/tazobactam | Personalize empirical chemotherapy for each patient by considering current features of bacteraemia, risk factors for antibiotic resistance and past susceptibility testing, including the presence of MDR GNB in the patient, hospital unit, nursing home or community. Do not use imipenem to treat susceptible Pseudomonas infections. Do not use ceftolozane/tazobactam for infections due to AmpC- or CPE or MBL/ESBL-producing P. aeruginosa. |
World Society for Emergency Surgery (WSES), 2017 [64] | cIAI | Piperacillin/tazobactam Imipenem/cilastatin Doripenem Ciprofloxacin/levofloxacin1 Ceftazidime Cefepime Ceftazidime–avibactam Ceftolozane–tazobactam Amikacin Gentamicin Colistin | In critically ill patients, antimicrobial therapy should be started as soon as possible. In these patients, to ensure timely and effective administration of antibiotics, clinicians should always consider the pathophysiological status of the patient as well as the PK properties of the employed antibiotics. |
Surgical Infection Society (SIS), 2017 [65] | cIAI | Ceftolozane–tazobactam Aminoglycosides Polymyxin | Empirical treatment options for patients with risk factors for MDR, XDR or PDR P. aeruginosa (± coverage for Staphylococcus aureus). |
Spanish Society of Chemotherapy, 2018 [61] | Acute invasive infections | Ceftolozane–tazobactam Ceftazidime/avibactam Meropenem Ceftazidime Piperacillin/tazobactam + Amikacin, colistin or ciprofloxacin | Include a β-lactam with activity against P. aeruginosa with (a) the highest probability to achieve the optimal value of the adequate pharmacokinetic/pharmacodynamic index, and (b) the lowest risk of selection/amplification of the resistant subpopulation. For empirical treatment, consider combination antibiotics during the first 48–72 h to rapidly decrease the bacterial population, avoid selection of resistance and increase the probability of the strain to be susceptible at least to one of the two antibiotics. For directed treatment schedules, consider combination antibiotics if the infection presents criteria for severe sepsis or septic shock, in central nervous system infections, in endocarditis or neutropenia and when P. aeruginosa is resistant to β-lactams. Whatever antibiotic is chosen, it is essential to optimize the dose and route of administration. Preferred treatment for patients with severe sepsis/septic shock * and/or with risk factors for MDR P. aeruginosa infections. |
Infectious Diseases Society of America (IDSA), 2020 [63] | cUTI including pyelonephritis | Ceftolozane–tazobactam Ceftazidime–avibactam Imipenem–cilastatin–relebactam Cefiderocol | Preferred treatment options for pyelonephritis and cUTI caused by DTR- P. aeruginosa. |
DTR P. aeruginosa infections outside the urinary tract | Ceftolozane–tazobactam Ceftazidime–avibactam Imipenem–cilastatin–relebactam | Preferred treatment options (as monotherapy) for the treatment of infections outside of the urinary tract caused by DTR- P. aeruginosa. | |
American Thoracic Society (ATS)/Infectious Diseases Society of America (IDSA), 2016 [66] | HAP/VAP | Piperacillin–tazobactam Cefepime Ceftazidime Imipenem Meropenem Aztreonam Fluoroquinolones Aminoglycosides Colistin | Empiric regimens should cover for S. aureus, P. aeruginosa and other Gram-negative bacilli. For patients with VAP or HAP with high mortality risk, include two anti-pseudomonal antibiotics from different classes. In units where >10% of Gram-negative isolates are resistant to an agent being considered for monotherapy, and patients in ICUs where local antimicrobial susceptibility rates are unavailable †. Treat with two anti-pseudomonal agents of different classes for patients with risk factors for P. aeruginosa or other Gram-negative infection or is at high risk of mortality ‡. |
European Respiratory Society (ERS)/European Society of Intensive Care Medicine (ESICM)/European Society of Clinical Microbiology and Infectious Diseases (ESCMID)/Latin American Thoracic Association (ALAT), 2017 [67] | HAP/VAP | Cefepime Ceftazidime Piperacillin/tazobactam Imipenem Meropenem Levofloxacin | Consider a risk-stratification based approach; all empiric therapy regimens for HAP/VAP should include anti- pseudomonal coverage. Dual anti-pseudomonal antimicrobial empiric therapy (± coverage for S. aureus) recommended for patients with septic shock and in settings with high MDR pathogen risk. |
UK National Institute for Health and Care Excellence (NICE), 2019 [62] | HAP/VAP | Piperacillin/tazobactam Anti-pseudomonal cephalosporins Meropenem Ceftazidime–avibactam | Treat with broad-spectrum empiric Gram-negative coverage (±coverage for S. aureus). |
European Cystic Fibrosis Society (ECFS), 2018 [68] | CF | Tobramycin solution (or dry powder) for inhalation Aztreonam inhalation solution Combination of nebulized colistin and oral ciprofloxacin | Treatment options for new and chronic bronchopulmonary P. aeruginosa infections. |
3.2. Complicated Intra-Abdominal Infections
3.3. Complicated Urinary Tract Infections
3.4. Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia
3.5. Cystic Fibrosis
4. Role of Ceftazidime–Avibactam in the Treatment of P. aeruginosa Infections
4.1. Approved Indications
4.2. Mechanism of Action
4.3. In Vitro Activity
Study | Number of Isolates, Region and Study Dates | Isolate Source(s) | Agent | MIC Range, mg/L | MIC50, mg/L | MIC90, mg/L | Percentage Susceptible, % | Ceftazidime–Avibactam Resistance Mechanisms |
---|---|---|---|---|---|---|---|---|
Nichols et al. (2016) [89] | 7062 Asia/South Pacific, Europe, Latin America, Middle East/Africa (2012–2014) | NR | Ceftazidime–avibactam | ≤0.5 to >128 | 4 | 8 | 92.0 | MBLs (VIM, IMP, NDM), serine carbapenemases (KPC-2, GES) and ESBLs (SHV-5, VEB, PER, GES ESBL-like, TEM-OSBL) |
Ceftazidime | ≤0.5 to >128 | 2 | 64 | 77.0 | ||||
Kazmierczak et al. (2016) [90] | 8010 Asia Pacific, Europe, Latin/North America, Middle East/Africa 2012–2014) | Intra-abdominal, urinary tract, skin and soft tissue, lower respiratory tract and bloodstream infections | Ceftazidime–avibactam | 0.06 to >128 | 2 | 8 | 92.4 | KPC-2, VIM-2, AmpC |
Ceftazidime | 0.06 to >128 | 2 | 64 | 77.4 | ||||
Kazmierczak et al. (2016) [90] | 29 (KPC- positive) Asia Pacific, Latin America (2012–2014) | Intra-abdominal, urinary tract, skin and soft tissue, lower respiratory tract and bloodstream infections | Ceftazidime–avibactam | 4 to 64 | 8 | 32 | 75.9 | KPC-2, VIM-2, AmpC |
Ceftazidime | 64 to 128 | 64 | >128 | 0.0 | ||||
Sader et al. (2017) [79] | 7868 North America (2013–2016) | Intrabdominal, urinary tract, skin and skin structure, pneumonia, bloodstream and other infection types | Ceftazidime–avibactam | 0.25 to >32 | 2 | 4 | 97.1 | NR |
Ceftazidime | NR | 2 | 32 | 84.7 | ||||
Sader et al. (2017) [79] | 1562 (MDR) North America (2013–2016) | Intra-abdominal, urinary tract, skin and skin structure, pneumonia, bloodstream and other infection types | Ceftazidime–avibactam | 0.25 to >32 | 4 | 16 | 86.5 | NR |
Ceftazidime | NR | 16 | >32 | 43.6 | ||||
Sader et al. (2017) [91] | 3402 North America (2011–2015) | Pneumonia | Ceftazidime–avibactam | 0.25 to >32 | 2 | 4 | 96.6 | NR |
Ceftazidime | NR | 2 | 32 | 82.4 | ||||
Atkin 2018 [92] | 32 North America (2015) | Cystic fibrosis | Ceftazidime–avibactam | 0.5 to >128 | 4 | 64 | 71.9 | OprD protein loss, AmpC, MexC MexX MexA |
Ceftazidime | 16 to >128 | 64 | >128 | 0.0 | ||||
Sader et al. (2019) [93] | 2215 North America (2017–2018) | Pneumonia | Ceftazidime–avibactam | ≤0.015 to >32 | 2 | 8 | 96.0 | NR |
Ceftazidime | NR | 2 | 32 | 79.8 | ||||
Sader et al. (2019) [93] | 526 (MDR) North America (2017–2018) | Pneumonia | Ceftazidime–avibactam | 0.06 to >32 | 4 | 16 | 83.5 | NR |
Ceftazidime | NR | 32 | >32 | 32.3 | ||||
Sid Ahmed et al. (2019) [94] | 205 (MDR) Middle East (2014–2016) | Respiratory tract, skin and soft tissue, urinary tract, bloodstream, sterile body fluids and vascular line tips | Ceftazidime–avibactam | ≤0.75 to >256 | 4 | 64 | 68.8 | MBLs (VIM-2 type) and ESBLs (VEB-1a, OXA-4, OXA-10, OXA-50, TEM-116, PDC-2, PDC-3, PDC-5 and PDC-7) |
4.4. Pharmacokinetics and Pharmacodynamics
4.5. Ceftazidime–Avibactam in Clinical Trials
Clinical Cure, n/N (%) | Favourable Microbiological Response, n/N (%) | |||
---|---|---|---|---|
Ceftazidime– Avibactam | Comparator * | Ceftazidime– Avibactam | Comparator * | |
Phase 2 cIAI [110] | ||||
ME population | NR | NR | 5/5 (100) | 5/5 (100) |
Phase 2 cUTI [111] | ||||
ME population | NR | NR | 0/2 (0) | 0/0 |
Phase 3 RECLAIM 1 and 2: cIAI [112] | ||||
mMITT population | 30/35 (85.7) | 34/36 (94.4) | NR | NR |
Phase 3 RECLAIM 3: cIAI [114] | ||||
eME population | 11/11 (100) | 12/14 (85.7) | NR | NR |
Phase 3 REPRISE: cIAI and cUTI [113] | ||||
mMITT population: cIAI | 1/1 (100) | 1/1 (100) | NR | NR |
mMITT population: cUTI | 12/14 (86.0) | 5/5 (100) | 11/14 (79.0) | 3/5 (60.0) |
Phase 3 RECAPTURE 1 and 2: cUTI [115] | ||||
mMITT population | NR | NR | 12/18 (66.7) | 15/20 (75.0) |
Phase 3 REPROVE: HAP/VAP [116] | ||||
mMITT population | 22/39 (56.4) | 19/26 (73.1) | 22/58 (37.9) | 18/47 (38.3) |
ME population | 16/24 (66.7) | 14/18 (77.8) | 13/31 (41.9) | 12/28 (42.9) |
eME population | NR | NR | 18/42 (42.9) | 14/35 (40.0) |
CE population | 27/42 (64.3) | 27/35 (77.1) | NR | NR |
Pooled Phase 3 (all indications)—MDR P. aeruginosa [117] | ||||
mMITT population | NR | NR | 32/56 (57.1) | 21/39 (53.8) |
Pooled Phase 3 (all indications)—P. aeruginosa bacteraemia [118] | ||||
mMITT population | 11/15 (73.3) | 9/11 (81.8) | 10/15 (66.7) | 7/11 (63.6) |
4.6. Real-World Experience
Study | Patient Characteristics | Baseline Pathogens (Resistance Mechanisms) | Ceftazidime– Avibactam Dose and Duration | Concomitant Antibiotics, n/N (%) | Reported Outcomes |
---|---|---|---|---|---|
Algwizani (2018) [120] | 6 male patients, age 15–87 years 2/6 (33%) patients had bacteraemia | CRPA (n = 3) CRKP (n = 3; 2 with OXA-48, 1 with NDM and OXA-48) | 2.5 g q8h, adjusted for renal function Range 9–30 days | 3/6 (50%) | 5/6 (83%) patients achieved clinical and/or microbiological cure, including 3/3 (100%) with CRPA infections. 1 patient (17%) died 9 days after starting ceftazidime–avibactam treatment (NDM and OXA-48 K. pneumoniae CLABSI and VAP). |
Gofman (2018) [121] | 32-year-old male with intracranial haemorrhage due to traumatic injury; ventriculitis and sepsis | P. aeruginosa CRKP Streptococcus viridans | 2.5 g q8h, 6 weeks | 1/1 (100%) | CSF cultures were sterile after 3 days’ treatment with ceftazidime–avibactam + intrathecal amikacin, with treatment continued for 4 and 6 weeks, respectively. The patient did not experience any seizures or neurological deficits and was transferred to a long-term care facility for rehabilitation. |
Jorgensen (2019) [122] | 203 patients who received ceftazidime–avibactam for >72 h, median age 62 years, 62% male 22/203 (11%) patients had bacteraemia | CRE (58%); Pseudomonas spp. (31%); others (23%) | 92/203 patients (45%) required renal dose adjustments; median duration 9 days | 68/203 (34%) overall 20/63 (30%) in patients with Pseudomonas spp. infection | Clinical failure occurred in 59/203 (29%) patients overall and 19/63 (30%) in patients with Pseudomonas spp. Infection. 30-day recurrence occurred in 12/203 (6%) patients overall and 19/63 (6%) in patients with Pseudomonas spp. Infection. |
King (2016) [123] | 10 patients, mean age 73 years, 70% male, median CCI 6 1/10 (10%) patients had bacteraemia | P. aeruginosa (MDR and XDR) | NR | 5/10 (50%) | Microbiological cure achieved in 9/10 (90%) patients. Clinical success achieved in 8/10 (80%) patients. |
Kuang (2020) [124] | 20 patients, mean age 55 years, 70% male, mean CCI 4 7/20 (35%) patients had bacteraemia | K. pneumoniae (n = 18; 12 CRKP) P. aeruginosa (n = 3; 2 car-bapenem-resistant) Escherichia coli (n = 3; all ESBL-producing strains) Others (n = 9) | Standard dose, adjusted for renal function, duration NR | 10/20 (50%) | Clinical cure and failure at 30 days were achieved in 9 and 11 cases, respectively, including 2/3 (66%) of the patients with P. aeruginosa infection and 1/3 (33%) of the P. aeruginosa patients with HAP and cIAI and septic shock; co-infected with CRKP and E. coli (ESBL); and treated with ceftazidime–avibactam, tigecycline and aztreonam died after 3 days of treatment. Adverse effects reported in 3/20 (15%) of patients. |
Meschiari (2020) [125] | 3 patients (age 29–66 years, 2 male) with neurosurgical infections Patients 1 and 3 (both male) were treated with ceftazidime–avibactam (patient 1 after switching from ceftolozane–tazobactam) | XDR P. aeruginosa (n = 3) KPC-KP (n = 1) | Patient 1: 2.5 g q6h extended infusion (off-label dose) Patient 3: 2.5 g q8h | Patient 1: az-treonam 2 g q6h for 6 weeks Patient 3: col-istin then switch to az-treonam 2 g q6h for 8 weeks | Both patients treated with ceftazidime–avibactam achieved complete resolution of vertebral osteomyelitis by CT/MRI after 60 days. Rectal swab performed for routine screening at the end of treatment (Patient 3) yielded XDR P. aeruginosa with acquired resistance to ceftazidime–avibactam (MIC = 16 mg/L). |
Metafuni (2019) [126] | 3 haematological patients with neu-tropenia and Gram-negative bac-teraemia, ages 52–69 years, all male, CCI = 3 | KPC-KP (n = 2) MDR P. aeruginosa (n = 1) | 2.5 g q8h, add-ed to current antibiotics combination Median (range) 15 (12–16) days | 3/3 (100%) | Clinical success: 2/3 (67%) of patients, including 1/1 (100%) patient with P. aeruginosa in-fection. |
Rodríguez-Núñez (2018) [127] | 8 patients, ages 51–71 years, 88% male 1/8 (13%) patients had bacteraemia | P. aeruginosa (MDR and XDR) | Dose NR, range 7–34 days | 6/8 (75%) | Clinical cure achieved in 4/8 (50%) of patients. 30-day mortality: 1/8 (13%). 90-day mortality: 3/8 (38%). 1/8 (13%) of patients devel-oped encephalopathy that im-proved with drug discontinua-tion. |
Santevecchi (2018) [128] | 10 patients, ages 32–74 years, 50% male 8 patients had renal impairment, in-cluding 4 undergo-ing CRRT | MDR P. aeruginosa (n = 8) CRE (n = 9) Other (n = 4) | Doses NR, ad-justed for renal function Median (range) 16 (4–50) days | 5/10 (50%) | Clinical success: 7/10 (70%) patients, including 7/8 (88%) patients with P. aeruginosa in-fection. Microbiological cure: 6/9 (67%) patients, including 6/8 (75%) patients with P. aeruginosa in-fection. 2/10 patients (20%) developed emergence of resistance while on therapy with ceftazidime–avibactam. |
Spoletini (2019) [129] | 8 patients with CF (63% female, ages 22–41 years) re-ceived 15 courses of ceftazidime–avibactam (1–4 courses/patient) | MDR P. aeruginosa (n = 6) Other (n = 4) | Doses NR Range 12–145 days | 8/8 (100%) | Effective clinical response seen in 13/15 courses (87%), in-cluding 10/11 where P. aeruginosa was identified in spu-tum. 2/8 (25%) of patients with a very poor prognosis died ow-ing to complex underlying lung pathology. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Emerging Infections Program Hospital Prevalence Survey Team. Changes in prevalence of health care-associated infections in U.S. hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef]
- Rhodes, N.J.; Cruce, C.E.; O’Donnell, J.N.; Wunderink, R.G.; Hauser, A.R. Resistance trends and treatment options in Gram-negative ventilator-associated pneumonia. Curr. Infect. Dis. Rep. 2018, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Weiner, L.M.; Webb, A.K.; Limbago, B.; Dudeck, M.A.; Patel, J.; Kallen, A.J.; Edwards, J.R.; Sievert, D.M. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.Y.; Wu, Y.H.; Cai, M.; Zhou, C.L. Point-prevalence survey of healthcare-associated infections in Beijing, China: A survey and analysis in 2014. J. Hosp. Infect. 2016, 93, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 1209–1223. [Google Scholar] [CrossRef] [Green Version]
- Markou, P.; Apidianakis, Y. Pathogenesis of intestinal Pseudomonas aeruginosa infection in patients with cancer. Front. Cell. Infect. Microbiol. 2014, 3, 115. [Google Scholar] [CrossRef]
- Finnan, S.; Morrissey, J.P.; O’Gara, F.; Boyd, E.F. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J. Clin. Microbiol. 2004, 42, 5783–5792. [Google Scholar] [CrossRef] [Green Version]
- Tummler, B. Emerging therapies against infections with Pseudomonas aeruginosa. F1000Res. 2019, 8, F1000 Faculty Rev-1371. [Google Scholar] [CrossRef]
- Babich, T.; Naucler, P.; Valik, J.K.; Giske, C.G.; Benito, N.; Cardona, R.; Rivera, A.; Pulcini, C.; Fattah, M.A.; Haquin, J.; et al. Risk factors for mortality among patients with Pseudomonas aeruginosa bacteraemia: A retrospective multicentre study. Int. J. Antimicrob. Agents 2019, 55, 105847. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Ippolito, M.; Misseri, G.; Catalisano, G.; Marino, C.; Ingoglia, G.; Alessi, M.; Consiglio, E.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Ventilator-associated pneumonia in patients with covid-19: A systematic review and meta-analysis. Antibiotics 2021, 10, 545. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorli, L.; Luque, S.; Gomez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef] [PubMed]
- Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cel.l Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 2014, 68, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeli, Y.; Troillet, N.; Eliopoulos, G.M.; Samore, M.H. Emergence of antibiotic-resistant Pseudomonas aeruginosa: Comparison of risks associated with different antipseudomonal agents. Antimicrob. Agents Chemother. 1999, 43, 1379–1382. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, E.; Van Herendael, B.; Verbrugghe, W.; Ieven, M.; Goovaerts, E.; Bergs, K.; Wouters, K.; Jorens, P.G.; Goossens, H. Emergence of antimicrobial resistance to Pseudomonas aeruginosa in the intensive care unit: Association with the duration of antibiotic exposure and mode of administration. Ann. Intensive Care 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Jonker, M.J.; Moustakas, I.; Brul, S.; Ter Kuile, B.H. Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics. Antimicrob. Agents Chemother. 2016, 60, 4229–4236. [Google Scholar] [CrossRef] [Green Version]
- Yayan, J.; Ghebremedhin, B.; Rasche, K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. PLoS ONE 2015, 10, e0139836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canton, R.; Gijon, D.; Ruiz-Garbajosa, P. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Curr. Opin. Crit. Care 2020, 26, 433–441. [Google Scholar] [CrossRef]
- Miranda, C.; Silva, V.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Implications of antibiotics use during the COVID-19 pandemic: Present and future. J. Antimicrob. Chemother. 2020, 75, 3413–3416. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of bloodstream infections due to Gram-negative bacteria with difficult-to-treat resistance. Antibiotics. 2020, 9, 632. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. National Institutes of Health Antimicrobial Resistance Outcomes Research, I. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [PubMed] [Green Version]
- Strich, J.R.; Warner, S.; Lai, Y.L.; Demirkale, C.Y.; Powers, J.H., 3rd; Danner, R.L.; Kadri, S.S. Needs assessment for novel Gram-negative antibiotics in US hospitals: A retrospective cohort study. Lancet Infect. Dis. 2020, 20, 1172–1181. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagace-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/beta-lactamase inhibitor combination. Drugs 2013, 73, 159–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirley, M. Ceftazidime-avibactam: A review in the treatment of serious Gram-negative bacterial infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Paterson, D. Spotlight on ceftazidime/avibactam: A new option for MDR Gram-negative infections. J. Antimicrob. Chemother. 2016, 71, 2713–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, M.; Menichetti, F.; Cattaneo, D.; Tiseo, G.; Baldelli, S.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Di Paolo, A.; Pai, M.P. Pragmatic options for dose optimization of ceftazidime/avibactam with aztreonam in complex patients. J. Antimicrob. Chemother. 2021, 76, 1025–1031. [Google Scholar] [CrossRef]
- Rains, C.P.; Bryson, H.M.; Peters, D.H. Ceftazidime. An update of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1995, 49, 577–617. [Google Scholar] [CrossRef] [PubMed]
- Lagacé-Wiens, P.; Walkty, A.; Karlowsky, J.A. Ceftazidime-avibactam: An evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections. Core Evid. 2014, 9, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.G.D.; Seifert, H.P.; Nord, C.E.P. In vitro activity of ceftazidime-avibactam against Gram-negative isolates collected in 18 European countries, 2015 to 2017. Int. J. Antimicrob. Agents 2020, 56, 106045. [Google Scholar] [CrossRef]
- Sader, H.S.; Flamm, R.K.; Carvalhaes, C.G.; Castanheira, M. Antimicrobial susceptibility of Pseudomonas aeruginosa to ceftazidime-avibactam, ceftolozane-tazobactam, piperacillin-tazobactam, and meropenem stratified by U.S. Census Divisions: Results from the 2017 INFORM Program. Antimicrob. Agents Chemother. 2018, 62, e01587-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Huband, M.D.; Castanheira, M.; Flamm, R.K. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the international network for optimal resistance monitoring program in the United States. Antimicrob. Agents Chemother. 2017, 61, e02252-16. [Google Scholar] [CrossRef] [Green Version]
- Huband, M.D.; Castanheira, M.; Flamm, R.K.; Farrell, D.J.; Jones, R.N.; Sader, H.S. In vitro activity of ceftazidime-avibactam against contemporary pseudomonas aeruginosa isolates from U.S. medical centers by census region, 2014. Antimicrob. Agents Chemother. 2016, 60, 2537–2541. [Google Scholar] [CrossRef] [Green Version]
- Mah, T.F.; Pitts, B.; Pellock, B.; Walker, G.C.; Stewart, P.S.; O’Toole, G.A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Kung, V.L.; Ozer, E.A.; Hauser, A.R. The accessory genome of Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2010, 74, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Causape, C.; Cabot, G.; Del Barrio-Tofino, E.; Oliver, A. The versatile mutational resistome of Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 685. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [Green Version]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa—mechanisms, epidemiology and evolution. Drug Resist. Updat. 2019, 44, 100640. [Google Scholar] [CrossRef]
- Rossolini, G.M.; Mantengoli, E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin. Microbiol. Infect. 2005, 11, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Breidenstein, E.B.; de la Fuente-Nunez, C.; Hancock, R.E. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef]
- Wolter, D.J.; Lister, P. Mechanisms of β-lactam resistance among Pseudomonas aeruginosa. Curr. Pharm. Design. 2013, 19, 209–222. [Google Scholar] [CrossRef]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Del Barrio-Tofino, E.; Zamorano, L.; Cortes-Lara, S.; Lopez-Causape, C.; Sanchez-Diener, I.; Cabot, G.; Bou, G.; Martinez-Martinez, L.; Oliver, A.; GEMARA-SEIMC/REIPI Pseudomonas study Group. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J. Antimicrob. Chemother. 2019, 74, 1825–1835. [Google Scholar] [CrossRef]
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 45, 568–585. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Lambert, T.; Turkoglu, S.; Ronco, E.; Gaillard, J.; Nordmann, P. Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the bla(VIM-2) carbapenem-hydrolyzing beta-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob. Agents Chemother. 2001, 45, 546–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.J.; Hsueh, P.R.; Lu, J.J.; Chang, F.Y.; Ko, W.C.; Wu, J.J. Characterization of acquired beta-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: The prevalence of unusual integrons. J. Antimicrob. Chemother. 2006, 58, 530–536. [Google Scholar] [CrossRef]
- Maurice, N.M.; Bedi, B.; Sadikot, R.T. Pseudomonas aeruginosa biofilms: Host response and clinical implications in lung infections. Am. J. Respir. Cell Mol. Biol. 2018, 58, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Torrens, G.; Gonzalez-Nicolau, M.; Oliver, A. Diversity and regulation of intrinsic beta-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol. Rev. 2017, 41, 781–815. [Google Scholar] [CrossRef] [PubMed]
- Berrazeg, M.; Jeannot, K.; Ntsogo Enguene, V.Y.; Broutin, I.; Loeffert, S.; Fournier, D.; Plesiat, P. Mutations in beta-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob. Agents Chemother. 2015, 59, 6248–6255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodge, J.M.; Piddock, L.J. The control of class I beta-lactamase expression in Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1991, 28, 167–172. [Google Scholar] [CrossRef]
- Bagge, N.; Ciofu, O.; Hentzer, M.; Campbell, J.I.; Givskov, M.; Hoiby, N. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob. Agents Chemother. 2002, 46, 3406–3411. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bao, Q.; Gagnon, L.A.; Huletsky, A.; Oliver, A.; Jin, S.; Langaee, T. ampG gene of Pseudomonas aeruginosa and its role in beta-lactamase expression. Antimicrob. Agents Chemother. 2010, 54, 4772–4779. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Chen, P.; You, B.; Zhang, Y.; Jiang, B.; Huang, G.; Yang, Z.; Chen, Y.; Chen, J.; Yuan, Z.; et al. Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016. Front. Microbiol. 2018, 9, 1135. [Google Scholar] [CrossRef]
- Li, H.; Luo, Y.F.; Williams, B.J.; Blackwell, T.S.; Xie, C.M. Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. Int. J. Med. Microbiol. 2012, 302, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2019.pdf (accessed on 6 September 2021).
- European Centre for Disease Prevention and Control Surveillance of Antimicrobial Resistance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2018. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2018.pdf (accessed on 6 September 2021).
- Dou, Y.; Huan, J.; Guo, F.; Zhou, Z.; Shi, Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J. Int. Med. Res. 2017, 45, 1124–1137. [Google Scholar] [CrossRef] [Green Version]
- European Association of Urology Guidelines on Urological Infections. Available online: https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Urological-Infections-2018-large-text.pdf (accessed on 6 September 2021).
- Hawkey, P.M.; Warren, R.E.; Livermore, D.M.; McNulty, C.A.M.; Enoch, D.A.; Otter, J.A.; Wilson, A.P.R. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: Report of the British society for antimicrobial chemotherapy/healthcare infection society/british infection association joint working party. J. Antimicrob. Chemother. 2018, 73, iii2–iii78. [Google Scholar] [CrossRef] [Green Version]
- Mensa, J.; Barberan, J.; Soriano, A.; Llinares, P.; Marco, F.; Canton, R.; Bou, G.; Gonzalez Del Castillo, J.; Maseda, E.; Azanza, J.R.; et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish society of chemotherapy. Rev. Esp. Quimioter. 2018, 31, 78–100. [Google Scholar]
- National Institute for Health and Care Excellence Pneumonia (Hospital-Acquired): Antimicrobial Prescribing. Available online: https://www.nice.org.uk/guidance/ng139 (accessed on 6 September 2021).
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Antimicrobial Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 6 September 2021).
- Sartelli, M.; Chichom-Mefire, A.; Labricciosa, F.M.; Hardcastle, T.; Abu-Zidan, F.M.; Adesunkanmi, A.K.; Ansaloni, L.; Bala, M.; Balogh, Z.J.; Beltran, M.A.; et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 2017, 12, 29. [Google Scholar] [CrossRef]
- Mazuski, J.E.; Tessier, J.M.; May, A.K.; Sawyer, R.G.; Nadler, E.P.; Rosengart, M.R.; Chang, P.K.; O’Neill, P.J.; Mollen, K.P.; Huston, J.M.; et al. The surgical infection society revised guidelines on the management of intra-abdominal infection. Surg. Infect. 2017, 18, 1–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratala, J.; et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [PubMed]
- Castellani, C.; Duff, A.J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS best practice guidelines: The 2018 revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef] [Green Version]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 133–164. [Google Scholar] [CrossRef] [Green Version]
- Dutch Working Party on Antibiotic Policy SWAB Guidelines for Antimicrobial Therapy of Complicated Urinary Tract Infections in Adults. Available online: http://swab.nl/exec/file/download/84 (accessed on 6 September 2021).
- Parkins, M.D.; Somayaji, R.; Waters, V.J. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019–18. [Google Scholar] [CrossRef] [Green Version]
- Pfizer Summary of Product Characteristics: Zavicefta 2 g/0.5 g Powder for Concentrate for Solution for Infusion. Available online: https://www.ema.europa.eu/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 6 September 2021).
- Allergan AVYCAZ (Ceftazidime and Avibactam) for Injection, for Intravenous Use. Available online: https://www.allergan.com/assets/pdf/avycaz_pi (accessed on 6 September 2021).
- Watanabe, N.A. Newer antipseudomonal cephalosporins. J. Chemother. 1996, 8, 48–56. [Google Scholar]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagace-Wiens, P.R.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/tazobactam: A novel cephalosporin/beta-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014, 74, 31–51. [Google Scholar] [CrossRef]
- Mushtaq, S.; Warner, M.; Livermore, D.M. In vitro activity of ceftazidime+NXL104 against Pseudomonas aeruginosa and other non-fermenters. J. Antimicrob. Chemother. 2010, 65, 2376–2381. [Google Scholar] [CrossRef]
- Abboud, M.I.; Damblon, C.; Brem, J.; Smargiasso, N.; Mercuri, P.; Gilbert, B.; Rydzik, A.M.; Claridge, T.D.; Schofield, C.J.; Frere, J.M. Interaction of avibactam with class B metallo-beta-lactamases. Antimicrob. Agents Chemother. 2016, 60, 5655–5662. [Google Scholar] [CrossRef] [Green Version]
- Buehrle, D.J.; Shields, R.K.; Chen, L.; Hao, B.; Press, E.G.; Alkrouk, A.; Potoski, B.A.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Evaluation of the in vitro activity of ceftazidime-avibactam and ceftolozane-tazobactam against meropenem-resistant Pseudomonas aeruginosa isolates. Antimicrob. Agents Chemother. 2016, 60, 3227–3231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Castanheira, M.; Shortridge, D.; Mendes, R.E.; Flamm, R.K. Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant enterobacteriaceae and pseudomonas aeruginosa isolates from U.S. medical centers, 2013 to 2016. Antimicrob. Agents Chemother. 2017, 61, e01045-17. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, S.D.; Walkup, G.K.; Whiteaker, J.D.; Palmer, T.; McCormack, K.; Tanudra, M.A.; Nash, T.J.; Thresher, J.; Johnstone, M.R.; Hajec, L.; et al. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J. Antimicrob. Chemother. 2015, 70, 1650–1658. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Wang, D.; Zhang, X.; Liu, H.; Zhu, G.; Wang, T.; Cheng, Z.; Wu, W.; Bai, F.; Jin, Y. Mechanisms for rapid evolution of carbapenem resistance in a clinical isolate of pseudomonas aeruginosa. Front. Microbiol. 2020, 11, 1390. [Google Scholar] [CrossRef]
- Zamudio, R.; Hijazi, K.; Joshi, C.; Aitken, E.; Oggioni, M.R.; Gould, I.M. Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients. Int. J. Antimicrob. Agents 2019, 53, 774–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraile-Ribot, P.A.; Cabot, G.; Mulet, X.; Perianez, L.; Martin-Pena, M.L.; Juan, C.; Perez, J.L.; Oliver, A. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2018, 73, 658–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Xu, W.; Yu, K.; Zeng, W.; Xu, C.; Cao, J.; Zhou, T. In vitro activity of ceftazidime-avibactam alone and in combination with amikacin against colistin-resistant gram-negative pathogens. Microb. Drug Resist. 2021, 27, 401–409. [Google Scholar] [CrossRef]
- Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00779-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mataraci Kara, E.; Yilmaz, M.; Istanbullu Tosun, A.; Ozbek Celik, B. Synergistic activities of ceftazidime-avibactam in combination with different antibiotics against colistin-nonsusceptible clinical strains of Pseudomonas aeruginosa. Infect. Dis. 2020, 52, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. CLSI Supplement M100. Available online: http://em100.edaptivedocs.net/GetDoc.aspx?doc=CLSI%20M100%20ED30:2020 (accessed on 4 December 2020).
- European Committee on Antimicrobial Susceptibility Testing Clinical Breakpoints for Bacteria, v 10.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 4 December 2020).
- Nichols, W.W.; de Jonge, B.L.; Kazmierczak, K.M.; Karlowsky, J.A.; Sahm, D.F. In vitro susceptibility of global surveillance isolates of Pseudomonas aeruginosa to ceftazidime-avibactam (INFORM 2012 to 2014). Antimicrob. Agents Chemother. 2016, 60, 4743–4749. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, K.M.; Biedenbach, D.J.; Hackel, M.; Rabine, S.; de Jonge, B.L.; Bouchillon, S.K.; Sahm, D.F.; Bradford, P.A. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and aztreonam-avibactam. Antimicrob. Agents Chemother. 2016, 60, 4490–4500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Castanheira, M.; Flamm, R.K. Antimicrobial activity of ceftazidime-avibactam against Gram-negative bacteria isolated from patients hospitalized with pneumonia in U.S. medical centers, 2011 to 2015. Antimicrob. Agents Chemother. 2017, 61, e02083-16. [Google Scholar] [CrossRef] [Green Version]
- Atkin, S.D.; Abid, S.; Foster, M.; Bose, M.; Keller, A.; Hollaway, R.; Sader, H.S.; Greenberg, D.E.; Finklea, J.D.; Castanheira, M.; et al. Multidrug-resistant Pseudomonas aeruginosa from sputum of patients with cystic fibrosis demonstrates a high rate of susceptibility to ceftazidime-avibactam. Infect. Drug Resist. 2018, 11, 1499–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Flamm, R.K.; Carvalhaes, C.G.; Castanheira, M. Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against Gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn. Microbiol. Infect. Dis. 2019, 96, 114833. [Google Scholar] [CrossRef] [PubMed]
- Sid Ahmed, M.A.; Abdel Hadi, H.; Hassan, A.A.I.; Abu Jarir, S.; Al-Maslamani, M.A.; Eltai, N.O.; Dousa, K.M.; Hujer, A.M.; Sultan, A.A.; Soderquist, B.; et al. Evaluation of in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against MDR Pseudomonas aeruginosa isolates from Qatar. J. Antimicrob. Chemother. 2019, 74, 3497–3504. [Google Scholar] [CrossRef]
- Merck & Co., Inc. ZERBAXA (Ceftolozane and Tazobactam) for Injection, for Intravenous Use. Available online: http://www.merck.com/product/usa/pi_circulars/z/zerbaxa/zerbaxa_pi.pdf (accessed on 6 September 2021).
- Merck Sharp & Dohme Ltd. Zerbaxa 1 g/0.5 g Powder for Concentrate for Solution for Infusion. Available online: https://www.medicines.org.uk/emc/product/5009/smpc (accessed on 6 September 2021).
- Humphries, R.M.; Hindler, J.A.; Wong-Beringer, A.; Miller, S.A. Activity of ceftolozane-tazobactam and ceftazidime-avibactam against beta-lactam-resistant Pseudomonas aeruginosa isolates. Antimicrob. Agents Chemother. 2017, 61, e01858-17. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Valverde, M.; Conejo, M.D.C.; Serrano, L.; Fernandez-Cuenca, F.; Pascual, A. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2020, 75, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Fraile-Ribot, P.A.; Zamorano, L.; Orellana, R.; Del Barrio-Tofino, E.; Sanchez-Diener, I.; Cortes-Lara, S.; Lopez-Causape, C.; Cabot, G.; Bou, G.; Martinez-Martinez, L.; et al. Activity of imipenem-relebactam against a large collection of Pseudomonas aeruginosa clinical isolates and isogenic β-lactam-resistant mutants. Antimicrob. Agents Chemother. 2020, 64, e02165-19. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Bouchillon, S.K.; Sahm, D.F. In vitro activity of WCK 5222 (Cefepime-zidebactam) against worldwide collected gram-negative bacilli not susceptible to carbapenems. Antimicrob. Agents Chemother. 2020, 64, e01432-20. [Google Scholar] [CrossRef]
- Nichols, W.W.; Newell, P.; Critchley, I.A.; Riccobene, T.; Das, S. Avibactam pharmacokinetic/pharmacodynamic targets. Antimicrob. Agents Chemother. 2018, 62, e02446-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lovern, M.; Green, M.L.; Chiu, J.; Zhou, D.; Comisar, C.; Xiong, Y.; Hing, J.; MacPherson, M.; Wright, J.G.; et al. Ceftazidime-avibactam population pharmacokinetic modeling and pharmacodynamic target attainment across adult indications and patient subgroups. Clin. Transl. Sci. 2019, 12, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Li, J.; Riccobene, T.; Carrothers, T.J.; Newell, P.; Melnick, D.; Critchley, I.A.; Stone, G.G.; Nichols, W.W. Dose selection and validation for ceftazidime-avibactam in adults with complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia. Antimicrob. Agents Chemother. 2019, 63, e02187-18. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.W.; Stone, G.G.; Newell, P.; Broadhurst, H.; Wardman, A.; MacPherson, M.; Yates, K.; Riccobene, T.; Critchley, I.A.; Das, S. Ceftazidime-avibactam susceptibility breakpoints against Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e02590-17. [Google Scholar] [CrossRef] [Green Version]
- Berkhout, J.; Melchers, M.J.; van Mil, A.C.; Seyedmousavi, S.; Lagarde, C.M.; Schuck, V.J.; Nichols, W.W.; Mouton, J.W. Pharmacodynamics of ceftazidime and avibactam in neutropenic mice with thigh or lung infection. Antimicrob. Agents Chemother. 2016, 60, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Coleman, K.; Levasseur, P.; Girard, A.M.; Borgonovi, M.; Miossec, C.; Merdjan, H.; Drusano, G.; Shlaes, D.; Nichols, W.W. Activities of ceftazidime and avibactam against beta-lactamase-producing Enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob. Agents Chemother. 2014, 58, 3366–3372. [Google Scholar] [CrossRef] [Green Version]
- Housman, S.T.; Crandon, J.L.; Nichols, W.W.; Nicolau, D.P. Efficacies of ceftazidime-avibactam and ceftazidime against Pseudomonas aeruginosa in a murine lung infection model. Antimicrob. Agents Chemother. 2014, 58, 1365–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimelow, R.; Wright, J.G.; MacPherson, M.; Newell, P.; Das, S. Population pharmacokinetic modelling of ceftazidime and avibactam in the plasma and epithelial lining fluid of healthy volunteers. Drugs R. D. 2018, 18, 221–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkhout, J.; Melchers, M.J.; van Mil, A.C.; Seyedmousavi, S.; Lagarde, C.M.; Nichols, W.W.; Mouton, J.W. Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice. Antimicrob. Agents Chemother. 2015, 59, 2299–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucasti, C.; Popescu, I.; Ramesh, M.K.; Lipka, J.; Sable, C. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: Results of a randomized, double-blind, Phase II trial. J. Antimicrob. Chemother. 2013, 68, 1183–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, J.A.; Gonzalez Patzan, L.D.; Stricklin, D.; Duttaroy, D.D.; Kreidly, Z.; Lipka, J.; Sable, C. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: Results of a prospective, investigator-blinded, randomized study. Curr. Med. Res. Opin. 2012, 28, 1921–1931. [Google Scholar] [CrossRef]
- Mazuski, J.E.; Gasink, L.B.; Armstrong, J.; Broadhurst, H.; Stone, G.G.; Rank, D.; Llorens, L.; Newell, P.; Pachl, J. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: Results from a randomized, controlled, double-blind, phase 3 program. Clin. Infect. Dis. 2016, 62, 1380–1389. [Google Scholar] [CrossRef]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [PubMed]
- Qin, X.; Tran, B.G.; Kim, M.J.; Wang, L.; Nguyen, D.A.; Chen, Q.; Song, J.; Laud, P.J.; Stone, G.G.; Chow, J.W. A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int. J. Antimicrob. Agents 2017, 49, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.; Sobel, J.D.; Newell, P.; Armstrong, J.; Huang, X.; Stone, G.G.; Yates, K.; Gasink, L.B. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin. Infect. Dis. 2016, 63, 754–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Stone, G.G.; Newell, P.; Gasink, L.B.; Broadhurst, H.; Wardman, A.; Yates, K.; Chen, Z.; Song, J.; Chow, J.W. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: Pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J. Antimicrob. Chemother. 2018, 73, 2519–2523. [Google Scholar] [CrossRef]
- Mazuski, J.; Wagenlehner, F.; Torres, A.; Carmeli, Y.; Chow, J.W.; Wajsbrot, D.; Stone, G.G.; Irani, P.; Bharucha, D.; Cheng, K.; et al. Clinical and Microbiological Outcomes of Ceftazidime-Avibactam Treatment in Adults with Gram-Negative Bacteremia: A Subset Analysis from the Phase 3 Clinical Trial Program. Infect. Dis. Ther. 2021, in press. [Google Scholar] [CrossRef]
- Soriano, A.; Carmeli, Y.; Omrani, A.S.; Moore, L.S.P.; Tawadrous, M.; Irani, P. Ceftazidime-Avibactam for the Treatment of Serious Gram-Negative Infections with Limited Treatment Options: A Systematic Literature Review. Infect. Dis. Ther. 2021, 1–46. [Google Scholar] [CrossRef]
- Algwizani, A.; Alzunitan, M.; Alharbi, A.; Alsaedy, A.; Aljohani, S.; Alalwan, B.; Gramish, J.; Alothman, A. Experience with ceftazidime-avibactam treatment in a tertiary care center in Saudi Arabia. J. Infect. Public Health 2018, 11, 793–795. [Google Scholar] [CrossRef]
- Gofman, N.; To, K.; Whitman, M.; Garcia-Morales, E. Successful treatment of ventriculitis caused by Pseudomonas aeruginosa and carbapenem-resistant Klebsiella pneumoniae with i.v. ceftazidime-avibactam and intrathecal amikacin. Am. J. Health Syst. Pharm. 2018, 75, 953–957. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Trinh, T.D.; Zasowski, E.J.; Lagnf, A.M.; Bhatia, S.; Melvin, S.M.; Steed, M.E.; Simon, S.P.; Estrada, S.J.; Morrisette, T.; et al. Real-world experience with ceftazidime-avibactam for multidrug-resistant Gram-negative bacterial infections. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2019; Volume 6, p. ofz522. [Google Scholar]
- King, M.; Huang, V.; Gallagher, J.; Heil, E. Outcomes with ceftazidime/avibactam in patients with carbapenem-resistant pseudomonas infections: A multi-center study. In Open Forum Infectious Diseases; Oxford University Press: Oxford, UK, 2016; Volume 3. [Google Scholar]
- Kuang, H.; Zhong, C.; Wang, Y.; Ye, H.; Ao, K.; Zong, Z.; Lv, X. Clinical characteristics and outcomes of patients with multidrug-resistant Gram-negative bacterial infections treated with ceftazidime/avibactam. J. Glob. Antimicrob. Resist. 2020, 23, 404–407. [Google Scholar] [CrossRef]
- Meschiari, M.; Franconi, I.; Bacca, E.; Bianco, V.; Orlando, G.; Cuomo, G.; Bedini, A.; Mussini, C. Ceftazidime/avibactam and ceftolozane/tazobactam for the treatment of extensively drug-resistant Pseudomonas aeruginosa post-neurosurgical infections: Three cases and a review of the literature. Infection 2020, 49, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Metafuni, E.; Criscuolo, M.; Spanu, T.; Sica, S. Ceftazidime-avibactam for Gram-negative multidrug-resistant bacteria in hematological patients: A single-center experience. Ann. Hematol. 2019, 98, 1495–1497. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Nunez, O.; Ripa, M.; Morata, L.; de la Calle, C.; Cardozo, C.; Feher, C.; Pellice, M.; Valcarcel, A.; Puerta-Alcalde, P.; Marco, F.; et al. Evaluation of ceftazidime/avibactam for serious infections due to multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. J. Glob. Antimicrob. Resist. 2018, 15, 136–139. [Google Scholar] [CrossRef]
- Santevecchi, B.A.; Smith, T.T.; MacVane, S.H. Clinical experience with ceftazidime/avibactam for treatment of antibiotic-resistant organisms other than Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2018, 51, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Spoletini, G.; Etherington, C.; Shaw, N.; Clifton, I.J.; Denton, M.; Whitaker, P.; Peckham, D.G. Use of ceftazidime/avibactam for the treatment of MDR Pseudomonas aeruginosa and Burkholderia cepacia complex infections in cystic fibrosis: A case series. J. Antimicrob Chemother. 2019, 74, 1425–1429. [Google Scholar] [CrossRef]
- Vena, A.; Giacobbe, D.R.; Castaldo, N.; Cattelan, A.; Mussini, C.; Luzzati, R.; Rosa, F.G.; Puente, F.D.; Mastroianni, C.M.; Cascio, A.; et al. Clinical experience with ceftazidime-avibactam for the treatment of infections due to multidrug-resistant Gram-negative bacteria other than carbapenem-resistant Enterobacterales. Antibiotics 2020, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Xipell, M.; Bodro, M.; Marco, F.; Losno, R.A.; Cardozo, C.; Soriano, A. Clinical experience with ceftazidime/avibactam in patients with severe infections, including meningitis and lung abscesses, caused by extensively drug-resistant Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2017, 49, 266–268. [Google Scholar] [CrossRef]
- Temkin, E.; Torre-Cisneros, J.; Beovic, B.; Benito, N.; Giannella, M.; Gilarranz, R.; Jeremiah, C.; Loeches, B.; Machuca, I.; Jimenez-Martin, M.J.; et al. Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob. Agents Chemother. 2017, 61, e01964-16. [Google Scholar] [CrossRef] [Green Version]
- Nwankwo, L.; Butt, Z.; Schelenz, S. Experience of Ceftazidime/avibactam in a UK tertiary cardiopulmonary specialist center. Expert Rev. Anti-Infect. Ther. 2021, 19, 101–108. [Google Scholar] [CrossRef]
- Chen, W.; Sun, L.; Guo, L.; Cao, B.; Liu, Y.; Zhao, L.; Lu, B.; Li, B.; Chen, J.; Wang, C. Clinical outcomes of ceftazidime-avibactam in lung transplant recipients with infections caused by extensively drug-resistant gram-negative bacilli. Ann. Transl. Med. 2020, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Morata, L.; Cobos-Trigueros, N.; Martinez, J.A.; Soriano, A.; Almela, M.; Marco, F.; Sterzik, H.; Nunez, R.; Hernandez, C.; Mensa, J. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob. Agents Chemother. 2012, 56, 4833–4837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Nadal, G.; Puerta-Alcalde, P.; Gudiol, C.; Cardozo, C.; Albasanz-Puig, A.; Marco, F.; Laporte-Amargos, J.; Moreno-Garcia, E.; Domingo-Domenech, E.; Chumbita, M.; et al. Inappropriate empirical antibiotic treatment in high-risk neutropenic patients with bacteremia in the era of multidrug resistance. Clin. Infect. Dis. 2020, 70, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daikos, G.L.; da Cunha, C.A.; Rossolini, G.M.; Stone, G.G.; Baillon-Plot, N.; Tawadrous, M.; Irani, P. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics 2021, 10, 1126. https://doi.org/10.3390/antibiotics10091126
Daikos GL, da Cunha CA, Rossolini GM, Stone GG, Baillon-Plot N, Tawadrous M, Irani P. Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics. 2021; 10(9):1126. https://doi.org/10.3390/antibiotics10091126
Chicago/Turabian StyleDaikos, George L., Clóvis Arns da Cunha, Gian Maria Rossolini, Gregory G. Stone, Nathalie Baillon-Plot, Margaret Tawadrous, and Paurus Irani. 2021. "Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa" Antibiotics 10, no. 9: 1126. https://doi.org/10.3390/antibiotics10091126
APA StyleDaikos, G. L., da Cunha, C. A., Rossolini, G. M., Stone, G. G., Baillon-Plot, N., Tawadrous, M., & Irani, P. (2021). Review of Ceftazidime-Avibactam for the Treatment of Infections Caused by Pseudomonas aeruginosa. Antibiotics, 10(9), 1126. https://doi.org/10.3390/antibiotics10091126