A New Antimicrobial Phenylpropanol from the Leaves of Tabernaemontana inconspicua Stapf. (Apocynaceae) Inhibits Pathogenic Gram-Negative Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Spectroscopy Data of Compound 1
2.5. Antimicrobial Effects
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edith, G.R.; Rosa, C.T. The family Apocynaceae (Apocynoideae and Rauvolfioideae) in the state of Morelos, Mexico. Acta. Bot. Mex. 2015, 110, 21–70. [Google Scholar]
- Van Beek, T.A.; Verpoorte, R.; Svendsen, A.B.; Leeuwenberg, A.J.M.; Bisset, N.G. Tabernaemontana L. (Apocynaceae): A review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J. Ethnopharmacol. 1984, 10, 1–156. [Google Scholar] [CrossRef]
- Gupta, M.; Mazumdar, U.K.; Gomathi, P. Antioxidant and protective effects of Ervatamia coronaria Stapf., leaves against carbon tetrachloride-induced liver injury. Eur. Bull. Drug. Res. 2004, 12, 13–22. [Google Scholar]
- Boligon, A.A.; Athayde, M.L. Phytochemical investigation and cytotoxic properties of Tabernaemontana catharinensis A. DC. cultivated in Brazil. Res. J. Phytochem. 2012, 6, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Foudjo, M.G.L.; Njoya, E.M.; Jouda, J.B.; Wakeu, K.B.N.; Mbazoa, C.D.; Wang, F.; Wandjia, J. Two new indole alkaloids from Tabernaemontana contorta Stapf. Phytochem. Lett. 2019, 30, 116–119. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Li, H.; Cao, Z.; Dan, X.; Mei, L.; Guo, D.; Song, C.; Dai, Y.; Hu, J.; et al. Cytotoxic monoterpenoid indole alkaloids isolated from the barks of Voacanga africana Staph. Nat. Prod. Res. 2016, 30, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Monsalve-Escudero, L.M.; Loaiza-Cano, V.; Zapata-Cardona, M.I.; Quintero-Gil, D.C.; Hernández-Mira, E.; Pájaro-González, Y.; Oliveros-Díaz, A.F.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.; et al. The antiviral and virucidal activities of voacangine and structural analogs extracted from Tabernaemontana cymosa depend on the Dengue virus strain. Plants 2021, 10, 1280. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, D.S.; Hai, P.; Li, Y.; Wang, F. Hybrid Monoterpenoid Indole Alkaloids Obtained as Artifacts from Rauvolfia tetraphylla. Nat. Prod. Bioprospect. 2015, 5, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem. 2003, 41, 636–638. [Google Scholar] [CrossRef]
- Foudjo, G.L.M.; Njoya, E.M.; Jouda, J.B.; Kweka, B.N.W.; Mbazoa, C.D.; Wang, F.; Seguin, E.; Wandji, J. A new cytotoxic indole alkaloid from Tabernaemontana inconspicua Stapf. Nat. Prod. Res. 2021, 35, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.A.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997, 41, 1004–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Ma, W.; Liu, Y.; Peng, Y.; Xiao, P. Three New Phenol Compounds from Iris dichotoma Pall. Helv. Chim. Acta 2012, 95, 1033–1036. [Google Scholar] [CrossRef]
- Nishibe, S.; Takenaka, T.; Kodama, A.; Coskun, M. Flavonoids and Cyclitol from Vinca herbacea. Nat. Med. 1998, 52, 201. [Google Scholar]
- Pereira, P.S.; França, S.C.; Oliveira, P.V.A.; Souza, C.M.; Pereira, B.S.I. Chemical constituents from Tabernaemontana catharinensis root bark: A brief NMR review of indole alkaloids and in vitro cytotoxicity. Quim. Nova. 2008, 31, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Peyeino, J.H.; Tabekoueng, G.B.; Djomkam, H.L.M.; Langat, M.K.; Sadgrove, N.J.; Prescott, T.; Siddique, H.; Mas-Claret, E.; Isyaka, M.S.; Wansi, J.D.; et al. Terpenoids from Cameroonian Oxystigma mannii (Baill). Harms. Sci. Afr. 2021, 12, e00751. [Google Scholar] [CrossRef]
- Tsopgni, W.D.T.; Azebaze, A.G.B.; Teinkela, J.E.M.; Ndjakou, B.L.; Boyom, F.F.; Tchaleu, B.N.; Vardamides, J.C. New unsaturated fatty acid and other chemical constituents from the roots of Cola rostrata K. Schum. (Malvaceae). Bio. Sys. Ecol. 2019, 86, 103913. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Jones, G.L. From Petri dish to patient: Bioavailability estimation and mechanism of action for antimicrobial and immunomodulatory natural products. Front. Microbiol. 2019, 10, 2470. [Google Scholar] [CrossRef] [PubMed]
- Moudi, M.; Go, R.; Yien, C.Y.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med. 2013, 4, 1231–1235. [Google Scholar] [PubMed]
- Nogueira, J.O.E.; Campolina, G.A.; Batista, L.R.; Alves, E.; Caetano, A.R.S.; Brandão, R.M.; Nelson, D.L.; Cardoso, M.D.G. Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS Microbiol. Lett. 2021, 368, fnab052. [Google Scholar] [CrossRef] [PubMed]
Position | δC | δH (Mult.; J) |
---|---|---|
1 | 74.1 | 4.54 (1H, d, J = 6.2) |
2 | 76.2 | 3.69 (1H, m) |
3 | 62.9 | 3.69 (1H, m)3.50 (1H, m) |
1′ | 104.0 | / |
2′ | 110.2 | 7.02 (1H, d, J = 2.0) |
3′ | 133.5 | / |
4′ | 147.4 | / |
5′ | 114.3 | 6.71 (1H, dd, J = 8.0 ; 2.0) |
6′ | 119.2 | 6.80 (1H, d, J = 8.0) |
CH3O- | 55.0 | 3.88 (1H, m) |
Samples | Inhibitory Parameters (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Haemophilus influenzae 9435337A | Klebsiella pneumoniae 17102005 | Pseudomonas aeruginosa 2137659B | |||||||
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
Crude Extract | 15.625 | 62.5 | 4 | 31.25 | 125 | 4 | 62.5 | 125 | 2 |
1 | 62.5 | 125 | 2 | 125 | 250 | 2 | 31.25 | >250 | ND |
2 | >250 | >250 | ND | >250 | >250 | ND | >250 | >250 | ND |
3 | 62.5 | 125 | 2 | 125 | 250 | 2 | 250 | >250 | ND |
4 | >250 | >250 | ND | >250 | >250 | ND | >250 | >250 | ND |
5 | 7.81 | 31.25 | 4 | 31.25 | 125 | 4 | 31.25 | 125 | 4 |
Levofloxacin | 1.95 | 7.81 | 4 | 0.48 | 1.95 | 4 | 0.48 | 1.95 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngah, L.; Tsopgni, W.D.T.; Nyobe, J.C.N.; Tcho, A.T.; Langat, M.K.; Ndom, J.C.; Mas-Claret, E.; Sadgrove, N.J.; Waffo, A.F.K.; Phumthum, M. A New Antimicrobial Phenylpropanol from the Leaves of Tabernaemontana inconspicua Stapf. (Apocynaceae) Inhibits Pathogenic Gram-Negative Bacteria. Antibiotics 2022, 11, 121. https://doi.org/10.3390/antibiotics11010121
Ngah L, Tsopgni WDT, Nyobe JCN, Tcho AT, Langat MK, Ndom JC, Mas-Claret E, Sadgrove NJ, Waffo AFK, Phumthum M. A New Antimicrobial Phenylpropanol from the Leaves of Tabernaemontana inconspicua Stapf. (Apocynaceae) Inhibits Pathogenic Gram-Negative Bacteria. Antibiotics. 2022; 11(1):121. https://doi.org/10.3390/antibiotics11010121
Chicago/Turabian StyleNgah, Lidwine, Willifred Dongmo Tékapi Tsopgni, Judith Caroline Ngo Nyobe, Alain Tadjong Tcho, Moses K. Langat, Jean Claude Ndom, Eduard Mas-Claret, Nicholas John Sadgrove, Alain François Kamdem Waffo, and Methee Phumthum. 2022. "A New Antimicrobial Phenylpropanol from the Leaves of Tabernaemontana inconspicua Stapf. (Apocynaceae) Inhibits Pathogenic Gram-Negative Bacteria" Antibiotics 11, no. 1: 121. https://doi.org/10.3390/antibiotics11010121
APA StyleNgah, L., Tsopgni, W. D. T., Nyobe, J. C. N., Tcho, A. T., Langat, M. K., Ndom, J. C., Mas-Claret, E., Sadgrove, N. J., Waffo, A. F. K., & Phumthum, M. (2022). A New Antimicrobial Phenylpropanol from the Leaves of Tabernaemontana inconspicua Stapf. (Apocynaceae) Inhibits Pathogenic Gram-Negative Bacteria. Antibiotics, 11(1), 121. https://doi.org/10.3390/antibiotics11010121