Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review
Abstract
:1. Introduction
2. The Bioactive Compounds of Plants
3. Opportunistic Fungal Infections Caused by Candida spp.
4. Plant Extracts against Oral Biofilm Formed by Candida spp.
Plant Name | Plant Extract | Compound | Microorganism | Results | References | |||
---|---|---|---|---|---|---|---|---|
Antimicrobial Activity | Antibiofilm Activity | |||||||
Allium sativum L. | Essential oil (bulbs) | Allicin, alliin, ajoene [75] | C. albicans ATCC 14053 | MIC | 8.0 μg∙mL−1 | >99.9% reduction | 8.00 μg∙mL−1 | [74] |
IZD | 19.0 mm (50.0 μg∙mL−1) | |||||||
Aloysia gratissima (Aff & Hook) Tronc. | Essential oil (leaves) | (E)-pinocamphone, β-pinene, guaiol | C. albicans CBS 562 | MIC | 0.015 mg∙mL−1 | 12.3% inhibition | 1.00 mg∙mL−1 | [64] |
MFC | 0.062 mg∙mL−1 | |||||||
Artemisia judaica L. | Essential oil (aerial plant parts) | Piperitone, camphor, ethyl cinnamate, chrysanthenone | C. albicans ATCC 10231 | MIC | 1.25 μg∙mL−1 | 50.0% reduction | 2.5 μg∙mL−1 | [100] |
Brucea javanica (L.) Merr. | Aqeuous extract (seeds) | Quassinoids, alkaloids, | C. albicans ATCC 14053 | - | 94.5% CSH reduction 79.7% adherence reduction | 6.00 mg∙mL−1 | [101] | |
C. dubliniensis ATCC MYA-2975 | 90.4% CSH reduction 27.9% adherence reduction | |||||||
C. glabrata ATCC 90030 | 84.8% CSH reduction 76.8% adherence reduction | |||||||
C. krusei ATCC 14243 | 97.0% CSH reduction 67.6% adherence reduction | |||||||
C. lusitaniae ATCC 64125 | 91.1% CSH reduction 89.0% adherence reduction | |||||||
C. parapsilosis ATCC 22019 | 98.8% CSH reduction 49.0% adherence reduction | |||||||
C. tropicalis ATCC 13803 | 88.4% CSH reduction 89.9% adherence reduction | |||||||
Cassia spectabilis DC. | Methanol extract (leaves) | (+)-spectaline; (−)-iso-6-cassine [102] | C. albicans 1 (CI) | MIC IZD | 6.25 mg∙mL−1 20 mm (100 mg∙mL−1) | 97% inhibition | 6.25 mg∙mL−1 | [103] |
C. albicans 2 (CI) | MIC IZD | 6.25 mg∙mL−1 21 mm (100 mg∙mL−1) | ||||||
C. albicans 3 (CI) | MIC IZD | 6.25 mg∙mL−1 23 mm (100 mg∙mL−1) | ||||||
Chenopodium ambrosioides L. | Aqueous extract (leaves) | Kaempferol, quercetin | C. albicans ATCC 90028 | MIC | 0.250 mg∙mL−1 | >99.0% reduction | 1.25 mg∙mL−1 | [104] |
MFC | 0.250 mg∙mL−1 | |||||||
Cinnamomum cassia L. J.Presl | Essential oil (leaves, bark, stalk) | Cinnamaldehyde, benzyl benzoate, α-pinene | C. albicans ATCC 90028 | MIC | 65.5 µg∙mL−1 | >99.9% reduction | 1.00 mg∙mL−1 | [80] |
MFC | ||||||||
Cinnamomum verum J.Presl | Essential oil (leaves) | Eugenol, benzyl benzoate, trans-caryophyllene, acetyle eugenol, linalool | C. albicans ATCC MYA-2876 | MIC | 1.0 mg∙mL−1 | 50% reduction | 0.15 mg∙mL−1 | [105] |
50% inhibition | 1.0 mg∙mL−1 | |||||||
C. tropicalis ATCC 750 | 50% reduction | 0.35 mg∙mL−1 | ||||||
50% inhibition | >2.0 mg∙mL−1 | |||||||
C. dubliniensis ATCC MYA-646 | 50% reduction | 0.2 mg∙mL−1 | ||||||
50% inhibition | 0.2 mg∙mL−1 | |||||||
Cinnamomum zeylanicum Blume | Essential oil (leaves) | Cinnamaldehyde, cinnamyl acetate, cinnamyl benzoate [79] | C. albicans ATCC 10231 | MIC | 0.1 µg∙mL−1 | 99.75% reduction | 1.6 µg∙mL−1 | [106] |
MFC | 0.4 µg∙mL−1 | |||||||
IZD | 42.5 mm (50 µg∙mL−1) | |||||||
Coriandrum sativum L. | Essential oil (leaves) | Decanal, trans-2-decenal, 2-decen-1-ol, cyclodecane, cis-2-dodecenal | C. albicans CBS 562 | MIC | 15.6 µg∙mL−1 | 53.43% inhibition | 62.50 µg∙mL−1 | [107] |
MFC | 31.2 µg∙mL−1 | |||||||
C. tropicalis CBS 94 | MIC | 31.2 µg∙mL−1 | 89.76% inhibition | 125 µg∙mL−1 | ||||
MFC | 62.5 µg∙mL−1 | |||||||
C. krusei CBS 573 | MIC | 15.6 µg∙mL−1 | 42.13% inhibition | 15.62 µg∙mL−1 | ||||
MFC | 31.2 µg∙mL−1 | |||||||
C. dubliniensis CBS 7987 | MIC | 31.2 µg∙mL−1 | 61.51% inhibition | 62.50 µg∙mL−1 | ||||
MFC | 62.5 µg∙mL−1 | |||||||
C. rugosa CBS 12 | MIC | 15.6 µg∙mL−1 | 68.03% inhibition | 62.50 µg∙mL−1 | ||||
MFC | 31.2 µg∙mL−1 | |||||||
Croton urucurana Baill. | Methanol extract (stems) | (epi)-catechin dimer I [108] | C. albicans ATCC 10231 | - | 46.0% inhibition | 0.500 mg∙mL−1 | [109] | |
Cymbopogon citratus (DC.) Stapf | Essential oil (leaves) | Citral, neral, β-myrcene, geraniol [110] | C. albicans ATCC 10231 | MIC | 0.1 µL∙mL−1 | 99.79% reduction | 6.4 µL∙mL−1 | [106] |
MFC | 0.4 µL∙mL−1 | |||||||
IZD | 18.2 mm (5% v.v−1) | |||||||
Ethanol extract (leaves) | Citral, geraniol, neral, camphene, limonene [111] | C. albicans ATCC 18804 | MIC | 0.625 mg∙mL−1 | >99.9% inhibition | 3.13 mg∙mL−1 | [112] | |
MFC | 2.50 mg∙mL−1 | 94.0% reduction | 6.25 mg∙mL−1 | |||||
Cymbopogon nardus L. Rendle | Essential oil (leaves) | Citronellal, citronellol, geraniol | C. albicans ATCC 76645 | MIC | 32.0 µg∙mL−1 | >99.0% inhibition | 32.0 µg∙mL−1 | [113] |
MFC | ||||||||
Cymbopogon winterianus Jowitt | Essential oil (leaves) | Citronellal, citronellol, geraniol | C. albicans ATCC 90028 | MIC | 250 µg∙mL−1 | >99.0% reduction | 1.00 mg∙mL−1 | [80] |
MFC | ||||||||
Cyperus articulatus L. | Essential oil (bulbs) | α-pinene, mustakone, α-bulnesene | C. albicans CBS 562 | MIC | 0.125 mg∙mL−1 | 28.1% inhibition | 1.00 mg∙mL−1 | [112] |
MFC | 0.500 mg∙mL−1 | |||||||
Eucalyptus globulus Labill. | Essential oil (leaves) | Hyperoside, quercitrin, myricetin [114] | C. albicans ATCC 14053 | MFC | 0.219 mg∙mL−1 | 86% reduction | 22.5 mg∙mL−1 | [115] |
C. tropicalis ATCC 66029 | 0.885 mg∙mL−1 | 85% reduction | ||||||
C. glabrata ATCC 66032 | 0.219 mg∙mL−1 | 85.2% reduction | ||||||
Houttuynia cordata Thunb | Ethanol extract (leaves) | Aldehydes | C. albicans CAD1 | MFC | >2.17 mg∙mL−1 | 70.0% reduction | 1.00% (v/v) | [116] |
Lippia sidoides Cham. | Essential oil (leaves) | Thymol, p-cymene, α-caryophyllene | C. albicans CBS 562 | MIC | 0.250 mg∙mL−1 | 16.5% inhibition | 1.00 mg∙mL−1 | [117] |
MFC | 0.500 mg∙mL−1 | |||||||
Melaleuca alternifolia (Maiden & Betche) Cheel | Essential oil (leaves) | Terpinen-4-ol, γ-terpinene, p-cymene, α-terpinene,1,8-cineole, α-terpineol, α-pinene | C. albicans ATCC 18804 | MIC | 1.95 mg∙mL−1 | MBEC | 125 mg∙mL−1 | [118] |
Essential oil (leaves) | Terpinen-4-ol, γ-terpinene, α-terpinene, terpinolene, 1,8-cineole | C. albicans ATCC 10231 | MIC | 3.40 mg∙mL−1 | 131% adherence reduction | 0.75% (v/v) | [119] | |
C. albicans SC5314 | MIC | 0.84 mg∙mL−1 | 76.0% adherence reduction | |||||
Mikania glomerata Spreng | Essential oil (leaves) | Germacrene D, α-caryophyllene, bicyclogermacrene | C. albicans CBS 562 | MIC | 0.250 mg∙mL−1 | 22.7% inhibition | 1.00 mg∙mL−1 | [117] |
MFC | 0.250 mg∙mL−1 | |||||||
Piper betle L. | Aqueous extract (leaves) | Hydroxychavicol, cinnamoyl derivatives, luteolin, apigenin [120] | C. albicans ATCC 14053 | - | 38.6% CSH reduction 61.4% adherence reduction | 6.00 mg∙mL−1 | [101] | |
C. dubliniensis ATCC MYA-2975 | 78.3% CSH reduction 21.4% adherence reduction | |||||||
C. glabrata ATCC 90030 | 71.4% CSH reduction 12.4% adherence reduction | |||||||
C. krusei ATCC 14243 | 31.6% CSH reduction 56.4% adherence reduction | |||||||
C. lusitaniae ATCC 64125 | 67.5% CSH reduction 47.6% adherence reduction | |||||||
C. parapsilosis ATCC 22019 | 48.1% CSH reduction 46.5% adherence reduction | |||||||
C. tropicalis ATCC 13803 | 29.7% CSH reduction 86.9% adherence reduction | |||||||
Rosmarinus officinalis L. | Liposoluble extract (leaves) | Carnosic acid, carnosol [121] | C. albicans ATCC 18804 | MIC | 0.78 mg∙mL−1 | 99.9% reduction | 200 mg∙mL−1 | [122] |
MMC | 3.13 mg∙mL−1 | |||||||
Satureja hortensis L. | Essential oil (leaves and flowers) | Thymol, λ-terpinene, carvacrol, p-cymene | C. albicans F81 (CI) | MIC MFC | 300 µg∙mL−1 400 µg∙mL−1 | 91.0% inhibition 91.0% reduction | 4.80 mg∙mL−1 | [123] |
C. albicans F94 (CI) | 200 µg∙mL−1 300 µg∙mL−1 | 90.0% inhibition 80.0% reduction | ||||||
C. albicans F87 (CI) | 300 µg∙mL−1 400 µg∙mL−1 | 86.0% inhibition 76.0% reduction | ||||||
C. albicans F49 (CI) | 400 µg∙mL−1 600 µg∙mL−1 | 92.0% inhibition 92.0% reduction | ||||||
C. albicans F82 (CI) | 400 µg∙mL−1 600 µg∙mL−1 | 89.0% inhibition 89.0% reduction | ||||||
C. albicans F95 (CI) | 400 µg∙mL−1 | 81.0% inhibition 81.0% reduction | ||||||
C. albicans F92 (CI) | 300 µg∙mL−1 600 µg∙mL−1 | 90.0% inhibition 90.0% reduction | ||||||
C. albicans F60 (CI) | 400 µg∙mL−1 600 µg∙mL−1 | 80.0% inhibition 80.0% reduction | ||||||
C. albicans F86 (CI) | 200 µg∙mL−1 300 µg∙mL−1 | 87.0% inhibition 87.0% reduction | ||||||
C. albicans F91 (CI) | 300 µg∙mL−1 400 µg∙mL−1 | 83.0% inhibition 83.0% reduction | ||||||
C. albicans F69 (CI) | 200 µg∙mL−1 300 µg∙mL−1 | 91.0% inhibition 80.0% reduction | ||||||
C. albicans F1 (CI) | 87.0% inhibition 79.0% reduction | |||||||
C. albicans F34 (CI) | 86.0% inhibition 91.0% reduction | |||||||
C. albicans F19 (CI) | 90.0% inhibition 85.0% reduction | |||||||
C. albicans F78 (CI) | 400 µg∙mL−1 600 µg∙mL−1 | 84.0% inhibition 84.0% reduction | ||||||
Schinus terebinthifolia Raddi. | Methanol extract (leaves) | Phenolic compounds, anthraquinones, terpenoids, alkaloids | C. albicans ATCC 10231 | - | 47.0% inhibition | 0.007 mg∙mL−1 | [109] | |
Solidago virgaurea subsp. alpestris Waldst. & Kit. ex Willd. | Aqueous extract (aerial plant parts) | Saponins | C. albicans ATCC 10231 | NA (IZD) | 95.9% inhibition 92.4% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | [98] | |
C. albicans IM001 (CI) | 96.0% inhibition 82.2% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | ||||||
C. albicans IM003 (CI) | 99.5% inhibition 76.3% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | ||||||
C. albicans IM007 (CI) | 95.1% inhibition 91.9% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | ||||||
Solidago virgaurea L. subsp. virgaurea. | Aqueous extract (aerial plant parts) | Saponins | C. albicans ATCC 10231 | NA (IZD) | 98.4% inhibition 77.9% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | ||
C. albicans IM001 (CI) | 99.2% inhibition 91.1% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | ||||||
C. albicans IM003 (CI) | 97.3% inhibition 79.2% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | ||||||
C. albicans IM007 (CI) | 96.5% inhibition 90.9% reduction | 0.250 mg∙mL−1 0.750 mg∙mL−1 | ||||||
Terminalia catappa L. | Ethanol extract (leaves) | Caffeic acid, quercitrin, kaempferol, gallic acid, chlorogenic acid, isoquercitrin [124] | C. albicans ATCC 90028 | MIC MFC | 6.25 mg∙mL−1 12.5 mg∙mL−1 | >98.0% reduction | 62.5 mg∙mL−1 | [125] |
n-butanol fraction from ethanol extract (leaves) | C. albicans ATCC 90028 | MIC MFC | 250 μg∙mL−1 | >99.5% reduction | 2.50 mg∙mL−1 | [126] | ||
C. glabrata ATCC 2001 | MIC MFC | 250 μg∙mL−1 | >99.0% reduction | 2.50 mg∙mL−1 | ||||
Trachyspermum ammi (L.) Sprague | Aromatic water (aerial plant parts) | Thymol, carvacrol, carvotanacetone | C. albicans CBS1905 | - | - | 95.2% inhibition | 0.5% (v/v) | [127] |
Zataria multiflora Boiss. | Aqueous extract (whole plant) | Thymol, hydroxyl benzoic acid, and cymene [128] | C. albicans PTCC-5027 | MIC | 1.50 mg∙mL−1 | 87% reduction | 25 mg∙mL−1 | [129] |
Ethanolic extract (whole plant) | MIC | 0.84 mg∙mL−1 | 97% reduction |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Salam, A.I. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant Natural Products Targeting Bacterial Virulence Factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [Green Version]
- Hall-Stoodley, L.; Stoodley, P. Evolving concepts in biofilm infections. Cell. Microbiol. 2009, 11, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.G.; O’Toole, G.A. Innate and Induced Resistance Mechanisms of Bacterial Biofilms. In Bacterial Biofilms; Romeo, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 322, pp. 85–105. [Google Scholar]
- Brown, J.; Johnston, W.; Delaney, C.; Short, B.; Butcher, M.; Young, T.; Butcher, J.; Riggio, M.; Culshaw, S.; Ramage, G. Polymicrobial oral biofilm models: Simplifying the complex. J. Med. Microbiol. 2019, 68, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Abusrewil, S.; Alshanta, O.A.; Albashaireh, K.; Alqahtani, S.; Nile, C.J.; Scott, J.A.; McLean, W. Detection, treatment and prevention of endodontic biofilm infections: What’s new in 2020? Crit. Rev. Microbiol. 2020, 46, 194–212. [Google Scholar] [CrossRef] [PubMed]
- Baumgardner, D.J. Oral Fungal Microbiota: To Thrush and Beyond. J. Patient. Cent. Res. Rev. 2019, 6, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Awawdeh, L.; Jamleh, A.; Al Beitawi, M. The Antifungal Effect of Propolis Endodontic Irrigant with Three Other Irrigation Solutions in Presence and Absence of Smear Layer: An In Vitro Study. Iran. Edond. J. 2018, 13, 234–239. [Google Scholar] [CrossRef]
- Phumat, P.; Khongkhunthian, S.; Wanachantararak, P.; Okonogi, S. Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans. Arch. Oral Biol. 2020, 113, 104690. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, A.K.; Barik, B.P. Review: Endodontic Bacterial Characterization. J. Int. Clin. Dent. Res. Organ. 2020, 12, 110–114. [Google Scholar] [CrossRef]
- Zhang, C.; Kuang, X.; Zhou, Y.; Peng, X.; Guo, Q.; Yang, T.; Zhou, X.; Luo, Y.; Xu, X. A Novel Small Molecule, ZY354, Inhibits Dental Caries-Associated Oral Biofilms. Antimicrob. Agents Chemother. 2019, 63, e02414–e02418. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Fan, Y.; Wang, X.; Jiang, X.; Zou, J.; Huang, R. Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans, and on biofilm formation, acid production, and virulence gene expression. Eur. J. Oral Sci. 2020, 128, 18–26. [Google Scholar] [CrossRef]
- Chen, X.; Daliri, E.B.; Kim, N.; Kim, J.R.; Yoo, D.; Oh, D.H. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020, 9, 569. [Google Scholar] [CrossRef]
- Galletti, J.; Tobaldini-Valerio, F.K.; Silva, S.; Kioshima, É.S.; Trierveiler-Pereira, L.; Bruschi, M.; Negri, M.; Estivalet Svidzinski, T.I. Antibiofilm activity of propolis extract on Fusarium species from onychomycosis. Future Microbiol. 2017, 12, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. Mycol. Med. 2017, 27, 1–19. [Google Scholar] [CrossRef]
- McClatchey, W.C.; Mahady, G.B.; Bennett, B.C.; Shiels, L.; Savo, V. Ethnobotany as a pharmacological research tool and recent developments in CNS-active natural products from ethnobotanical sources. Pharmacol. Ther. 2009, 123, 239–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant. Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Kessler, A.; Kalske, A. Plant Secondary Metabolite Diversity and Species Interactions. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 115–138. [Google Scholar] [CrossRef]
- Hussein, R.A.; El-anssary, A.A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In Herbal Medicine; Builders, P.F., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A., Jr.; Ikryannikova, L.N. Plant Secondary Metabolites in the Battle of Drugs and Drug-Resistant Bacteria: New Heroes or Worse Clones of Antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Pichersky, E.; Jonathan, G. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Franklin, L.U.; Cunnington, G.D.; Young, D. Terpene Based Pesticide Treatments for Killing Terrestrial Arthropods Including, Amongst Others, Lice, Lice Eggs, Mites and Ants. U.S. Patent US19990379268, 23 August 1999. [Google Scholar]
- Rubió, L.; Motilva, M.J.; Romero, M.P. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles. Crit. Rev. Food Sci. Nutr. 2013, 53, 943–953. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Rabadi, G.J.; Tranchant, C.C.; Almajwal, A.; Kubow, S.; Alli, I. Occurrence, types, properties and interactions of phenolic compounds with other food constituents in oil-bearing plants. Crit. Rev. Food Sci. Nutr. 2018, 58, 3209–3218. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C.F.R. The role of phenolic compounds in the fight against cancer—A review. Anticancer Agents Med. Chem. 2013, 13, 1236–1258. [Google Scholar] [CrossRef]
- The Editors of Encyclopaedia Britannica. Alkaloids. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Colin, P., Eds.; Elsevier: Oxford, UK, 2005; pp. 56–61. [Google Scholar]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Zielinski, A.; Haminiuki, C.; Alberti, A.; Nogueira, A.; Demiate, I.; Granato, D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int. 2014, 60, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.G.; Yan, Q.Q.; Lu, L.Z.; Zhang, Y.Q. In vivo antioxidant, hypoglycemic, and anti-tumor activities of anthocyanin extracts from purple sweet potato. Nutr. Res. Pract. 2013, 7, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albishi, T.; John, J.; Al-Khalifa, A.; Shahidi, F. Antioxidant, anti-inflammatory and DNA scission inhibitory activities of phenolic compounds in selected onion and potato varieties. J. Funct. Foods 2013, 5, 930–939. [Google Scholar] [CrossRef]
- Bachiega, T.F.; de Sousa, J.P.B.; Bastos, J.K.; Sforcin, J.M. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. J. Pharm. Pharmacol. 2012, 64, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Sher, A. Antimicrobial Activity of Natural Products from Medicinal Plants. Gomal J. Med. Sci. 2004, 7, 72–78. [Google Scholar]
- Mulaudzi, R.B.; Ndhlala, A.R.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. J. Ethnopharmacol. 2011, 135, 330–337. [Google Scholar] [CrossRef]
- Mangunwardoyo, W.; Deasywati; Usia, T. Antimicrobial and identification of active compound Curcuma xanthorrhiza Roxb. Int. J. Basic Appl. Sci. 2012, 12, 69–78. [Google Scholar]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Balange, A.K.; Benjakul, S. Effect of oxidised phenolic compounds on the gel property of mackerel (Rastrelliger kanagurta) surimi. LWT 2009, 42, 1059–1064. [Google Scholar] [CrossRef]
- Okumura, H. Application of phenolic compounds in plants for green chemical materials. Curr. Opin. Green Sustain. Chem. 2021, 27, 100418. [Google Scholar] [CrossRef]
- Alves, C.T.; Ferreira, I.C.F.R.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol. 2014, 9, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.; Barros, L.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. In Vivo Anti-Candida Activity of Phenolic Extracts and Compounds: Future Perspectives Focusing on Effective Clinical Interventions. BioMed Res Int. 2015, 2015, 247382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.S.A.; Ahmad, I.B. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J. Antimicrob. Chemother. 2011, 67, 618–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Li, T.; Wan, J.; Li, X.; Yuan, L.; Sun, S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int. J. Antimicrob. Agents 2017, 49, 125–136. [Google Scholar] [CrossRef]
- Uppuluri, P.; Pierce, C.G.; López-Ribot, J.L. Candida albicans biofilm formation and its clinical consequences. Future Microbiol. 2009, 4, 1235–1237. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, Y.W.; de Almeida, L.F.D.; Padilha, W.W.N. Anti-adherent activity of Rosmarinus officinalis essential oil on Candida albicans: An SEM analysis. Rev. Odonto Ciênc. 2011, 26, 139–144. [Google Scholar] [CrossRef]
- Onyewu, C.; Blankenship, J.R.; Del Poeta, M.; Heitman, J. Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 2003, 47, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Leroy, O.; Bailly, S.; Gangneux, J.P.; Mira, J.P.; Devos, P.; Dupont, H.; Montravers, P.; Perrigault, P.F.; Constantin, J.M.; Guillemot, D.; et al. Systemic antifungal therapy for proven or suspected invasive candidiasis: The AmarCAND 2 study. Ann. Intensive Care 2016, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Brighenti, F.L.; Salvador, M.J.; Gontijo, A.V.L.; Delbem, A.C.B.; Soares, C.P.; de Oliveira, M.A.C.; Girondi, C.M.; Yumi, K.-I.C. Plant extracts: Initial screening, identification of bioactive compounds and effect against Candida albicans biofilms. Future Microbiol. 2017, 12, 15–27. [Google Scholar] [CrossRef]
- Tsai, P.-W.; Chen, Y.-T.; Hsu, P.-C.; Lan, C.-Y. Study of Candida albicans and its interactions with the host: A mini review. BioMedicine 2013, 3, 51–64. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Timsit, J.F. The current treatment landscape: Candidiasis. J. Antimicrob. Chemother. 2016, 71, ii13–ii22. [Google Scholar] [CrossRef]
- Gonzalez-Lara, M.F.; Ostrosky-Zeichner, L. Invasive Candidiasis. Semin. Respir. Crit. Care Med. 2020, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Moran, G.P.; Pinjon, E.; Al-Mosaid, A.; Stokes, C.; Vaughan, C.; Coleman, D.C. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 2004, 4, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Westwater, C.; Schofield, D.A.; Nicholas, P.J.; Paulling, E.E.; Balish, E. Candida glabrata and Candida albicans; dissimilar tissue tropism and infectivity in a gnotobiotic model of mucosal candidiasis. FEMS Immunol. Med. Microbiol. 2007, 51, 134–139. [Google Scholar] [CrossRef] [Green Version]
- McCullough, M.J.; Ross, B.C.; Reade, P.C. Candida albicans: A review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int. J. Oral Maxillofac. Surg. 1996, 25, 136–144. [Google Scholar] [CrossRef]
- Kumar, K.; Askari, F.; Sahu, M.S.; Kaur, R. Candida glabrata: A Lot More Than Meets the Eye. Microorganisms 2019, 7, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnakulasuriya, S. Burket’s oral medicine: Diagnosis and treatment. Br. Dent. J. 2003, 194. [Google Scholar] [CrossRef]
- Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol. 2016, 34, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Lavaee, F.; Moshaverinia, M.; Malek-Hosseini, S.; Jamshidzade, A.; Zarei, M.; Jafarian, H.; Haddadi, P.; Badiee, P. Antifungal effect of sesame medicinal herb on Candida Species: Original study and mini-review. Braz. J. Pharm. Sci. 2019, 55. [Google Scholar] [CrossRef]
- Torres, S.R.; Peixoto, C.B.; Caldas, D.M.; Silva, E.B.; Akiti, T.; Nucci, M.; de Uzeda, M. Relationship between salivary flow rates and Candida counts in subjects with xerostomia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 93, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Sufiawati, I.; Pratiwi, U.; Wijaya, I.; Rusdiana, T.; Subarnas, A. The relationship between Candida albicans colonization and oral hygiene in cancer patients undergoing chemotherapy. Mater. Today Proc. 2019, 16, 2122–2127. [Google Scholar] [CrossRef]
- Braga, P.C.; Culici, M.; Alfieri, M.; Dal Sasso, M. Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int. J. Antimicrob. Agents 2008, 31, 472–477. [Google Scholar] [CrossRef]
- Costa, R.C.; Cavalcanti, Y.W.; Valença, A.M.G.; de Almeida, L.F.D. Sutures modified by incorporation of chlorhexidine and cinnamaldehyde: Anti-Candida effect, bioavailability and mechanical properties. Rev. Odontol. UNESP 2019, 48. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. Phytochemicals as Inhibitors of Candida Biofilm. Curr. Pharm. Des. 2016, 22, 4111–4134. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.S.; Beshbishy, A.M.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; El-Hack, M.E.A.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Le, W.; Cui, Z. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Discov. 2018, 4, 108. [Google Scholar] [CrossRef]
- Eidi, A.; Eidi, M.; Esmaeili, E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006, 13, 624–629. [Google Scholar] [CrossRef]
- Fahim, A.; Himratul-Aznita, W.H.; Abdul-Rahman, P.S. Allium-sativum and bakuchiol combination: A natural alternative to Chlorhexidine for oral infections? Pak. J. Med. Sci. 2020, 36, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.L.; Bernardo, A.; de Mesquita, M.F.; Singh, J. Beneficial Uses of Cinnamon in Health and Diseases: An Interdisciplinary Approach. In The Role of Functional Food Security in Global Health; Singh, R.B., Watson, R.R., Takahashi, T., Eds.; Academic Press-Elsevier: Amsterdam, The Netherlands, 2019; pp. 565–576. [Google Scholar]
- Singh, A.; Deepika; Chaudhari, A.K.; Das, S.; Prasad, J.; Dwivedy, A.K.; Dubey, N.K. Efficacy of Cinnamomum cassia essential oil against food-borne molds and aflatoxin B1 contamination. Plant Biosyst. 2020, 155, 899–907. [Google Scholar] [CrossRef]
- Kiran, S.; Kujur, A.; Prakash, B. Assessment of preservative potential of Cinnamomum zeylanicum Blume essential oil against food borne molds, aflatoxin B1 synthesis, its functional properties and mode of action. Innov. Food. Sci. Emerg. Technol. 2016, 37, 184–191. [Google Scholar] [CrossRef]
- Boniface, Y.; Philippe, S.; Lima, H.; Pierre, N.; Alitonou, G.; Fatiou, T.; Sohounhloue, D. Chemical composition and Antimicrobial activities of Cinnamomum zeylanicum Blume dry Leaves essential oil against Food-borne Pathogens and Adulterated Microorganisms. Int. Res. J. Biol. Sci. 2012, 1, 18–25. [Google Scholar]
- Almeida, L.F.D.; Paula, J.F.; Almeida, R.V.; Williams, D.W.; Hebling, J.; Cavalcanti, Y.W. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol. Scand. 2016, 74, 393–398. [Google Scholar] [CrossRef]
- da Nóbrega Alves, D.; Monteiro, A.F.M.; Andrade, P.N.; Lazarini, J.G.; Abílio, G.M.F.; Guerra, F.Q.S.; Scotti, M.T.; Scotti, L.; Rosalen, P.L.; Castro, R.D.; et al. Docking Prediction, Antifungal Activity, Anti-Biofilm Effects on Candida spp., and Toxicity against Human Cells of Cinnamaldehyde. Molecules 2020, 25, 5969. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, B.; Paramasivam, S.; Arulkumar, A. Evaluation of the lemongrass plant (Cymbopogon citratus) extracted in different solvents for antioxidant and antibacterial activity against human pathogens. Asian Pac. J. Trop. Dis. 2014, 4, S134–S139. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Lemongrass (Cymbopogon flexuosus) essential oil demonstrated anti-inflammatory effect in pre-inflamed human dermal fibroblasts. Biochim. Open 2017, 4, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Liakos, I.L.; D’autilia, F.; Garzoni, A.; Bonferoni, C.; Scarpellini, A.; Brunetti, V.; Carzino, R.; Bianchini, P.; Pompa, P.P.; Athanassiou, A. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules. Int. J. Pharm. 2016, 510, 508–515. [Google Scholar] [CrossRef]
- Taweechaisupapong, S.; Ngaonee, P.; Patsuk, P.; Pitiphat, W.; Khunkitti, W. Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. S. Afr. J. Bot. 2012, 78, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Leite, M.C.A.; Bezerra, A.P.B.; de Sousa, J.P.; Guerra, F.Q.S.; Lima, E.O. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans. Evid. Based Complement. Alternat. Med. 2014, 2014, 378280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miron, D.; Battisti, F.; Silva, F.K.; Lana, A.D.; Pippi, B.; Casanova, B.; Gnoatto, S.; Fuentefria, A.; Mayorga, P.; Schapoval, E.E.S. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Rev. Bras. Farmacogn. 2014, 24, 660–667. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, S.; Wu, T.; Guo, J.; Sha, S.; Zheng, X.; Yu, T. Effect of citronella essential oil on the inhibition of postharvest Alternaria alternata in cherry tomato. J. Sci. Food Agric. 2014, 94, 2441–2447. [Google Scholar] [CrossRef]
- Aini, M.N.M.; Said, M.I.; Nazlina, I.; Hanina, M.N.; Ahmad, I.B. Screening for Antiviral Activity of Sweet Lemon Grass (Cymbopogon nardus (L.) Rendle) Fractions. J. Biol. Sci. 2006, 6, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Innsan, M.F.M.F.; Shahril, M.H.; Samihah, M.S.; Asma, O.S.; Radzi, S.M.; Jalil, A.K.A.; Hanina, M.N. Pharmacodynamic properties of essential oils from Cymbopogon species. Afr. J. Pharm. Pharmacol. 2011, 5, 2676–2679. [Google Scholar] [CrossRef] [Green Version]
- Nakahara, K.; Alzoreky, N.; Yoshihashi, T.; Nguyen, T.; Trakoontivakorn, G. Chemical Composition and Antifungal Activity of Essential Oil from Cymbopogon nardus (Citronella Grass). Jpn. Agric. Res. Q. 2013, 37, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Leite, B.L.S.; Bonfim, R.R.; Antoniolli, A.R.; Thomazzi, S.M.; Araújo, A.A.S.; Blank, A.F.; Estevam, C.S.; Cambui, E.V.F.; Bonjardim, L.R.; Albuquerque Jr, R.L.C.; et al. Assessment of antinociceptive, anti-inflammatory and antioxidant properties of Cymbopogon winterianus leaf essential oil. Pharm. Biol. 2010, 48, 1164–1169. [Google Scholar] [CrossRef] [PubMed]
- Quintans-Júnior, L.; Souza, T.; Leite, B.; Lessa, N.; Bonjardim, L.; Santos, M.; Alves, P.; Blank, A.; Antoniolli, A.R. Phytochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine 2008, 15, 619–624. [Google Scholar] [CrossRef]
- Manh, H.D.; Hue, D.T.; Hieu, N.T.T.; Tuyen, D.T.T.; Tuyet, O.T. The Mosquito Larvicidal Activity of Essential Oils from Cymbopogon and Eucalyptus Species in Vietnam. Insects 2020, 11, 128. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, W.; Pereira, F.; Luna, G.; Oliveira Lima, I.; Wanderley, P.; Lima, R.; Lima, E. Antifungal activity of Cymbopogon winterianus Jowitt ex bor against Candida albicans. Braz. J. Microbiol. 2011, 42, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190. [Google Scholar] [CrossRef]
- Cornelia, F.; Tatiana, C.; Livia, U.; Dinu, M.; Ancuceanu, R. Solidago virgaurea L.: A Review of Its Ethnomedicinal Uses, Phytochemistry, and Pharmacological Activities. Biomolecules 2020, 10, 1619. [Google Scholar] [CrossRef]
- Chevalier, M.; Medioni, E.; Prêcheur, I. Inhibition of Candida albicans yeast–hyphal transition and biofilm formation by Solidago virgaurea water extracts. J. Med. Microbiol. 2012, 61, 1016–1022. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.F.; Abd Aziz, M.; Stanslas, J.; Ismail, I.; Kadir, M. Assessment of Antioxidant and Cytotoxicity Activities of Saponin and Crude Extracts of Chlorophytum borivilianum. Sci. World J. 2013, 2013, 216894. [Google Scholar] [CrossRef] [PubMed]
- Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.; Cavaleiro, C.; Cruz, M.; Zulfiqar, A.; Khan, I.; Efferth, T.; Salgueiro, L. Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. J. Ethnopharmacol. 2016, 191, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Nordin, M.A.; Wan Harun, W.H.; Abdul Razak, F. An in vitro study on the anti-adherence effect of Brucea javanica and Piper betle extracts towards oral Candida. Arch. Oral Biol. 2013, 58, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Christofidis, I.; Welter, A.; Jadot, J. Spectaline and iso-6 cassine, two new piperidin 3-ol alkaloids from the leaves of cassia spectabilis. Tetrahedron 1977, 33, 977–979. [Google Scholar] [CrossRef]
- Torey, A.; Sasidharan, S. Anti-Candida albicans biofilm activity by Cassia spectabilis standardized methanol extract: An ultrastructural study. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 875–882. [Google Scholar]
- Zago, P.M.W.; Dos Santos Castelo Branco, S.J.; de Albuquerque Bogea Fecury, L.; Carvalho, L.T.; Rocha, C.Q.; Madeira, P.L.B.; de Sousa, E.M.; de Siqueira, F.S.F.; Paschoal, M.A.B.; Diniz, R.S.; et al. Anti-biofilm Action of Chenopodium ambrosioides Extract, Cytotoxic Potential and Effects on Acrylic Denture Surface. Front. Microbiol. 2019, 10, 1724. [Google Scholar] [CrossRef] [Green Version]
- Wijesinghe, G.K.; Maia, F.C.; de Oliveira, T.R.; de Feiria, S.N.B.; Joia, F.; Barbosa, J.P.; Boni, G.C.; Sardi, J.C.O.; Rosalen, P.L.; Höfling, J.F. Effect of Cinnamomum verum leaf essential oil on virulence factors of Candida species and determination of the in vivo toxicity with Galleria mellonella model. Mem. Inst. Oswaldo Cruz 2020, 115, e200349. [Google Scholar] [CrossRef]
- Choonharuangdej, S.; Srithavaj, T.; Thummawanit, S. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm established on acrylic resin: An in vitro study. J. Prosthet. Dent. 2021, 125, 707.e701–707.e706. [Google Scholar] [CrossRef] [PubMed]
- Freires, I.A.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; Alencar, S.; de Alencar, S.M.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.; Rosalen, P.L. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression. PLoS ONE 2014, 9, e099086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, J.J.; Inês, M.; Barreira, J.; Barros, L.; Resende, O.; Aguiar, A.; Ferreira, I.C.F.R. Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent. Molecules 2020, 25, 2032. [Google Scholar] [CrossRef]
- Barbieri, D.S.; Tonial, F.; Lopez, P.V.; Sales Maia, B.H.; Santos, G.D.; Ribas, M.O.; Glienke, C.; Vicente, V.A. Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch. Oral Biol. 2014, 59, 887–896. [Google Scholar] [CrossRef]
- Ali, M.; Yusuf, M.; Nasraldeen Abdalaziz, M. GC-MS Analysis and Antimicrobial Screening of Essential Oil from Lemongrass (Cymbopogon citratus). Int. J. Pharm. Chem. 2017, 3, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Majewska, E.; Kozłowska, M.; Gruczyńska-Sękowska, E.; Kowalska, D.; Tarnowska, K. Lemongrass (Cymbopogon citratus) Essential Oil: Extraction, Composition, Bioactivity and Uses for Food Preservation—A Review. Pol. J. Food Nutr. Sci. 2019, 69, 327–341. [Google Scholar] [CrossRef]
- Madeira, P.L.B.; Carvalho, L.T.; Paschoal, M.; de Sousa, E.M.; Moffa, E.; da Silva, M.A.S.; Tavarez, R.R.; Gonçalves, L. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface. Front. Cell. Infect. Microbiol. 2016, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Trindade, L.A.; de Araújo Oliveira, J.; de Castro, R.D.; de Oliveira Lima, E. Inhibition of adherence of C. albicans to dental implants and cover screws by Cymbopogon nardus essential oil and citronellal. Clin. Oral Investig. 2015, 19, 2223–2231. [Google Scholar] [CrossRef] [PubMed]
- Dezsi, Ș.; Bădărău, A.S.; Bischin, C.; Vodnar, D.C.; Silaghi-Dumitrescu, R.; Gheldiu, A.M.; Mocan, A.; Vlase, L. Antimicrobial and antioxidant activities and phenolic profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson leaves. Molecules 2015, 20, 4720–4734. [Google Scholar] [CrossRef] [Green Version]
- Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klein, B.; Gundel, A.; Wagner, R.; Vaucher, R.A.; Ourique, A.; Santos, R.C. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb. Pathog. 2017, 112, 230–242. [Google Scholar] [CrossRef]
- Sekita, Y.; Murakami, K.; Yumoto, H.; Amoh, T.; Fujiwara, N.; Ogata, S.; Matsuo, T.; Miyake, Y.; Kashiwada, Y. Preventive Effects of Houttuynia cordata Extract for Oral Infectious Diseases. BioMed Res. Int. 2016, 2016, 2581876. [Google Scholar] [CrossRef]
- Salete, M.F.B.; Galvo, L.C.C.; Goes, V.F.F.; Sartoratto, A.; Figueira, G.; Rehder, V.L.; Alencar, S.M.; Duarte, R.M.; Rosalen, P.L.; Duarte, M.C. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement. Altern. Med. 2014, 14, 451. [Google Scholar] [CrossRef] [Green Version]
- Rasteiro, V.M.C.; da Costa, A.C.B.P.; Arajo, C.F.; de Barros, P.P.; Rossoni, R.D.; Anbinder, A.; Jorge, A.O.; Junqueira, J. Essential oil of Melaleuca alternifolia for the treatment of oral candidiasis induced in an immunosuppressed mouse model. BMC Complement. Altern. Med. 2014, 14, 489. [Google Scholar] [CrossRef]
- Tobouti, P.L.; Mussi, M.C.; Rossi, D.C.; Pigatti, F.M.; Taborda, C.P.; de Assis Taveira, L.A.; de Sousa, S.C. Influence of melaleuca and copaiba oils on Candida albicans adhesion. Gerodontology 2016, 33, 380–385. [Google Scholar] [CrossRef]
- Ferreres, F.; Oliveira, A.P.; Gil-Izquierdo, A.; Valentão, P.; Andrade, P.B. Piper betle leaves: Profiling phenolic compounds by HPLC/DAD-ESI/MS(n) and anti-cholinesterase activity. Phytochem. Anal. 2014, 25, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; de Jesus, D.; Figueira, L.W.; de Oliveira, F.E.; Pacheco Soares, C.; Camargo, S.E.; Jorge, A.O.; de Oliveira, L.D. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp. Biol. Med. 2017, 242, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Sharifzadeh, A.; Khosravi, A.; Ahmadian, S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV(+) individuals. Microb. Pathog. 2016, 96, 1–9. [Google Scholar] [CrossRef]
- Oyeleye, S.I.; Adebayo, A.A.; Ogunsuyi, O.B.; Dada, F.A.; Oboh, G. Phenolic profile and Enzyme Inhibitory activities of Almond (Terminalia catappa) leaf and Stem bark. Int. J. Food Prop. 2018, 20, S2810–S2821. [Google Scholar] [CrossRef] [Green Version]
- Machado-Gonçalves, L.; Tavares-Santos, A.; Santos-Costa, F.; Soares-Diniz, R.; Câmara-de-Carvalho-Galvão, L.; Martins-de-Sousa, E.; Beninni-Paschoal, M.A. Effects of Terminalia catappa Linn. Extract on Candida albicans biofilms developed on denture acrylic resin discs. J. Clin. Exp. Dent. 2018, 10, e642–e647. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.; Madeira, P.L.B.; Diniz, R.; Nonato, R.F.; de Siqueira, F.S.F.; de Sousa, E.M.; Farias, D.; Rocha, F.M.G.; Rocha, C.H.L.; Lago, A.D.N.; et al. Effect of Terminalia catappa Linn. on Biofilms of Candida albicans and Candida glabrata and on Changes in Color and Roughness of Acrylic Resin. J. Evid. Based Complement. Altern. Med. 2019, 2019, 7481341. [Google Scholar] [CrossRef] [PubMed]
- Arabi Monfared, A.; Ayatollahi Mousavi, S.A.; Zomorodian, K.; Mehrabani, D.; Iraji, A.; Moein, M.R. Trachyspermum ammi aromatic water: A traditional drink with considerable anti-Candida activity. Curr. Med. Mycol. 2020, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shaiq Ali, M.; Saleem, M.; Ali, Z.; Ahmad, V.U. Chemistry of Zataria multiflora (Lamiaceae). Phytochemistry 2000, 55, 933–936. [Google Scholar] [CrossRef]
- Rahimi, G.; Khodavandi, A.; Janesar, R.; Alizadeh, F.; Yaghobi, R.; Sadri, F. Evaluation of Antifungal Effects of Ethanolic and Aqueous Extracts of Zataria Multiflora Herb in the Pathogenic Yeast Candida albicans Biofilm Inhibition. J. Pure Appl. Microbiol. 2014, 8, 4559–4564. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, R.; Milho, C.; Liberal, Â.; Silva, J.; Fonseca, C.; Barbosa, A.; Ferreira, I.C.F.R.; Alves, M.J.; Barros, L. Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics 2021, 10, 1142. https://doi.org/10.3390/antibiotics10091142
Guimarães R, Milho C, Liberal Â, Silva J, Fonseca C, Barbosa A, Ferreira ICFR, Alves MJ, Barros L. Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics. 2021; 10(9):1142. https://doi.org/10.3390/antibiotics10091142
Chicago/Turabian StyleGuimarães, Rafaela, Catarina Milho, Ângela Liberal, Jani Silva, Carmélia Fonseca, Ana Barbosa, Isabel C. F. R. Ferreira, Maria José Alves, and Lillian Barros. 2021. "Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review" Antibiotics 10, no. 9: 1142. https://doi.org/10.3390/antibiotics10091142
APA StyleGuimarães, R., Milho, C., Liberal, Â., Silva, J., Fonseca, C., Barbosa, A., Ferreira, I. C. F. R., Alves, M. J., & Barros, L. (2021). Antibiofilm Potential of Medicinal Plants against Candida spp. Oral Biofilms: A Review. Antibiotics, 10(9), 1142. https://doi.org/10.3390/antibiotics10091142