Impact of Extended and Restricted Antibiotic Deescalation on Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.4. Variables and Definition
2.5. Statistical Analysis
3. Results
3.1. Survival Curve of Those De-Escalated and Non-De-Escalated on Antibiotics
3.2. Variables Associated with All Cause 30-Days Mortality
- Forward, backward, and stepwise Cox proportional hazards regression model applied.
- Multicollinearity and interactions were not observed.
- The preliminary final model was properly specified.
- Hazard function plots, Log-minus-log plots, Schoenfeld partial residual plots, scaled and non-scaled Schoenfeld residuals test, and C-statistics were applied to check the assumption of the model.
- Regression diagnostics were performed by Cox–Snell residual, Martingale residual, deviance residual, and influential analysis.
- Influential outliers were identified by checking percent changes in regression coefficient.
3.3. Impact of De-Escalation on 30-Day All-Cause Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Read, A.F.; Woods, R.J. Antibiotic resistance management. Evol. Med. Public Health 2014, 2014, 147. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Friedman, N.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef]
- Ministry of Health. Protocol on Antimicrobial Stewardship Program in Healthcare Facilities; Ministry of Health: Putrajaya, Malaysia, 2012.
- Dellit, T.H.; Owens, R.C.; McGowan, J.E.; Gerding, D.N.; Weinstein, R.A.; Burke, J.P.; Huskins, W.C.; Paterson, D.L.; Fishman, N.O.; Carpenter, C.F.; et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef]
- Kollef, M.H.; Kollef, K.E. Antibiotic Utilization and Outcomes for Patients with Clinically Suspected Ventilator-Associated Pneumonia and Negative Quantitative BAL Culture Results. Chest 2005, 128, 2706–2713. [Google Scholar] [CrossRef] [PubMed]
- Rello, J.; Diaz, E. Pneumonia in the intensive care unit. Crit. Care Med. 2003, 31, 2544–2551. [Google Scholar] [CrossRef]
- Khan, R.A.; Aziz, Z. A retrospective study of antibiotic de-escalation in patients with ventilator-associated pneumonia in Malaysia. Int. J. Clin. Pharm. 2017, 39, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Zahar, J.-R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.-C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.-F.; et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin. Microbiol. Infect. 2015, 21, 649.e1–649.e10. [Google Scholar] [CrossRef] [Green Version]
- Horan, T.C.; Andrus, M.; Dudeck, M. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control. 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; De Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lerma, F.; Alvarez, B.; Luque, P.; Ruiz, F.; Dominguez-Roldan, J.-M.; Quintana, E.; Sanz-Rodriguez, C. Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: A prospective observational study. Crit. Care 2006, 10, R78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carugati, M.; Franzetti, F.; Wiemken, T.; Kelly, R.; Peyrani, P.; Blasi, F.; Ramirez, J.; Aliberti, S. De-escalation therapy among bacteraemic patients with community-acquired pneumonia. Clin. Microbiol. Infect. 2015, 21, 936.e11–936.e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eachempati, S.R.; Hydo, L.; Barie, P.S. Gender-Based Differences in Outcome in Patients with Sepsis. Arch. Surg. 1999, 134, 1342–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensiv. Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef]
- Gonzalez, L.; Cravoisy, A.; Barraud, D.; Conrad, M.; Nace, L.; Lemarié, J.; Bollaert, P.-E.; Gibot, S. Factors influencing the implementation of antibiotic de-escalation and impact of this strategy in critically ill patients. Crit. Care 2013, 17, R140. [Google Scholar] [CrossRef] [Green Version]
- Viasus, D.; Simonetti, A.F.; Garcia-Vidal, C.; Niubó, J.; Dorca, J.; Carratalà, J. Impact of antibiotic de-escalation on clinical outcomes in community-acquired pneumococcal pneumonia. J. Antimicrob. Chemother. 2017, 72, 547–5553. [Google Scholar] [CrossRef] [Green Version]
- Yamana, H.; Matsui, H.; Tagami, T.; Hirashima, J.; Fushimi, K.; Yasunaga, H. De-escalation versus continuation of empirical antimicrobial therapy in community-acquired pneumonia. J. Infect. 2016, 73, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Apisarnthanarak, A.; Bhooanusas, N.; Yaprasert, A.; Mundy, L.M. Carbapenem De-escalation Therapy in a Resource-Limited Setting. Infect. Control. Hosp. Epidemiol. 2013, 34, 1310–1313. [Google Scholar] [CrossRef]
- De Waele, J.J.; Ravyts, M.; Depuydt, P.; Blot, S.I.; Decruyenaere, J.; Vogelaers, D. De-escalation after empirical meropenem treatment in the intensive care unit: Fiction or reality? J. Crit. Care 2010, 25, 641–646. [Google Scholar] [CrossRef]
- Lew, K.Y.; Ng, T.M.; Tan, M.; Tan, S.H.; Lew, E.L.; Ling, L.M.; Ang, B.; Lye, D.; Teng, C.B. Safety and clinical outcomes of carbapenem de-escalation as part of an antimicrobial stewardship programme in an ESBL-endemic setting. J. Antimicrob. Chemother. 2014, 70, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Ohl, C.; Johnson, J.; Williamson, J.; Beardsley, J.; Luther, V. Frequency of empiric antibiotic de-escalation in an acute care hospital with an established Antimicrobial Stewardship Program. BMC Infect. Dis. 2016, 16, 751. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Baena, Z.R.; Delgado-Valverde, M.; Valiente Mendez, A.; Almirante, B.; Gomez-Zorrilla, S.; Borrell, N.; Corzo, J.E.; Gurgui, M.; de la Calle, C.; Garcia-Alvarez, L.; et al. Impact of de-escalation on prognosis of patients with bacteraemia due to Enterobacteriaceae: A post-hoc analysis from a multicenter prospective cohort. Clin. Infect. Dis. 2019, 69, 956–962. [Google Scholar] [CrossRef] [Green Version]
- Koupetori, M.; Retsas, T.; Antonakos, N.; Vlachogiannis, G.; Perdios, I.; Nathanail, C.; Makaritsis, K.; Papadopoulos, A.; Sinapidis, D.; Giamarellos-Bourboulis, E.J.; et al. Bloodstream infections and sepsis in Greece: Over-time change of epidemiology and impact of de-escalation on final outcome. BMC Infect. Dis. 2014, 14, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, M.; Bechis, C.; Baumstarck, K.; Lefrant, J.-Y.; Albanèse, J.; Jaber, S.; Lepape, A.; Constantin, J.-M.; Papazian, L.; Bruder, N.; et al. De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: A multicenter non-blinded randomized noninferiority trial. Intensiv. Care Med. 2014, 40, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira, F.; Nedel, W.L.; Cassol, R.; Pereira, P.R.; Deutschendorf, C.; Lisboa, T. Acinetobacter etiology respiratory tract infections associated with mechanical ventilation: What impacts on the prognosis? A retrospective cohort study. J. Crit. Care 2019, 49, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Devran, O.; Karakurt, Z.; Adıgüzel, N.; Güngör, G.; Moçin, O.Y.; Balcı, M.K.; Celik, E.; Saltürk, C.; Takır, H.B.; Kargın, F.; et al. C-reactive protein as a predictor of mortality in patients affected with severe sepsis in intensive care unit. Multidiscip. Respir. Med. 2012, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.-Y.; Zhou, Y.-Q.; Zhou, M.; Zou, X.-L.; Wang, Y.-H.; Zhang, T.-T. Risk Factors for Mortality Due to Ventilator-Associated Pneumonia in a Chinese Hospital: A Retrospective Study. Med Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 7660–7665. [Google Scholar] [CrossRef] [PubMed]
- Inchai, J.; Pothirat, C.; Bumroongkit, C.; Limsukon, A.; Khositsakulchai, W.; Liwsrisakun, C. Prognostic factors associated with mortality of drug-resistant Acinetobacter baumannii ventilator-associated pneumonia. J. Intensiv. Care 2015, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Related Characteristics | No De-Escalation n = 48 Frequency (%) | Early De-Escalation n = 79 Frequency (%) | Late De-Escalation n = 53 Frequency (%) | p-Value |
---|---|---|---|---|
Age | ||||
Age ≤ 65 years | 30 (26.6) | 50 (44.2) | 33 (29.2) | 0.992 |
Age > 65 years | 18 (26.9) | 29 (43.3) | 20 (29.8) | |
Gender | ||||
Male | 20 (22.0) | 40 (44.0) | 31 (34.0) | 0.240 |
Female | 28 (31.5) | 39 (43.8) | 22 (24.7) | |
Ethnicity | ||||
Malay | 22 (23.7) | 41 (44.1) | 30 (32.2) | 0.464 |
Chinese | 12 (30.0) | 14 (35.0) | 14 (35.0) | |
Indian | 9 (25.7) | 19 (54.3) | 7 (20.0) | |
Others | 5 (42.0) | 5 (42.0) | 2 (16.0) | |
ICU Stay | ||||
No | 39 (27.7) | 66 (46.8) | 36 (25.5) | 0.087 |
Yes | 9 (23.1) | 13 (33.3) | 17 (43.6) | |
Invasive Mechanical Ventilation | ||||
No | 32 (29.1) | 51 (46.4) | 27 (24.5) | 0.190 |
Yes | 16 (22.9) | 28 (40.0) | 26 (37.1) | |
CCS | ||||
0–2 | 30 (27.3) | 45 (40.9) | 35 (31.8) | 0.562 |
≥3 | 18 (25.7) | 34 (48.6) | 18 (25.7) | |
McCabe Score | ||||
1 | 41 (25.2) | 70 (42.9) | 52 (31.9) | 0.068 |
≥2 | 7 (41.2) | 9 (52.9) | 1 (5.9) | |
Illicit drug use | ||||
No | 48 (27.3) | 76 (43.2) | 52 (29.5) | 0.364 |
Yes | 0 (0.00) | 3 (75.0) | 1 (25.0) | |
Smoking status | ||||
Non smoker | 37 (28.2) | 56 (42.8) | 38 (29.0) | 0.928 |
Ex-smoker | 4 (19.1) | 10 (47.6) | 7 (33.3) | |
Active smoker | 7 (25.0) | 13 (46.4) | 8 (28.6) | |
History of Hospital Admission within 3 months | ||||
No | 33 (27.1) | 53 (43.3) | 36 (29.5) | 0.981 |
Yes | 15 (25.9) | 26 (44.8) | 17 (29.3) | |
History of antibiotic exposure within 3 months | ||||
No | 38 (29.7) | 50 (39.0) | 40 (31.2) | 0.113 |
Yes | 10 (19.2) | 29 (55.8) | 13 (25.0) | |
Presence of ESRF | ||||
No | 47 (27.3) | 75 (43.6) | 50 (29.1) | 0.642 |
Yes | 1 (12.5) | 4 (50.0) | 3 (37.5) | |
Diabetes with end organ failure | ||||
No | 35 (26.5) | 59 (44.7) | 38 (28.8) | 0.928 |
Yes | 13 (27.1) | 20 (41.7) | 15 (31.2) | |
Presence of HIV | ||||
No | 48 (27.1) | 76 (42.9) | 53 (30.0) | 0.142 |
Yes | 0 (0.00) | 3 (100.0) | 0 (0.00) | |
Presence of Malignancy | ||||
No | 45 (27.8) | 69 (42.6) | 48 (29.6) | 0.499 |
Yes | 3 (16.7) | 10 (55.6) | 5 (27.8) |
Clinical Related Characteristics | No De-Escalation n = 48 Frequency (%) | Early De-Escalation n = 79 Frequency (%) | Late De-Escalation n = 53 Frequency (%) | p-Value |
---|---|---|---|---|
Acquisition of infection | ||||
Community acquired | 26 (26.3) | 42 (42.4) | 31 (31.3) | 0.826 |
Hospital or healthcare | 22 (27.2) | 37 (45.7) | 22 (27.1) | |
acquired | ||||
Extended or Restricted antibiotic initiated | ||||
Meropenem | 36 (29.5) | 47 (38.5) | 39 (32.0) | 0.672 |
Imipenem | 4 (16.0) | 14 (56.0) | 7 (28.0) | |
Ertapenem | 6 (23.1) | 14 (53.9) | 6 (23.0) | |
Colistin | 1 (25.0) | 2 (50.0) | 1 (25.0) | |
Vancomycin | 1 (33.3) | 2 (66.7) | 0 (0.00) | |
Therapy of antibiotic | ||||
Empirical | 35 (30.7) | 45 (39.5) | 34 (29.8) | 0.193 |
Microbiologically | 13 (19.7) | 34 (51.5) | 19 (28.8) | |
directed | ||||
Source of infection | ||||
Others | 32 (32.0) | 38 (38.0) | 30 (30.0) | 0.122 |
Respiratory | 16 (20.0) | 41 (51.2) | 23 (28.8) | |
Aetiology (sterile culture) | ||||
No growth | 41 (28.9) | 59 (41.5) | 42 (29.6) | 0.658 |
Others | 4 (19.1) | 12 (57.1) | 5 (23.8) | |
Klebsiella pneumonia | 3 (23.0) | 5 (38.5) | 5 (38.5) | |
Resistance (sterile culture) | ||||
Sensitive strain or Others | 3 (23.1) | 9 (69.2) | 1 (7.7) | 0.082 |
Multidrug resistant | 4 (19.1) | 8 (38.0) | 9 (42.9) | |
isolate a | ||||
CRP (mg/L) on Day 0 b | ||||
25–64 | 10 (32.3) | 13 (41.9) | 8 (25.8) | 0.662 |
65–143 | 5 (20.0) | 9 (36.0) | 11 (44.0) | |
144–240 | 2 (13.3) | 7 (46.7) | 6 (40.0) | |
>240 | 3 (33.3) | 5 (41.7) | 3 (25.0) | |
Temperature (°C) on Day 0 | ||||
≤37.5 | 23 (31.5) | 28 (38.4) | 22 (30.1) | 0.376 |
>37.5 | 25 (23.4) | 51 (47.6) | 31 (29.0) | |
White cell count (×109/L) on Day 0 | ||||
≤11 | 28 (40.6) | 26 (37.7) | 15 (21.7) | 0.003 * |
>12 | 20 (18.0) | 53 (47.8) | 38 (32.2) | |
Platelet (×103 /μL) Day 0 | ||||
≥150 | 12 (33.3) | 16 (44.5) | 8 (22.2) | 0.461 |
<150 | 36 (25.0) | 63 (43.8) | 45 (31.2) | |
SOFA score Day 0 | ||||
≤4 | 37 (29.1) | 55 (43.3) | 35 (27.6) | 0.463 |
>4 | 11 (20.8) | 24 (45.3) | 18 (33.9) | |
Severity of infection Day 0 | ||||
Not in sepsis | 29 (29.0) | 41 (41.0) | 30 (30.0) | 0.724 |
Sepsis | 12 (21.4) | 26 (46.5) | 18 (32.1) | |
Septic shock | 7 (29.2) | 12 (50.0) | 5 (20.8) | |
Albumin level Day 0 (g/L) c | ||||
Mild hypoalbuminemia (25–35) | 12 (25.5) | 22 (46.8) | 13 (27.7) | 0.709 |
Severe hypoalbuminemia (<25) | 34 (26.7) | 56 (44.1) | 37 (29.1) | |
CRP/Albumin ratio Day 0 d | ||||
≤2 | 8 (33.4) | 11 (45.8) | 5 (20.8) | 0.508 |
>2 | 11 (20.8) | 22 (41.5) | 20 (37.7) | |
White cell count (×109/L) on intervention day | ||||
≤11 | 32 (35.6) | 36 (40.0) | 22 (24.4) | 0.024 * |
>12 | 16 (17.8) | 43 (47.8) | 31 (34.4) | |
SOFA score on intervention day | ||||
≤4 | 37 (27.8) | 56 (42.1) | 40 (30.1) | 0.708 |
>4 | 11 (23.4) | 23 (48.9) | 13 (27.7) | |
Severity of infection on intervention day | ||||
Not in sepsis | 37 (31.4) | 47 (39.8) | 24 (28.8) | 0.092 |
Sepsis | 6 (12.7) | 24 (51.1) | 17 (37.2) | |
Septic shock | 5 (33.3) | 8 (53.3) | 2 (13.4) |
Pressure Sore and Device Related Characteristics | No De-Escalation n = 48 Frequency (%) | Early De-Escalation n = 79 Frequency (%) | Late De-Escalation n = 53 Frequency (%) | p-Value |
---|---|---|---|---|
Presence of indwelling CVC | ||||
No | 33 (27.1) | 52 (42.6) | 37 (30.3) | 0.878 |
Yes | 15 (25.8) | 27 (46.6) | 16 (27.6) | |
Presence of indwelling urinary catheter | ||||
No | 26 (29.2) | 39 (43.8) | 24 (27.0) | 0.672 |
Yes | 22 (24.2) | 40 (44.0) | 29 (31.9) | |
Presence of pressure sore | ||||
No | 37 (31.6) | 49 (41.9) | 31 (26.5) | 0.120 |
Yes | 11 (17.7) | 29 (46.8) | 22 (35.5) |
Variables | Event n = 62, Frequency (%) | Censored n = 118, Frequency (%) | b (SE) | Crude Hazards Ratio (95% CI) | Wald Statistic | p-Value |
---|---|---|---|---|---|---|
Age | ||||||
Age ≤ 65 years | 36 (58.1) | 77 (65.3) | 0 | 1 | ||
Age > 65 years | 26 (41.9) | 41 (34.7) | 0.20 (0.26) | 1.22 (0.74–2.03) | 0.77 | 0.441 |
Gender | ||||||
Male | 30 (48.4) | 61 (51.7) | 0 | 1 | ||
Female | 32 (51.6) | 57 (48.3) | 0.05 (0.25) | 1.06 (0.64–1.74) | 0.21 | 0.832 |
Ethnicity | ||||||
Malay | 27 (43.6) | 66 (55.9) | 0 | 1 | ||
Chinese | 15 (24.2) | 25 (21.2) | 0.48 (0.32) | 1.62 (0.85–3.08) | 1.47 | 0.142 |
Indian | 15 (24.2) | 20 (16.7) | 0.51 (0.33) | 1.67 (0.88–3.17) | 1.57 | 0.117 |
Others | 5 (8.0) | 7 (6.2) | 0.52 (0.49) | 1.68 (0.64–4.40) | 1.06 | 0.289 |
ICU Stay | ||||||
No | 11 (17.7) | 29 (24.6) | 0 | 1 | ||
Yes | 51 (82.3) | 89 (75.4) | −0.39 (0.35) | 0.68 (0.34–1.34) | 0.26 | 0.264 |
Invasive Mechanical Ventilation | ||||||
No | 34 (54.8) | 36 (30.5) | 0 | 1 | ||
Yes | 28 (45.2) | 82 (69.5) | 0.87 (0.26) | 2.38 (1.43–3.94) | 3.35 | 0.001 |
CCS | ||||||
0–2 | 28 (45.2) | 82 (69.5) | 1 | |||
≥3 | 34 (54.8) | 36 (30.5) | 0.84 (0.26) | 2.32 (1.40–3.86) | 3.26 | 0.001 |
McCabe Score | ||||||
1 | 51 (82.3) | 112 (94.9) | 0 | 1 | ||
≥2 | 11 (17.7) | 6 (5.1) | 0.81 (0.34) | 2.26 (1.17–4.37) | 2.41 | 0.016 |
Illicit drug use | ||||||
No | 59 (95.2) | 117 (99.2) | 0 | 1 | ||
Yes | 3 (4.8) | 1 (0.8) | 1.11 (0.59) | 3.03 (0.95–9.73) | 1.87 | 0.062 |
Smoking status | ||||||
Non smoker | 44 (71.0) | 87 (73.7) | 0 | 1 | ||
Ex-smoker | 7 (11.3) | 14 (11.9) | 0.14 (0.41) | 1.15 (0.51–2.56) | 0.34 | 0.737 |
Active smoker | 11 (17.7) | 17 (14.4) | 0.18 (0.34) | 1.20 (0.62–2.33) | 0.54 | 0.590 |
History of Hospital Admission within 3 months | ||||||
No | 44 (71.0) | 78 (66.1) | 0 | 1 | ||
Yes | 18 (29.0) | 40 (33.9) | −0.17 (0.28) | 0.84 (0.49–1.46) | −0.60 | 0.547 |
History of antibiotic exposure within 3 months | ||||||
No | 46 (74.2) | 82 (69.5) | 0 | 1 | ||
Yes | 16 (25.8) | 36 (30.5) | −0.16 (0.29) | 0.85 (0.48–1.50) | −0.56 | 0.575 |
Presence of ESRF | ||||||
No | 57 (91.9) | 115 (97.5) | 0 | 1 | ||
Yes | 5 (8.1) | 3 (2.54) | 0.87 (0.47) | 2.38 (0.95–5.97) | 1.86 | 0.063 |
Diabetes with end organ failure | ||||||
No | 39 (63.9) | 93 (78.8) | 0 | 1 | ||
Yes | 23 (37.1) | 25 (21.2) | 0.60 (0.27) | 1.82 (1.08–3.06) | 2.26 | 0.024 |
Presence of HIV | ||||||
No | 59 (95.2) | 118 (100.0) | 0 | 1 | ||
Yes | 3 (4.8) | 0 (0.0) | 1.46 (0.60) | 4.31 (1.34–13.81) | 2.46 | 0.014 |
Presence of Malignancy | ||||||
No | 52 (83.9) | 110 (93.2) | 0 | 1 | ||
Yes | 10 (16.1) | 8 (6.8) | 0.89 (0.35) | 2.42 (1.22–4.80) | 2.55 | 0.011 |
Chronic liver failure | ||||||
No | 54 (87.1) | 114 (96.6) | 0 | 1 | ||
Yes | 8 (12.9) | 4 (3.4) | 1.03 | 2.80 (1.33–5.90) | 2.70 | 0.007 |
Variables | Event n = 62 Median (IQR)/ Frequency (%) | Censored n = 118 Median (IQR)/ Frequency (%) | b (SE) | Crude Hazards Ratio (95% CI) | Wald Statistic | p-Value |
---|---|---|---|---|---|---|
Acquisition of infection | ||||||
Community acquired | 25 (40.3) | 74 (62.7) | 0 | 1 | ||
Hospital or healthcare | 37 (59.7) | 44 (37.3) | 0.60 (0.26) | 1.83 (1.09–3.06) | 2.30 | 0.022 |
acquired | ||||||
Therapy of antibiotic | ||||||
Empirical | 47 (75.8) | 67 (56.8) | 0 | 1 | ||
Microbiologically | 15 (24.2) | 51 (43.2) | −0.64 (0.30) | 0.53 (0.29–0.95) | −2.14 | 0.033 |
directed | ||||||
Duration of Extended or Restricted antibiotic | 4 (4) * | 5 (5) * | −0.05 (0.04) | 0.95 (0.88–1.02) | −1.49 | 0.137 |
Source of infection | ||||||
Non respiratory | 27 (43.6) | 73 (61.9) | 0 | 1 | ||
Respiratory | 35 (56.4) | 45 (38.1) | 0.56 (0.26) | 1.76 (1.06–2.91) | 2.20 | 0.028 |
Aetiology (sterile culture) | ||||||
No growth | 51 (82.2) | 91 (79.8) | 0 | 1 | ||
Others | 7 (11.3) | 18 (12.3) | −0.01 (0.40) | 0.99 (0.45–2.19) | −0.02 | 0.981 |
Klebsiella Pneumonia | 4 (6.5) | 9 (7.9) | −0.29 (0.52) | 0.97 (0.35–2.70) | −0.06 | 0.955 |
Resistance (sterile culture) | ||||||
Sensitive strain or Others | 4 (36.4) | 9 (39.1) | 0 | 1 | ||
Multidrug resistant isolate a | 7 (63.6) | 14 (60.9) | 0.10 (0.63) | 1.11 (0.32–3.78) | 0.87 | 0.872 |
CRP (mg/L) on Day 0 b | ||||||
25–64 | 8 (40.0) | 23 (36.5) | 0 | 1 | ||
65–143 | 5 (25.0) | 20 (31.7) | −0.09 | 0.91 (0.29–2.88) | −0.15 | 0.878 |
144–240 | 5 (25.0) | 10 (15.9) | 0.45 | 1.58 (0.50–4.98) | 0.78 | 0.434 |
>240 | 2 (10.0) | 10 (15.9) | −0.32 | 0.73 (0.15–3.51) | −0.40 | 0.693 |
Temperature(°C) on Day 0 | ||||||
≤37.5 | 22 (35.5) | 51 (43.2) | 0 | 1 | ||
>37.5 | 40 (64.5) | 67 (56.8) | 0.30 (0.27) | 1.35 (0.80–2.27) | 1.13 | 0.257 |
White cell count (× 109/L) on Day 0 | ||||||
≤11 | 28 (45.2) | 41 (34.8) | 0 | 1 | ||
>12 | 34 (54.8) | 77 (65.2) | −0.22 (0.26) | 0.80 (0.48–1.32) | −0.87 | 0.383 |
Platelet (×103 /μL) Day 0 | ||||||
≥150 | 22 (35.5) | 14 (11.9) | 0 | 1 | ||
<150 | 40 (64.5) | 104 (88.1) | −0.88 (0.27) | 0.41 (0.25–0.70) | −3.30 | 0.001 |
Albumin level Day 0 (g/L) c | ||||||
Mild hypoalbuminemia | ||||||
(25–35) | 10 (16.1) | 37 (33.0) | 0 | 1 | 2.45 | 0.014 |
Severe hypoalbuminemia | ||||||
(<25) | 52 (83.9) | 75 (67.0) | 0.89 (0.36) | 2.43 (1.20–4.93) | ||
SOFA score Day 0 | ||||||
≤4 | 26 (42.0) | 101 (85.6) | 0 | 1 | ||
>4 | 36 (58.0) | 17 (14.4) | 1.63 (0.26) | 5.11 (3.06–8.54) | 6.22 | <0.001 |
Severity of infection Day 0 | ||||||
Not in sepsis | 15 (24.2) | 85 (72.0) | 0 | 1 | ||
Sepsis | 31 (50.0) | 25 (21.2) | 1.56 (0.33) | 4.77 (2.57–8,87) | 4.95 | <0.001 |
Septic shock | 16 (25.8) | 8 (6.8) | 1.80 (0.37) | 6.01 (3.00–12.21) | 4.96 | <0.001 |
CRP/Albumin ratio Day 0 d | ||||||
≤2 | 8 (40.0) | 16 (28.1) | 0 | 1 | ||
>2 | 12 (60.0) | 41 (71.9) | −0.11 | 0.89 (0.43–1.84) | −0.31 | 0.756 |
White cell count (×109/L) on intervention day | ||||||
≤11 | 28 (45.2) | 62 (52.5) | 0 | 1 | ||
>11 | 34 (54.8) | 56 (47.5) | 1.17 (0.26) | 3.21 (1.94–5.31) | 4.53 | <0.001 |
SOFA score on AMS intervention day | ||||||
≤4 | 25 (73.9) | 108 (91.5) | 0 | 1 | ||
>4 | 47 (26.1) | 10 (8.5) | 1.96 (0.27) | 7.10 (4.22–11.95) | 7.38 | <0.001 |
Severity of infection on intervention day | ||||||
Not in sepsis | 19 (30.7) | 99 (83.9) | 0 | 1 | ||
Sepsis | 30 (48.3) | 17 (14.4) | 1.70 (0.30) | 5.47 (3.06–9.75) | 5.75 | <0.001 |
Septic shock | 13 (20.0) | 2 (1.69) | 2.13 (0.37) | 8.44 (4.12–17.29) | 5.83 | <0.001 |
Variables | Event n = 62, Frequency (%) | Censored n = 118, Frequency (%) | b (SE) | Crude Hazards Ratio (95% CI) | Wald Statistic | p-Value |
---|---|---|---|---|---|---|
Presence of indwelling CVC | ||||||
No | 26 (42.0) | 96 (81.4) | 0 | 1 | ||
Yes | 36 (58.0) | 22 (18.6) | 1.32 (0.26) | 3.73 (2.24–6.22) | 5.04 | <0.001 |
Presence of indwelling urinary catheter | ||||||
No | 16 (25.8) | 73 (61.9) | 0 | 1 | ||
Yes | 46 (74.2) | 45 (38.1) | 1.18 (0.29) | 3.25 (1.84–5.74) | 4.05 | <0.001 |
Presence of pressure sore | ||||||
No | 29 (47.5) | 88 (74.6) | 0 | 1 | ||
Yes | 32 (52.5) | 30 (25.4) | 0.92 | 2.50 (1.50–4.15) | 3.53 | <0.001 |
Variables | Event n = 62 Frequency (%) | Censored n = 118 Frequency (%) | b (SE) | Crude Hazards Ratio (95% CI) | Wald Statistic | p-Value |
---|---|---|---|---|---|---|
Types of intervention | ||||||
No de-escalation | 18 (29.0) | 30 (25.4) | 0 | 1 | ||
Early de-escalation | 28 (45.2) | 51 (43.2) | −0.13 (0.31) | 0.87 (0.48–1.60) | −0.43 | 0.670 |
Late de-escalation | 16 (25.8) | 37 (31.4) | −0.31 (0.35) | 0.73 (0.37–1.45) | −0.89 | 0.373 |
Types of de-escalation | ||||||
No de-escalation | 18 (29.0) | 30 (25.4) | 0 | 1 | ||
Discontinuation | 23 (37.1) | 45 (38.2) | 0.27 (1.41) | 1.32 (0.08–21.03) | 0.19 | 0.846 |
Changing to narrow spectrum | 19 (30.7) | 38 (32.2) | 1.31 (1.15) | 3.70 (0.38–35.57) | 1.13 | 0.257 |
Shorten duration | 2 (3.2) | 5 (4.2) | 0.86 (1.01) | 2.37 (0.32–17.26) | 0.85 | 0.393 |
Univariable Analysis | Multivariable Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Variables | b (SE) | Crude Hazards Ratio (95% CI) | Wald Statistic | p-Value | b (SE) | Adjusted Hazards Ratio (95% CI) | Wald Statistic | p-Value |
SOFA score on AMS team intervention day | ||||||||
≤4 | 0 | 1 | 0 | 1 | ||||
>4 | 1.63 (0.26) | 5.11 (3.06–8.54) | 6.22 | <0.001 | 1.88 (0.27) | 6.61 (3.90–11.18) | 7.03 | <0.001 |
CCS | ||||||||
0–2 | 1 | 0 | 1 | |||||
≥3 | 0.84 (0.26) | 2.32 (1.40–3.86) | 3.26 | 0.001 | 0.67 (0.26) | 1.97 (1.17–3.30) | 2.57 | 0.01 |
Variables | b (SE) | Adjusted Hazards Ratio (95% CI) | Wald Statistic | p-Value |
---|---|---|---|---|
SOFA score on AMS team intervention day | ||||
≤4 | 0 | 1 | ||
>4 | 1.93 (0.27) | 6.88 (4.04–11.79) | 7.11 | <0.001 |
CCS | ||||
0–2 | 0 | 1 | ||
≥3 | 0.68 (0.27) | 1.97 (1.16–3.33) | 2.52 | 0.006 |
Types of intervention | ||||
No de-escalation | 0 | 1 | ||
Early de-escalation | −0.40 (0.31) | 0.67 (0.36–1.22) | −1.30 | 0.194 |
Late de-escalation | −0.35 (0.35) | 0.70 (0.35–1.41) | −0.99 | 0.321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teh, H.L.; Abdullah, S.; Ghazali, A.K.; Khan, R.A.; Ramadas, A.; Leong, C.L. Impact of Extended and Restricted Antibiotic Deescalation on Mortality. Antibiotics 2022, 11, 22. https://doi.org/10.3390/antibiotics11010022
Teh HL, Abdullah S, Ghazali AK, Khan RA, Ramadas A, Leong CL. Impact of Extended and Restricted Antibiotic Deescalation on Mortality. Antibiotics. 2022; 11(1):22. https://doi.org/10.3390/antibiotics11010022
Chicago/Turabian StyleTeh, Hwei Lin, Sarimah Abdullah, Anis Kausar Ghazali, Rahela Ambaras Khan, Anitha Ramadas, and Chee Loon Leong. 2022. "Impact of Extended and Restricted Antibiotic Deescalation on Mortality" Antibiotics 11, no. 1: 22. https://doi.org/10.3390/antibiotics11010022
APA StyleTeh, H. L., Abdullah, S., Ghazali, A. K., Khan, R. A., Ramadas, A., & Leong, C. L. (2022). Impact of Extended and Restricted Antibiotic Deescalation on Mortality. Antibiotics, 11(1), 22. https://doi.org/10.3390/antibiotics11010022