Predictors of Voriconazole Trough Concentrations in Patients with Child–Pugh Class C Cirrhosis: A Prospective Study
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. CYP2C19 Genotyping
2.3. Administration Dosage of Voriconazole
2.4. Voriconazole Trough Concentrations
2.5. Factors Affecting Voriconazole Trough Concentration
+ 1.602*gender* D-0.036* PTA + 1.760
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Sample Collection, Storage and Bio-Analysis
4.3. Genotype of CYP2C19
4.4. Data Collection
4.5. Statistical Analysis
5. Conclusions
- Sex, CYP2C19 genotyping, daily dose, PTA, INR, platelet, and MELD score correlated with the measured trough concentrations.
- Daily dose, PTA, sex and genotype of CYP2C19 entered into a stepwise multiple linear regression about concentrations, and daily dose contributed the most. CYP2C19*2/*2 contributed high concentrations, meaning that CYP2C19 testing for precision medicine of Child–Pugh class C cirrhosis patients.
- Great importance was attached to therapeutic drug monitoring constantly during voriconazole therapy. In conclusion, it needs more cautious administration clinically due to no recommendation for Child–Pugh class C patients in the medication label. The adjustment of the administration regimen should be mainly based on the results of repeated therapeutic drug monitoring.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Wan, S.Z.; Nie, Y.; Zhang, Y.; Liu, C.; Zhu, X. Assessing the Prognostic Performance of the Child-Pugh, Model for End-Stage Liver Disease, and Albumin-Bilirubin Scores in Patients with Decompensated Cirrhosis: A Large Asian Cohort from Gastroenterology Department. Dis. Markers 2020, 2020, 5193028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Ampuero, J.; Simón, M.; Montoliú, C.; Jover, R.; Serra, M.; Córdoba, J.; Romero-Gómez, M. Minimal hepatic encephalopathy and critical flicker frequency are associated with survival of patients with cirrhosis. Gastroenterology 2015, 149, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Theocharidou, E.; Agarwal, B.; Jeffrey, G.; Jalan, R.; Harrison, D.; Burroughs, A.K.; Kibbler, C.C. Early invasive fungal infections and colonization in patients with cirrhosis admitted to the intensive care unit. Clin. Microbiol. Infect. 2016, 22, 189.e181–189.e187. [Google Scholar] [CrossRef] [Green Version]
- Levesque, E.; Ait-Ammar, N.; Dudau, D.; Clavieras, N.; Feray, C.; Foulet, F.; Botterel, F. Invasive pulmonary aspergillosis in cirrhotic patients: Analysis of a 10-year clinical experience. Ann. Intensive Care 2019, 9, 31. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Liu, E.J.; Kheradman, R.; Fagan, A.; Heuman, D.M.; White, M.; Gavis, E.A.; Hylemon, P.; Sikaroodi, M.; Gillevet, P.M. Fungal dysbiosis in cirrhosis. Gut 2018, 67, 1146–1154. [Google Scholar] [CrossRef]
- Lahmer, T.; Brandl, A.; Rasch, S.; Baires, G.B.; Schmid, R.M.; Huber, W.; Mayr, U. Prevalence and outcome of invasive pulmonary aspergillosis in critically ill patients with liver cirrhosis: An observational study. Sci. Rep. 2019, 9, 11919. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Reddy, R.K.; Tandon, P.; Wong, F.; Kamath, P.S.; Biggins, S.W.; Garcia-Tsao, G.; Fallon, M.; Maliakkal, B.; Lai, J.; et al. Prediction of Fungal Infection Development and Their Impact on Survival Using the NACSELD Cohort. Am. J. Gastroenterol. 2018, 113, 556–563. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Carnelutti, A.; Righi, E.; Merelli, M.; Ansaldi, F.; Trucchi, C.; Alicino, C.; Sartor, A.; Toniutto, P.; et al. Clinical characteristics and predictors of mortality in cirrhotic patients with candidemia and intra-abdominal candidiasis: A multicenter study. Intensive Care Med. 2017, 43, 509–518. [Google Scholar] [CrossRef]
- Arvaniti, V.; D’Amico, G.; Fede, G.; Manousou, P.; Tsochatzis, E.; Pleguezuelo, M.; Burroughs, A.K. Infections in Patients with Cirrhosis Increase Mortality Four-Fold and Should Be Used in Determining Prognosis. Gastroenterology 2010, 139, 1246–1256. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Moriyama, B.; Obeng, A.O.; Barbarino, J.; Penzak, S.R.; Henning, S.A.; Scott, S.A.; Agúndez, J.; Wingard, J.R.; McLeod, H.L.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and Voriconazole Therapy. Clin. Pharmacol. Ther. 2017, 102, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.B.; Li, Z.W.; Yan, M.; Zhang, B.K.; Liang, W.; Wang, F.; Xu, P.; Xiang, D.X.; Xie, X.B.; Yu, S.J.; et al. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br. J. Clin. Pharmacol. 2018, 84, 1587–1597. [Google Scholar] [CrossRef] [Green Version]
- Theuretzbacher, U.; Ihle, F.; Derendorf, H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin. Pharmacokinet. 2006, 45, 649–663. [Google Scholar] [CrossRef]
- Levêque, D.; Nivoix, Y.; Jehl, F.; Herbrecht, R. Clinical pharmacokinetics of voriconazole. Int. J. Antimicrob. Agents 2006, 27, 274–284. [Google Scholar] [CrossRef] [PubMed]
- van Wanrooy, M.J.; Span, L.F.; Rodgers, M.G.; van den Heuvel, E.R.; Uges, D.R.; van der Werf, T.S.; Kosterink, J.G.; Alffenaar, J.W. Inflammation is associated with voriconazole trough concentrations. Antimicrob. Agents Chemother. 2014, 58, 7098–7101. [Google Scholar] [CrossRef] [Green Version]
- Kadam, R.S.; Van Den Anker, J.N. Pediatric Clinical Pharmacology of Voriconazole: Role of Pharmacokinetic/Pharmacodynamic Modeling in Pharmacotherapy. Clin. Pharmacokinet. 2016, 55, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Yan, M.; Song, B.L.; Zhao, Y.C.; Xiao, Y.W.; Wang, F.; Liang, W.; Zhang, B.K.; Chen, X.J.; Zou, J.J.; et al. Population pharmacokinetics, safety and dosing optimization of voriconazole in patients with liver dysfunction: A prospective observational study. Br. J. Clin. Pharmacol. 2021, 87, 1890–1902. [Google Scholar] [CrossRef]
- Shi, C.; Xiao, Y.; Mao, Y.; Wu, J.; Lin, N. Voriconazole: A Review of Population Pharmacokinetic Analyses. Clin. Pharmacokinet. 2019, 58, 687–703. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Wang, B.; Wang, S.; Chen, F.; Meng, D.; Jiang, H.; Zhou, Y.; Geng, P.; Zhou, Q.; Liu, B. Effects of Voriconazole on the Pharmacokinetics of Vonoprazan in Rats. Drug Des. Dev. Ther. 2020, 14, 2199–2206. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhu, H.; Sun, J.; Cheng, X.; Xie, J.; Dong, H.; Chen, L.; Wang, X.; Xing, J.; Dong, Y. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int. J. Antimicrob. Agents 2014, 44, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.E.; Modi, S.; Howard, S.J.; Moore, C.B.; Keevil, B.G.; Denning, D.W. Adverse reactions to voriconazole. Clin. Infect. Dis. 2004, 39, 1241–1244. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.B.; Huang, F.; Tong, L.; Xia, Y.Z.; Wu, J.J.; Li, J.; Hu, X.G.; Liang, T.; Liu, X.M.; Zhong, G.P.; et al. Pharmacokinetics of intravenous voriconazole in patients with liver dysfunction: A prospective study in the intensive care unit. Int. J. Infect. Dis. 2020, 93, 345–352. [Google Scholar] [CrossRef]
- Bajaj, J.S.; O’Leary, J.G.; Tandon, P.; Wong, F.; Garcia-Tsao, G.; Kamath, P.S.; Biggins, S.W.; Lai, J.C.; Vargas, H.E.; Maliakkal, B.; et al. Nosocomial Infections Are Frequent and Negatively Impact Outcomes in Hospitalized Patients with Cirrhosis. Am. J. Gastroenterol. 2019, 114, 1091–1100. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, X.; Ke, X.; Du, G.; Yang, K.; Zhai, S. Individualized Medication of Voriconazole: A Practice Guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Ther. Drug Monit. 2018, 40, 663–674. [Google Scholar] [CrossRef]
- Wen, A.P.; Chen, K.; Jin, H.Y.; Zhai, S.D.; Zhang, C. Efficacy and safety comparison between intravenous and oral voriconazole: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2016, 9, 16006. [Google Scholar]
- Trifilio, S.M.; Yarnold, P.R.; Scheetz, M.H.; Pi, J.; Pennick, G.; Mehta, J. Serial plasma voriconazole concentrations after allogeneic hematopoietic stem cell transplantation. Antimicrob. Agents Chemother. 2009, 53, 1793–1796. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Tong, X.; Ju, Y.; Du, X.; Li, Y. Interpersonal Factors in the Pharmacokinetics and Pharmacodynamics of Voriconazole: Are CYP2C19 Genotypes Enough for Us to Make a Clinical Decision? Curr. Drug Metab. 2018, 19, 1152–1158. [Google Scholar] [CrossRef]
- Li-Wan-Po, A.; Girard, T.; Farndon, P.; Cooley, C.; Lithgow, J. Pharmacogenetics of CYP2C19: Functional and clinical implications of a new variant CYP2C19*17. Br. J. Clin. Pharmacol. 2010, 69, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.C.; Risinger, C.; Dahl, M.L.; Aklillu, E.; Christensen, M.; Bertilsson, L.; Ingelman-Sundberg, M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 2006, 79, 103–113. [Google Scholar] [CrossRef]
- Sugimoto, K.; Uno, T.; Yamazaki, H.; Tateishi, T. Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br. J. Clin. Pharmacol. 2008, 65, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Dolton, M.J.; McLachlan, A.J. Clinical importance of the CYP2C19*17 variant allele for voriconazole. Br. J. Clin. Pharmacol. 2011, 71, 137–138. [Google Scholar] [CrossRef] [Green Version]
- Lamoureux, F.; Duflot, T.; Woillard, J.B.; Metsu, D.; Pereira, T.; Compagnon, P.; Morisse-Pradier, H.; El Kholy, M.; Thiberville, L.; Stojanova, J.; et al. Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections. Int. J. Antimicrob. Agents 2016, 47, 124–131. [Google Scholar] [CrossRef]
- Tang, D.; Song, B.L.; Yan, M.; Zou, J.J.; Zhang, M.; Zhou, H.Y.; Wang, F.; Xiao, Y.W.; Xu, P.; Zhang, B.K.; et al. Identifying factors affecting the pharmacokinetics of voriconazole in patients with liver dysfunction: A population pharmacokinetic approach. Basic Clin. Pharmacol. Toxicol. 2019, 125, 34–43. [Google Scholar] [CrossRef]
- Encalada Ventura, M.A.; van Wanrooy, M.J.; Span, L.F.; Rodgers, M.G.; van den Heuvel, E.R.; Uges, D.R.; van der Werf, T.S.; Kosterink, J.G.; Alffenaar, J.W. Longitudinal Analysis of the Effect of Inflammation on Voriconazole Trough Concentrations. Antimicrob. Agents Chemother. 2016, 60, 2727–2731. [Google Scholar] [CrossRef] [Green Version]
- Dote, S.; Sawai, M.; Nozaki, A.; Naruhashi, K.; Kobayashi, Y.; Nakanishi, H. A retrospective analysis of patient-specific factors on voriconazole clearance. J. Pharm. Health Care Sci. 2016, 2, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.C.; Lin, X.B.; Zhang, B.K.; Xiao, Y.W.; Xu, P.; Wang, F.; Xiang, D.X.; Xie, X.B.; Peng, F.H.; Yan, M. Predictors of Adverse Events and Determinants of the Voriconazole Trough Concentration in Kidney Transplantation Recipients. Clin. Transl. Sci. 2021, 14, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Mangal, N.; Hamadeh, I.S.; Arwood, M.J.; Cavallari, L.H.; Samant, T.S.; Klinker, K.P.; Bulitta, J.; Schmidt, S. Optimization of Voriconazole Therapy for the Treatment of Invasive Fungal Infections in Adults. Clin. Pharmacol. Ther. 2018, 104, 957–965. [Google Scholar] [CrossRef]
- Messina, A.; Luce, E.; Hussein, M.; Dubart-Kupperschmitt, A. Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells 2020, 9, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Dorado, S.; Maroñas, O.; Latorre-Pellicer, A.; Rodríguez Jato, M.T.; López-Vizcaíno, A.; Gómez Márquez, A.; Bardán García, B.; Belles Medall, D.; Barbeito Castiñeiras, G.; Pérez Del Molino Bernal, M.L.; et al. Impact of CYP2C19 Genotype and Drug Interactions on Voriconazole Plasma Concentrations: A Spain Pharmacogenetic-Pharmacokinetic Prospective Multicenter Study. Pharmacotherapy 2020, 40, 17–25. [Google Scholar] [CrossRef]
- Verbeeck, R.K. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur. J. Clin. Pharmacol. 2008, 64, 1147–1161. [Google Scholar] [CrossRef]
- George, J.; Byth, K.; Farrell, G.C. Influence of clinicopathological variables on CYP protein expression in human liver. J. Gastroenterol. Hepatol. 1996, 11, 33–39. [Google Scholar] [CrossRef]
- Wang, T.; Yan, M.; Tang, D.; Xue, L.; Zhang, T.; Dong, Y.; Zhu, L.; Wang, X.; Dong, Y. A retrospective, multicenter study of voriconazole trough concentrations and safety in patients with Child-Pugh class C cirrhosis. J. Clin. Pharm. Ther. 2018, 43, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Slavin, M.A.; Thursky, K.A. Isavuconazole: A role for the newest broad-spectrum triazole. Lancet 2016, 387, 726–728. [Google Scholar] [CrossRef]
- Desai, A.V.; Han, D.; Kowalski, D.L.; Lademacher, C.; Pearlman, H.; Yamazaki, T. No Dose Adjustment for Isavuconazole Based on Age or Sex. Antimicrob. Agents Chemother. 2019, 63, e02629-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsiè, E.; Piconi, S.; Iavarone, M.; Cozzi, V.; Lampertico, P.; Cattaneo, D. High isavuconazole plasma levels in a patient with possible invasive pulmonary aspergillosis and cirrhosis. Eur. J. Clin. Pharmacol. 2018, 74, 1089–1090. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Rodriguez-Goncer, I.; Lorden, C.; Otu, A.; Bazaz, R. Late-onset isavuconazole-induced liver injury. Med. Mycol. Case Rep. 2018, 22, 11–13. [Google Scholar] [CrossRef] [PubMed]
Variable | Value |
---|---|
Mean ± S (range) age (years) | 49.35 ± 11.65 (32–89) |
Sex (no. [%] of males) | 39 (90.7) |
Mean ± S (range) weight (kg) | 61.27 ± 12.87 (36–99) |
No. (%) Genotype of CYP2C19 | |
*1/*1 | 20 (46.5) |
*1/*17 | 1 (2.3) |
*1/*2 | 13 (30.2) |
*1/*3 | 3 (7.0) |
*2/*2 | 6 (14.0) |
No. (%) route of administration before C0 | |
intravenously | 15 (34.9) |
orally | 23 (53.5) |
in sequential therapy | 5 (11.6) |
No. (%) transform from intravenously to orally throughout the treatment | 10 (23.3) |
Median sampling time of C0 (IQR, range) | 5 (3–5, 3–11days) |
Concentrate (mg/mL) | |
Median (IQR, range) voriconazole trough level (mg/L) | 3.745 (2.485–5.6425, 0.32–14.08) n = 144 |
C0 | 2.99 (1.61–5.00, 0.32–14.08) n = 43 |
C1 | 4.33 (3.0775–6.1000, 1.86–11.83) n = 64 |
Css | 3.90 (2.51–4.84, 0.60–10.70) n = 37 |
Proportion (%) of targeted Cmins (mg/L) 1 | |
C0 | 31/43 (72.1) |
Css 2 | 31/37 (83.8) |
Css1 3 | 8/12 (66.6) |
Css2 4 | 5/8 (62.5) |
No. (%) of adjustment times | |
0 | 16 (37.2) |
1 | 11 (25.6) |
2 | 7 (16.3) |
3–7 | 9 (21.9) |
No. (%) of concomitant medication 5 | 37 (86.0) |
CYP2C19 inhibitors | 31 (72.1) |
Antimicrobial | 25 (58.1) |
CYP3A4 inhibitors | 1 (2.3) |
Regimen | Value |
---|---|
No. (%) of Loading dosage (mg) 1 | 22 (51.2) |
400/12 h | 5 (22.7) |
200/12 h | 4 (18.2) |
200/24 h | 4 (18.2) |
No. (%) of Maintain dosage (mg) | |
200/12 h 200/24 h 100/24 h 100/12 h | 8 (18.6) 8 (18.6) 10 (23.3) 9 (20.9) |
No. (%) of final steady-state administration (mg) | |
200/24 h 100/24 h | 8 (18.6) 15 (34.9) |
50/12 h | 8 (18.6) |
Variable | Coefficient | p-Value |
---|---|---|
Age | −0.064 | 0.485 |
Sex | 0.221 | 0.015 * |
Weight | 0.001 | 0.993 |
Daily dose | 0.329 | <0.001 * |
CYP2C19 genotyping 1 | ||
*1/*2 | −0.068 | 0.417 |
*1/*3 | 0.196 | 0.018 * |
*2/*2 | 0.216 | 0.009 * |
Platelet | −0.302 | 0.001 * |
INR | 0.184 | 0.047 * |
PTA | −0.278 | 0.002 * |
MELD score | 0.184 | 0.048 * |
Hemoglobin | −0.063 | 0.518 |
Alanine aminotransferase | −0.037 | 0.696 |
Aspartate aminotransferase | 0.051 | 0.588 |
Total bilirubin | 0.104 | 0.265 |
Direct bilirubin | 0.092 | 0.324 |
Bile acid | 0.016 | 0.862 |
Albumin | 0.153 | 0.101 |
Blood urea nitrogen | 0.058 | 0.532 |
Creatinine | 0.044 | 0.638 |
Creatinine Clearance | 0.010 | 0.915 |
Prothrombin time | 0.153 | 0.100 |
Artificial extracorporeal liver | 0.044 | 0.635 |
Concomitant agents 2 | ||
CY2C19 inhibitors | 0.048 | 0.609 |
Antimicrobial agents | −0.010 | 0.919 |
Variable | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | VIF | |
---|---|---|---|---|---|---|
B | Std. Error | |||||
Intercept | 1.760 | 0.849 | - | 2.072 | 0.041 | - |
Daily dose | 0.012 | 0.002 | 0.439 | 5.236 | 0.000 | 1.069 |
PTA | −0.036 | 0.012 | −0.238 | −3.139 | 0.002 | 1.038 |
Sex | 1.602 | 0.598 | −0.217 | 2.645 | 0.009 | 1.064 |
CYP2C19 genotyping 1 | ||||||
*1/*2 | 0.266 | 0.428 | 0.053 | 0.622 | 0.535 | 1.192 |
*1/*3 | 1.252 | 0.733 | 0.140 | 1.708 | 0.090 | 1.121 |
*2/*2 | 1.492 | 0.596 | 0.209 | 2.503 | 0.014 | 1.166 |
F = 9.686 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Hou, J.; Xiao, Y.; Wang, F.; Zhang, B.; Zhang, M.; Jiang, Y.; Li, J.; Gong, G.; Xiang, D.; et al. Predictors of Voriconazole Trough Concentrations in Patients with Child–Pugh Class C Cirrhosis: A Prospective Study. Antibiotics 2021, 10, 1130. https://doi.org/10.3390/antibiotics10091130
Zhao Y, Hou J, Xiao Y, Wang F, Zhang B, Zhang M, Jiang Y, Li J, Gong G, Xiang D, et al. Predictors of Voriconazole Trough Concentrations in Patients with Child–Pugh Class C Cirrhosis: A Prospective Study. Antibiotics. 2021; 10(9):1130. https://doi.org/10.3390/antibiotics10091130
Chicago/Turabian StyleZhao, Yichang, Jingjing Hou, Yiwen Xiao, Feng Wang, Bikui Zhang, Min Zhang, Yongfang Jiang, Jiakai Li, Guozhong Gong, Daxiong Xiang, and et al. 2021. "Predictors of Voriconazole Trough Concentrations in Patients with Child–Pugh Class C Cirrhosis: A Prospective Study" Antibiotics 10, no. 9: 1130. https://doi.org/10.3390/antibiotics10091130
APA StyleZhao, Y., Hou, J., Xiao, Y., Wang, F., Zhang, B., Zhang, M., Jiang, Y., Li, J., Gong, G., Xiang, D., & Yan, M. (2021). Predictors of Voriconazole Trough Concentrations in Patients with Child–Pugh Class C Cirrhosis: A Prospective Study. Antibiotics, 10(9), 1130. https://doi.org/10.3390/antibiotics10091130