Antibiotics and Liver Cirrhosis: What the Physicians Need to Know
Abstract
:1. Introduction
1.1. Hypoalbuminemia
1.2. Infections and Liver Cirrhosis
2. Ascites and Spontaneous Bacterial Peritonitis
2.1. Empirical Antibiotic Therapy and Prophylaxis of Community Acquired PBS
2.2. Nosocomial SBP Therapy
3. Hepatic Encephalopathy
Antibiotic Use in Hepatic Encephalopathy
4. Renal Impairment
Hepatorenal Syndrome
5. Transjugular Intrahepatic Portosystemic Shunts (TIPS)
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Amarapurkar, D.N. Prescribing Medications in Patients with Decompensated Liver Cirrhosis. Int. J. Hepatol. 2011, 2011, 519526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.C.; Zhang, Q.B.; Qiao, L. Pathogenesis of liver cirrhosis. World J. Gastroenterol. 2014, 20, 7312–7324. [Google Scholar] [CrossRef]
- Verbeeck, R.K. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur. J. Clin. Pharmacol. 2008, 64, 1147–1161. [Google Scholar] [CrossRef]
- Elbekai, R.; Korashy, H.; El-Kadi, A. The Effect of Liver Cirrhosis on the Regulation and Expression of Drug Metabolizing Enzymes. Curr. Drug Metab. 2004, 5, 157–167. [Google Scholar] [CrossRef]
- Lewis, J.H.; Stine, J. Review article: Prescribing medications in patients with cirrhosis—A practical guide. Aliment. Pharmacol. Ther. 2013, 37, 1132–1156. [Google Scholar] [CrossRef]
- Gatta, A.; Verardo, A.; Bolognesi, M. Hypoalbuminemia. Intern. Emerg. Med. 2012, 7 (Suppl. 3), S193–S199. [Google Scholar] [CrossRef]
- Franch-Arcas, G. The meaning of hypoalbuminaemia in clinical practice. Clin. Nutr. 2001, 20, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.; Wolmarans, M.; Park, G. The role of albumin in critical illness. Br. J. Anaesth. 2000, 85, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Rothschild, M.A.; Oratz, M.; Schreiber, S.S. Serum albumin. Hepatology 1988, 8, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Roberts, J.A.; Roberts, J.A.; Rello, J.; Paterson, D.L.; Lipman, J. The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients. Clin. Pharmacokinet. 2011, 50, 99–110. [Google Scholar] [CrossRef]
- Zusman, O.; Farbman, L.; Tredler, Z.; Daitch, V.; Lador, A.; Leibovici, L.; Paul, M. Association between hypoalbuminemia and mortality among subjects treated with ertapenem versus other carbapenems: Prospective cohort study. Clin. Microbiol. Infect. 2014, 21, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Bartoletti, M.; Giannella, M.; Lewis, R.E.; Caraceni, P.; Tedeschi, S.; Paul, M.; Schramm, C.; Bruns, T.; Merli, M.; Cobos-Trigueros, N.; et al. Extended Infusion of β-Lactams for Bloodstream Infection in Patients with Liver Cirrhosis: An Observational Multicenter Study. Clin. Infect. Dis. 2019, 69, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, M.; Giannella, M.; Lewis, R.; Caraceni, P.; Tedeschi, S.; Paul, M.; Schramm, C.; Bruns, T.; Merli, M.; Cobos-Trigueros, N.; et al. A prospective multicentre study of the epidemiology and outcomes of bloodstream infection in cirrhotic patients. Clin. Microbiol. Infect. 2018, 24, 546.e1–546.e8. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Acevedo, J. New antibiotic strategies in patients with cirrhosis and bacterial infection. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Wiest, R.; Garcia-Tsao, G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005, 41, 422–433. [Google Scholar] [CrossRef]
- Bone, R.C.; Grodzin, C.J.; Balk, R.A. Sepsis: A New Hypothesis for Pathogenesis of the Disease Process. Chest 1997, 112, 235–243. [Google Scholar] [CrossRef]
- Pleguezuelo, M.; Benitez, J.M.; Jurado, J.; Montero, J.L.; De La Mata, M. Diagnosis and management of bacterial infections in decompensated cirrhosis. World J. Hepatol. 2013, 5, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Plessier, A.; Denninger, M.-H.; Consigny, Y.; Pessione, F.; Francoz, C.; Durand, F.; Francque, S.; Bezeaud, A.; Chauvelot-Moachon, L.; Lebrec, D.; et al. Coagulation disorders in patients with cirrhosis and severe sepsis. Liver Int. 2003, 23, 440–448. [Google Scholar] [CrossRef]
- Adenote, A.; Dumic, I.; Madrid, C.; Barusya, C.; Nordstrom, C.W.; Prada, L.R. NAFLD and Infection, a Nuanced Relationship. Can. J. Gastroenterol. Hepatol. 2021, 2021, 5556354. [Google Scholar] [CrossRef]
- Alba-Loureiro, T.; Munhoz, C.; Martins, J.; Cerchiaro, G.; Scavone, C.; Curi, R.; Sannomiya, P. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz. J. Med. Biol. Res. 2007, 40, 1037–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targher, G.; Bertolini, L.; Scala, L.; Cigolini, M.; Zenari, L.; Falezza, G.; Arcaro, G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Jun, D.W.; Cho, Y.K.; Jang, K.S. Vitamin D deficiency in non-alcoholic fatty liver disease: The chicken or the egg? Clin. Nutr. 2015, 36, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Jalan, R.; Fernandez, J.; Wiest, R.; Schnabl, B.; Moreau, R.; Angeli, P.; Stadlbauer, V.; Gustot, T.; Bernardi, M.; Canton, R.; et al. Bacterial infections in cirrhosis: A position statement based on the EASL Special Conference 2013. J. Hepatol. 2014, 60, 1310–1324. [Google Scholar] [CrossRef] [PubMed]
- Miele, L.; Valenza, V.; La Torre, G.; Montalto, M.; Cammarota, G.; Ricci, R.; Mascianà, R.; Forgione, A.; Gabrieli, M.L.; Perotti, G.; et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009, 49, 1877–1887. [Google Scholar] [CrossRef]
- Bunchorntavakul, C.; Chavalitdhamrong, D. Bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. World J. Hepatol. 2012, 4, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Navasa, M.; Gómez, J.; Colmenero, J.; Vila, J.; Arroyo, V.; Rodés, J. Bacterial infections in cirrhosis: Epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002, 35, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Caly, W.R.; Strauss, E. A prospective study of bacterial infections in patients with cirrhosis. J. Hepatol. 1993, 8, 353–358. [Google Scholar] [CrossRef]
- Fernández, J.; Prado, V.; Trebicka, J.; Amoros, A.; Gustot, T.; Wiest, R.; Deulofeu, C.; Garcia, E.; Acevedo, J.; Fuhrmann, V.; et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J. Hepatol. 2018, 70, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Piano, S.; Singh, V.; Caraceni, P.; Maiwall, R.; Alessandria, C.; Fernandez, J.; Soares, E.C.; Kim, D.J.; Kim, S.E.; Marino, M.; et al. Epidemiology and Effects of Bacterial Infections in Patients with Cirrhosis Worldwide. Gastroenterology 2019, 156, 1368–1380.e10. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, J.S.; O’Leary, J.G.; Reddy, K.R.; Wong, F.; Olson, J.C.; Subramanian, R.M.; Brown, G.; Noble, N.A.; Thacker, L.R.; Kamath, P.S.; et al. Second infections independently increase mortality in hospitalized patients with cirrhosis: The north american consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology 2012, 56, 2328–2335. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Acevedo, J.; Castro, M.; Garcia, O.; Rodriguez-Lope, C.; Roca, D.; Pavesi, M.; Solà, E.; Moreira, L.; Silva, A.; et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: A prospective study. Hepatology 2012, 55, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Gustot, T. Management of bacterial infections in cirrhosis. J. Hepatol. 2012, 56, S1–S12. [Google Scholar] [CrossRef]
- Milovanovic, T.; Dumic, I.; Veličkovic, J.; Lalosevic, M.S.; Nikolic, V.; Palibrk, I. Epidemiology and risk factors for multi-drug resistant hospital-acquired urinary tract infection in patients with liver cirrhosis: Single center experience in Serbia. BMC Infect. Dis. 2019, 19, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginés, P.; Quintero, E.; Arroyo, V.; Terés, J.; Bruguera, M.; Rimola, A.; Caballería, J.; Rodés, J.; Rozman, C. Compensated cirrhosis: Natural history and prognostic factors. Hepatology 1987, 7, 122–128. [Google Scholar] [CrossRef]
- Tandon, P.; Garcia-Tsao, G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin. Liver Dis. 2008, 28, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Guevara, M.; Cárdenas, A.; Uriz, J.; Ginès, P. Prognosis in patients with cirrhosis and ascites. In Ascites and Renal Dysfunction in Liver Disease: Pathogenesis, Diagnosis and Treatment; Ginès, P., Arroyo, V., Rodés, J., Schrier, R.W., Eds.; Blackwell: Malden, MA, USA, 2005; pp. 260–270. [Google Scholar]
- Rimola, A.; García-Tsao, G.; Navasa, M.; Piddock, L.J.; Planas, R.; Bernard, B.; Inadomi, J.M. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: A consensus document. J. Hepatol. 2000, 32, 142–153. [Google Scholar] [CrossRef]
- Wong, F.; Bernardi, M.; Balk, R.; Christman, B.; Moreau, R.; Garcia-Tsao, G.; Patch, D.; Soriano, G.; Hoefs, J.; Navasa, M. Sepsis in cirrhosis: Report on the 7th meeting of the International Ascites Club. Gut 2005, 54, 718–725. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J. Hepatol. 2010, 53, 397–417. [Google Scholar] [CrossRef]
- Runyon, B.A. Management of adult patients with ascites due to cirrhosis: An update. Hepatology 2009, 49, 2087–2107. [Google Scholar] [CrossRef]
- Garcia-Tsao, G. Current management of the complications of cirrhosis and portal hypertension: Variceal hemorrhage, ascites, and spontaneous bacterial peritonitis. Gastroenterology 2001, 120, 726–748. [Google Scholar] [CrossRef]
- Guarner-Argente, C.; Sánchez, E.; Vidal, S.; Roman, E.; Concepción, M.; Poca, M.; Sanchez, D.; Juárez, C.; Soriano, G.; Guarner, C. Toll-like receptor 4 D299G polymorphism and the incidence of infections in cirrhotic patients. Aliment. Pharmacol. Ther. 2010, 31, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-S.; Chen, G.-H.; Lien, H.-C.; Yeh, H.-Z. Small intestine dysmotility and bacterial overgrowth in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 1998, 28, 1187–1190. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, M.; Campigotto, M.; Campisciano, G.; Comar, M.; Crocè, L.S. A story of liver and gut microbes: How does the intestinal flora affect liver disease? A review of the literature. Am. J. Physiol. Liver Physiol. 2020, 318, G889–G906. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, M.; Moretti, R.; Campisciano, G.; Da Silveira, A.B.M.; Monda, V.M.; Comar, M.; Di Bella, S.; Antonello, R.M.; Luzzati, R.; Crocè, L.S. You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. J. Clin. Med. 2020, 9, 3705. [Google Scholar] [CrossRef] [PubMed]
- Felisart, J.; Rimola, A.; Arroyo, V.; Perez-Ayuso, R.M.; Quintero, E.; Ginès, P.; Rodes, J. Cefotaxime is more effective than is ampicillin-tobramycin in cirrhotics with severe infections. Hepatology 1985, 5, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Ricart, E.; Soriano, G.; Novella, M.T.; Ortiz, J.; Sàbat, M.; Kolle, L.; Sola-Vera, J.; Miñana, J.; Dedéu, J.M.; Gómez, C.; et al. Amoxicillin-clavulanic acid versus cefotaxime in the therapy of bacterial infections in cirrhotic patients. J. Hepatol. 2000, 32, 596–602. [Google Scholar] [CrossRef]
- Dalmau, D.; Layrargues, G.P.; Fenyves, D.; Willems, B.; Turgeon, F.; Turgeon, P. Cefotaxime, Desacetyl-Cefotaxime, and Bactericidal Activity in Spontaneous Bacterial Peritonitis. J. Infect. Dis. 1999, 180, 1597–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazer, L.; Tapper, E.B.; Piatkowski, G.; Lai, M. The need for antibiotic stewardship and treatment standardization in the care of cirrhotic patients with spontaneous bacterial peritonitis—A retrospective cohort study examining the effect of ceftriaxone dosing. F1000Research 2014, 3, 57. [Google Scholar] [CrossRef]
- Fernández, J.; del Arbol, L.R.; Gómez, C.; Durandez, R.; Serradilla, R.; Guarner, C.; Planas, R.; Arroyo, V.; Navasa, M. Norfloxacin vs. Ceftriaxone in the Prophylaxis of Infections in Patients with Advanced Cirrhosis and Hemorrhage. Gastroenterology 2006, 131, 1049–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terg, R.; Cobas, S.; Fassio, E.; Landeira, G.; Ríos, B.; Vasen, W.; Abecasis, R.; Ríos, H.; Guevara, M. Oral ciprofloxacin after a short course of intravenous ciprofloxacin in the treatment of spontaneous bacterial peritonitis: Results of a multicenter, randomized study. J. Hepatol. 2000, 33, 564–569. [Google Scholar] [CrossRef]
- Navasa, M.; Follo, A.; Llovet, J.M.; Clemente, G.; Vargas, V.; Rimola, A.; Marco, F.; Guarner, C.; Forne, M.; Planas, R.; et al. Randomized, comparative study of oral ofloxacin versus intravenous cefotaxime in spontaneous bacterial peritonitis. Gastroenterology 1996, 111, 1011–1017. [Google Scholar] [CrossRef]
- Ginès, P.; Rimola, A.; Planas, R.; Vargas, V.; Marco, F.; Almela, M.; Forne, M.; Miranda, M.L.; Llach, J.; Salmerón, J.M.; et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: Results of a double-blind, placebo-controlled trial. Hepatology 1990, 12, 716–724. [Google Scholar] [CrossRef]
- Lefrock, J.L.; Prince, R.A.; Left, R.D. Mechanism of Action, Antimicrobial Activity, Pharmacology, Adverse Effects, and Clinical Efficacy of Cefotaxime. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1982, 2, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Ko, R.J.; Sattler, F.R.; Nichols, S.; Akriviadis, E.; Runyon, B.; Appleman, M.; Cohen, J.L.; Koda, R.T. Pharmacokinetics of cefotaxime and desacetylcefotaxime in patients with liver disease. Antimicrob. Agents Chemother. 1991, 35, 1376–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graninger, W.; Uihlein, M.; Ferenci, P.; Moser, C.; Georgopoulos, A. Cefotaxime and desacetyl-cefotaxime blood levels in hepatic dysfunction. J. Antimicrob. Chemother. 1984, 14, 143–146. [Google Scholar] [CrossRef]
- Hary, L.; Andrejak, M.; Leleu, S.; Orfila, J.; Capron, J.P. The pharmacokinetics of ceftriaxone and cefotaxime in cirrhotic patients with ascites. Eur. J. Clin. Pharmacol. 1989, 36, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Westphal, J.-F.; Brogard, J.-M. Drug Administration in Chronic Liver Disease. Drug Saf. 1997, 17, 47–73. [Google Scholar] [CrossRef]
- Kalkut, G. Sulfonamides and trimethoprim. Cancer Investig. 1998, 16, 612–615. [Google Scholar] [CrossRef]
- Lontos, S.; Shelton, E.; Angus, P.W.; Vaughan, R.; Roberts, S.K.; Gordon, A.; Gow, P.J. A randomized controlled study of trimethoprim-sulfamethoxazoleversusnorfloxacin for the prevention of infection in cirrhotic patients. J. Dig. Dis. 2014, 15, 260–267. [Google Scholar] [CrossRef]
- Alvarez, R.F.; De Mattos, A.A.; Corrêa, E.B.D.; Cotrim, H.P.; Nascimento, T.V.S.B. Trimethoprim-sulfamethoxazole versus norfloxacin in the prophylaxis of spontaneous bacterial peritonitis in cirrhosis. Arq. Gastroenterol. 2005, 42, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inadomi, J.; Sonnenberg, A. Cost-analysis of prophylactic antibiotics in spontaneous bacterial peritonitis. Gastroenterology 1997, 113, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Gayowski, T.; Yu, V.L.; Wagener, M.M. Trimethoprim-Sulfamethoxazole for the Prevention of Spontaneous Bacterial Peritonitis in Cirrhosis. Ann. Intern. Med. 1995, 122, 595–598. [Google Scholar] [CrossRef]
- Korth-Bradley, J.M.; Baird-Bellaire, S.J.; Patat, A.A.; Troy, S.M.; Böhmer, G.M.; Gleiter, C.H.; Buecheler, R.; Morgan, M.Y. Pharmacokinetics and Safety of a Single Intravenous Dose of the Antibiotic Tigecycline in Patients with Cirrhosis. J. Clin. Pharmacol. 2011, 51, 93–101. [Google Scholar] [CrossRef]
- Fiore, M.; Maraolo, A.E.; Gentile, I.; Borgia, G.; Leone, S.; Sansone, P.; Passavanti, M.B.; Aurilio, C.; Pace, M.C. Nosocomial spontaneous bacterial peritonitis antibiotic treatment in the era of multi-drug resistance pathogens: A systematic review. World J. Gastroenterol. 2017, 23, 4654–4660. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Arroyo, V. Bacterial infections in cirrhosis: A growing problem with significant implications. Clin. Liver Dis. 2013, 2, 102–105. [Google Scholar] [CrossRef]
- Dever, J.B.; Sheikh, M.Y. Review article: Spontaneous bacterial peritonitis—Bacteriology, diagnosis, treatment, risk factors and prevention. Aliment. Pharmacol. Ther. 2015, 41, 1116–1131. [Google Scholar] [CrossRef]
- Solà, E.; Solé, C.; Ginès, P. Management of uninfected and infected ascites in cirrhosis. Liver Int. 2016, 36, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Retamar, P.; López-Cerero, L.; Muniain, M.A.; Pascual, Á.; Rodríguez-Baño, J.; The ESBL-REIPI/GEIH Group. Impact of the MIC of Piperacillin-Tazobactam on the Outcome of Patients with Bacteremia Due to Extended-Spectrum-β-Lactamase-Producing Escherichia coli. Antimicrob. Agents Chemother. 2013, 57, 3402–3404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, J.R. Meropenem: A microbiological overview. J. Antimicrob. Chemother. 1995, 36, 1–17. [Google Scholar] [CrossRef]
- Shirali, A.; Pazhayattil, G.S. Drug-induced impairment of renal function. Int. J. Nephrol. Renov. Dis. 2014, 7, 457–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenstein, B.I.; Oleson, F.B., Jr.; Baltz, R.H. Daptomycin: From the Mountain to the Clinic, with Essential Help from Francis Tally, MD. Clin. Infect. Dis. 2010, 50, S10–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, M.; Andreana, L.; Leone, S. Treatment of spontaneous bacterial peritonitis: Beyond the current international guidelines. Liver Int. 2016, 36, 918. [Google Scholar] [CrossRef] [PubMed]
- Renzoni, A.M.; Kelley, W.L.; Rosato, R.R.; Martinez-Moral, M.-P.; Roch, M.; Fatouraei, M.; Haeusser, D.P.; Margolin, W.; Fenn, S.; Turner, R.D.; et al. Molecular Bases Determining Daptomycin Resistance-Mediated Resensitization to β-Lactams (Seesaw Effect) in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2017, 61, e01634-16. [Google Scholar] [CrossRef] [Green Version]
- Fiore, M.; Andreana, L. The Possible Role of Anti-Methicillin-Resistant Staphylococcus Aureus Antimicrobial Agents in Spontaneous Bacterial Peritonitis. Infect. Dis. Rep. 2015, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P.; Talwalkar, J.A.; Conjee-varam, H.S.; et al. Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the European Association for the Study of the Liver and the American Association for the Study of Liver Diseases. J. Hepatol. 2014, 61, 642–659. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Cordoba, J.; Mullen, K.D.; Amodio, P.; Shawcross, D.; Butterworth, R.F.; Morgan, M.Y. Review article: The design of clinical trials in hepatic encephalopathy—An International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. Aliment. Pharmacol. Ther. 2011, 33, 739–747. [Google Scholar] [CrossRef]
- Patidar, K.R.; Bajaj, J.S. Antibiotics for the treatment of hepatic encephalopathy. Metab. Brain Dis. 2013, 28, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Moretti, R.; Gazzin, S.; Crocè, L.S.; Baso, B.; Masutti, F.; Bedogni, G.; Tiribelli, C. Rapid identification system of frontal dysfunction in subclinical hepatic encephalopathy. Ann. Hepatol. 2016, 15, 559–567. [Google Scholar] [PubMed]
- Kircheis, G.; Wettstein, M.; Timmermann, L.; Schnitzler, A.; Häussinger, D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 2002, 35, 357–366. [Google Scholar] [CrossRef]
- Córdoba, J. New assessment of hepatic encephalopathy. J. Hepatol. 2011, 54, 1030–1040. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, A.H.; Yap, E.W.H.; Wong, W.-H. Cerebral Ammonia Metabolism in Patients with Severe Liver Disease and Minimal Hepatic Encephalopathy. J. Cereb. Blood Flow Metab. 1991, 11, 337–341. [Google Scholar] [CrossRef]
- Lockwood, A.H.; Weissenborn, K.; Butterworths, R.F. An image of the brain in patients with liver disease. Curr. Opin. Neurol. 1997, 10, 525–533. [Google Scholar] [CrossRef]
- Hermenegildo, C.; Marcaida, G.; Montoliu, C.; Grisolia, S.; Miñana, M.-D.; Felipo, V. NMDA Receptor antagonists prevent acute ammonia toxicity in mice. Neurochem. Res. 1996, 21, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Shawcross, D.; Davies, N.A.; Williams, R.; Jalan, R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol. 2004, 40, 247–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalan, R.; Damink, S.W.O.; Hayes, P.C.; Deutz, N.; Lee, A. Pathogenesis of intracranial hypertension in acute liver failure: Inflammation, ammonia and cerebral blood flow. J. Hepatol. 2004, 41, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Zemtsova, I.; Görg, B.; Keitel, V.; Bidmon, H.-J.; Schrör, K.; Häussinger, D. Microglia activation in hepatic encephalopathy in rats and humans. Hepatology 2011, 54, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Montoliu, C.; Piedrafita, B.; Serra, M.A.; del Olmo, J.A.; Urios, A.; Rodrigo, J.M.; Felipo, V. IL-6 and IL-18 in Blood May Discriminate Cirrhotic Patients with and without Minimal Hepatic Encephalopathy. J. Clin. Gastroenterol. 2009, 43, 272–279. [Google Scholar] [CrossRef]
- Cauli, O.; Rodrigo, R.; Piedrafita, B.; Llansola, M.; Mansouri, M.T.; Felipo, V. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: Ibuprofen restores its motor activity. J. Neurosci. Res. 2009, 87, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, J.; Alonso, J.; Rovira, A.; Jacas, C.; Sanpedro, F.; Castells, L.; Vargas, V.; Margarit, C.; Kulisewsky, J.; Esteban, R.; et al. The development of low-grade cerebral edema in cirrhosis is supported by the evolution of 1H-magnetic resonance abnormalities after liver transplantation. J. Hepatol. 2001, 35, 598–604. [Google Scholar] [CrossRef]
- Timmermann, L.; Gross, J.; Butz, M.; Kircheis, G.; Häussinger, D.; Schnitzler, A. Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 2003, 61, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Felipo, V.; Ordoño, J.F.; Urios, A.; El Mlili, N.; Giménez-Garzó, C.; Aguado, C.; González-Lopez, O.; Giner-Duran, R.; Serra, M.A.; Wassel, A.; et al. Patients with minimal hepatic encephalopathy show impaired mismatch negativity correlating with reduced performance in attention tests. Hepatology 2012, 55, 530–539. [Google Scholar] [CrossRef]
- Qi, R.; Xu, Q.; Zhang, L.J.; Zhong, J.; Zheng, G.; Wu, S.; Zhang, Z.; Liao, W.; Zhong, Y.; Ni, L.; et al. Structural and Functional Abnormalities of Default Mode Network in Minimal Hepatic Encephalopathy: A Study Combining DTI and fMRI. PLoS ONE 2012, 7, e41376. [Google Scholar] [CrossRef]
- Raabe, W. Synaptic transmission in ammonia intoxication. Neurochem. Pathol. 1987, 6, 145–166. [Google Scholar] [CrossRef]
- Szerb, J.C.; Butterworth, R.F. Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog. Neurobiol. 1992, 39, 135–153. [Google Scholar] [CrossRef]
- Schmidt, W.; Wolf, G.; Meier, M.; Reum, T. Hepatic encephalopathy influences high-affinity uptake of transmitter glutamate and aspartate into the hippocampal formation. Metab. Brain Dis. 1990, 5, 19–31. [Google Scholar] [CrossRef]
- Chan, H.; Hazell, A.S.; Desjardins, P.; Butterworth, R.F. Effects of ammonia on glutamate transporter (GLAST) protein and mRNA in cultured rat cortical astrocytes. Neurochem. Int. 2000, 37, 243–248. [Google Scholar] [CrossRef]
- Suárez, I.; Bodega, G.; Fernández, B. Modulation of glutamate transporters (GLAST, GLT-1 and EAAC1) in the rat cerebellum following portocaval anastomosis. Brain Res. 2000, 859, 293–302. [Google Scholar] [CrossRef]
- Michalak, A.; Butterworth, R.F. Selective loss of binding sites for the glutamate receptor ligands [3H]kainate and (S)-[3H]5-fluorowillardiine in the brains of rats with acute liver failure. Hepatology 1997, 25, 631–635. [Google Scholar] [CrossRef]
- Onyekwere, C.A.; Ogbera, A.O.; Hameed, L. Chronic liver disease and hepatic encephalopathy: Clinical profile and outcomes. Niger. J. Clin. Pract. 2011, 14, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Vogels, B.A.; Maas, M.A.; Daalhuisen, J.; Quack, G.; Chamuleau, R.A. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology 1997, 25, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Borkowska, H.D.; Oja, S.S.; Hilgier, W.; Saransaari, P.; Albrecht, J. Effect of acute hepatic encephalopathy on [3H]dopamine release from rat cerebral cortex and striatum in vitro: Role of Ca2+. Acta Neurobiol. Exp. 2000, 60, 1–7. [Google Scholar]
- Hermenegildo, C.; Monfort, P.; Felipo, V. Activation ofN-methyl-D-aspartate receptors in rat brainin vivo following acute ammonia intoxication: Characterization byin vivo brain microdialysis. Hepatology 2000, 31, 709–715. [Google Scholar] [CrossRef]
- Felipo, V. Hepatic encephalopathy: Effects of liver failure on brain function. Nat. Rev. Neurosci. 2013, 14, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Hilgier, W.; Zielińska, M.; Borkowska, H.; Gadamski, R.; Walski, M.; Oja, S.; Saransaari, P.; Albrecht, J. Changes in the extracellular profiles of neuroactive amino acids in the rat striatum at the asymptomatic stage of hepatic failure. J. Neurosci. Res. 1999, 56, 76–84. [Google Scholar] [CrossRef]
- Bender, A.S.; Norenberg, M.D. Effect of ammonia on GABA uptake and release in cultured astrocytes. Neurochem. Int. 2000, 36, 389–395. [Google Scholar] [CrossRef]
- Butterworth, R.F. The astrocytic (“peripheral-type”) benzodiazepine receptor: Role in the pathogenesis of portal-systemic encephalopathy. Neurochem. Int. 2000, 36, 411–416. [Google Scholar] [CrossRef]
- Desjardins, P.; Bandeira, P.; Rao, V.R.; Ledoux, S.; Butterworth, R.F. Increased expression of the peripheral-type benzodiazepine receptor-isoquinoline carboxamide binding protein mRNA in brain following portacaval anastomosis. Brain Res. 1997, 758, 255–258. [Google Scholar] [CrossRef]
- Itzhak, Y.; Roig-Cantisano, A.; Dombro, R.S.; Norenberg, M.D. Acute liver failure and hyperammonemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res. 1995, 705, 345–348. [Google Scholar] [CrossRef]
- Malecki, E.A.; Devenyi, A.G.; Barron, T.F.; Mosher, T.; Eslinger, P.; Flaherty-Craig, C.V.; Rossaro, L. Iron and manganese homeostasis in chronic liver disease: Relationship to pallidal T1-weighted magnetic resonance signal hyperintensity. Neurotoxicology 1999, 20, 647–652. [Google Scholar]
- Hazell, A.S.; Desjardins, P.; Butterworth, R.F. Increased expression of glyceraldehyde-3-phosphate dehydrogenase in cultured astrocytes following exposure to manganese. Neurochem. Int. 1999, 35, 11–17. [Google Scholar] [CrossRef]
- Bengtsson, F.; Bugge, M.; Johansen, K.H.; Butterworth, R.F. Brain Tryptophan Hydroxylation in the Portacaval Shunted Rat: A Hypothesis for the Regulation of Serotonin Turnover In Vivo. J. Neurochem. 1991, 56, 1069–1074. [Google Scholar] [CrossRef]
- Mousseau, D.D.; Perney, P.; Layrargues, G.P.; Butterworth, R.F. Selective loss of pallidal dopamine D2 receptor density in hepatic encephalopathy. Neurosci. Lett. 1993, 162, 192–196. [Google Scholar] [CrossRef]
- Lozeva, V.; Valjakka, A.; Lecklin, A.; Olkkonen, H.; Hippelainen, M.; Itkonen, M.; Plumed, C.; Tuomisto, L. Effects of the histamine H1receptor blocker, pyrilamine, on spontaneous locomotor activity of rats with long-term portacaval anastomosis. Hepatology 2000, 31, 336–344. [Google Scholar] [CrossRef]
- Lozeva, V.; Lecrlin, A.; Tuomisto, L.; Butterworth, R. Induction of H-1 and H-3 histaminergic receptor subtypes in autopsied brain tissue from cirrhotic patients: Role in the pathogenesis of portal-systemic encephalopathy? Hepatology 2000, 32, 221A. [Google Scholar]
- Thornton, J.R.; Losowsky, M.S. Plasma methionine enkephalin concentration and prognosis in primary biliary cirrhosis. BMJ 1988, 297, 1241–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Waele, J.; Audet, R.M.; Leong, D.K.; Butterworth, R.F. Portacaval anastomosis induces region-selective alterations of the endogenous opioid system in the rat brain. Hepatology 1996, 24, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; Rimola, A.; Ventura, P.-J.; Navasa, M.; Cirera, I.; Reggiardo, V.; Rodés, J. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J. Hepatol. 1999, 30, 890–895. [Google Scholar] [CrossRef]
- Bajaj, J.S. The role of microbiota in hepatic encephalopathy. Gut Microbes 2014, 5, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.C.; Sharma, P.; Agrawal, A.; Sarin, S.K. Secondary Prophylaxis of Hepatic Encephalopathy: An Open-Label Randomized Controlled Trial of Lactulose Versus Placebo. Gastroenterology 2009, 137, 885–891.e1. [Google Scholar] [CrossRef]
- Montagnese, S.; Russo, F.P.; Amodio, P.; Burra, P.; Gasbarrini, A.; Loguercio, C.; Marchesini, G.; Merli, M.; Ponziani, F.R.; Riggio, O.; et al. Hepatic encephalopathy 2018: A clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig. Liver Dis. 2019, 51, 190–205. [Google Scholar] [CrossRef]
- Berk, D.P.; Chalmers, T. Deafness Complicating Antibiotic Therapy of Hepatic Encephalopathy. Ann. Intern. Med. 1970, 73, 393. [Google Scholar] [CrossRef]
- Loft, S.; Sonne, J.; Døssing, M.; Andreasen, P.B. Metronidazole Pharmacokinetics in Patients with Hepatic Encephalopathy. Scand. J. Gastroenterol. 1987, 22, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Rodighiero, V. Effects of Liver Disease on Pharmacokinetics. Clin. Pharmacokinet. 1999, 37, 399–431. [Google Scholar] [CrossRef] [PubMed]
- Halilovic, J.; Heintz, B.H. Antibiotic dosing in cirrhosis. Am. J. Health Pharm. 2014, 71, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Delcò, F.; Tchambaz, L.; Schlienger, R.; Drewe, J.; Krähenbühl, S. Dose Adjustment in Patients with Liver Disease. Drug Saf. 2005, 28, 529–545. [Google Scholar] [CrossRef]
- Al-Kareemy, E.; Sobh, M.; Muhammad, A.; Mostafa, M.; Saber, R. Renal dysfunction in liver cirrhosis: Renal duplex Doppler US vs. scintigraphy for early identification. Clin. Radiol. 1998, 53, 44–48. [Google Scholar] [CrossRef]
- Krahenbuhl, S. Carnitine metabolism in patients with chronic liver disease. Hepatology 1997, 25, 148–153. [Google Scholar] [CrossRef]
- Takabatake, T.; Ohta, H.; Ishida, Y.-I.; Hara, H.; Ushiogi, Y.; Hattori, N. Low Serum Creatinine Levels in Severe Hepatic Disease. Arch. Intern. Med. 1988, 148, 1313–1315. [Google Scholar] [CrossRef]
- Montay, G.; Gaillot, J. Pharmacokinetics of fluoroquinolones in hepatic failure. J. Antimicrob. Chemother. 1990, 26, 61–67. [Google Scholar] [CrossRef]
- Sambatakou, H.; Giamarellos-Bourboulis, E.J.; Galanakis, N.; Giamarellou, H. Pharmacokinetics of fluoroquinolones in uncompensated cirrhosis: The significance of penetration in the ascitic fluid. Int. J. Antimicrob. Agents 2001, 18, 441–444. [Google Scholar] [CrossRef]
- Lewis, G.P.; Jusko, W.J. Pharmacokinetics of ampicillin in cirrhosis. Clin. Pharmacol. Ther. 1975, 18, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, J.; Prado, V.; Fernández, J. Changing Options for Prevention and Treatment of Infections in Cirrhosis. Curr. Treat. Options Gastroenterol. 2014, 12, 256–267. [Google Scholar] [CrossRef]
- Pauly, D.J.; Musa, D.M.; Lestico, M.R.; Lindstrom, M.J.; Hetsko, C.M. Risk of nephrotoxicity with combination vancomycin-aminoglycoside antibiotic therapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1990, 10, 378–382. [Google Scholar]
- Angeli, P.; Gines, P.; Wong, F.; Bernardi, M.; Boyer, T.D.; Gerbes, A.L.; Moreau, R.; Jalan, R.; Sarin, S.K.; Piano, S.; et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: Revised consensus recommendations of the International Club of Ascites. Gut 2015, 64, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, F.; Nadim, M.K.; Kellum, J.A.; Salerno, F.; Bellomo, R.; Gerbes, A.; Angeli, P.; Moreau, R.; Davenport, A.; Jalan, R.; et al. Working Party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut 2011, 60, 702–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasolato, S.; Angeli, P.; Dallagnese, L.; Maresio, G.; Zola, E.; Mazza, E.; Salinas, F.; Donà, S.; Fagiuoli, S.; Sticca, A.; et al. Renal failure and bacterial infections in patients with cirrhosis: Epidemiology and clinical features. Hepatology 2007, 45, 223–229. [Google Scholar] [CrossRef]
- Sort, P.; Navasa, M.; Arroyo, V.; Aldeguer, X.; Planas, R.; Ruiz-Del-Arbol, L.; Castells, L.; Vargas, V.; Soriano, G.; Guevara, M.; et al. Effect of Intravenous Albumin on Renal Impairment and Mortality in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. N. Engl. J. Med. 1999, 341, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Piano, S.; Tonon, M.; Angeli, P. Changes in the epidemiology and management of bacterial infections in cirrhosis. Clin. Mol. Hepatol. 2021, 27, 437–445. [Google Scholar] [CrossRef]
- Bunchorntavakul, C.; Chamroonkul, N.; Chavalitdhamrong, D. Bacterial infections in cirrhosis: A critical review and practical guidance. World J. Hepatol. 2016, 8, 307–321. [Google Scholar] [CrossRef]
- Cheong, H.S.; Kang, C.; Lee, J.A.; Moon, S.Y.; Joung, M.K.; Chung, D.R.; Koh, K.C.; Lee, N.Y.; Song, J.; Peck, K.R. Clinical Significance and Outcome of Nosocomial Acquisition of Spontaneous Bacterial Peritonitis in Patients with Liver Cirrhosis. Clin. Infect. Dis. 2009, 48, 1230–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, K.-H.; Jeon, J.H.; Park, W.B.; Park, S.-W.; BIN Kim, H.; Oh, M.-D.; Lee, H.-S.; Kim, N.J.; Choe, K.W. Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiellaspecies: A retrospective matched case-control study. BMC Infect. Dis. 2009, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, J.; Seo, Y.S.; Yim, H.J.; Hahn, T.; Park, S.H.; Ahn, S.H.; Park, J.Y.; Park, J.Y.; Kim, M.Y.; Park, S.K.; et al. Clinical Features and Prognosis of Spontaneous Bacterial Peritonitis in Korean Patients with Liver Cirrhosis: A Multicenter Retrospective Study. Gut Liver 2009, 3, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, F.; Merli, M.; Savelli, F.; Valeriano, V.; Zambruni, A.; Riggio, O.; Caraceni, P.; Domenicali, M.; Bernardi, M. QT interval in patients with non-cirrhotic portal hypertension and in cirrhotic patients treated with transjugular intrahepatic porto-systemic shunt. J. Hepatol. 2003, 38, 461–467. [Google Scholar] [CrossRef]
- Vuppalanchi, R.; Juluri, R.; Ghabril, M.; Kim, S.; Thong, N.; Gorski, J.C.; Chalasani, N.; Hall, S.D. Drug-induced QT Prolongation in Cirrhotic Patients with Transjugular Intrahepatic Portosystemic Shunt. J. Clin. Gastroenterol. 2011, 45, 638–642. [Google Scholar] [CrossRef]
- Ripoll, C.; Groszmann, R.; Garcia–Tsao, G.; Grace, N.; Burroughs, A.; Planas, R.; Escorsell, A.; Garcia-Pagan, J.C.; Makuch, R.; Patch, D.; et al. Hepatic Venous Pressure Gradient Predicts Clinical Decompensation in Patients with Compensated Cirrhosis. Gastroenterology 2007, 133, 481–488. [Google Scholar] [CrossRef] [PubMed]
Antibiotic Use in Ascites and SPB | |
---|---|
Other options: Ciprofloxacin 400 mg/12 h IV or Ofloxacin 400 mg/12 h PO (in uncomplicated SBP)
| |
Recommendation in hepatic impairment | |
Cefotaxime | No need for dose adjustment (wide drug therapeutic index) |
Amoxicillin/Clavulanate | No need for dose adjustment (renal tubular secretion) |
Ciprofloxacin | No need for dose adjustment |
Tigecycline (nosocomial SPB) | Mild to moderate hepatic insufficiency: no need for dose adjustment Severe hepatic insufficiency: dose should be reduced by 50% |
Carbapenems (nosocomial SPB) | No need for dose adjustment |
Antibiotic Use in Hepatic Encephalopathy | ||
---|---|---|
Antibiotic | Spectrum of Activity and Mechanism of Action | Dosage |
Rifaximin | Active against Gram-positive, Gram-negative, and anaerobic enteric bacteria Binds DNA-dependent RNA polymerase and disrupts RNA synthesis | 550 mg orally every 12 h or 400 mg orally every 8 h Better results if coupled with lactulose |
Neomycin |
Active against most Gram-negative aerobes, except some pseudomonas strains, and against S. aureus and E. faecalis.
Inhibits bacterial protein synthesis via binding to the bacterial 30S ribosomal subunit, causing misreading and premature termination of mRNA translation | Acute episode: 1 g orally every 6 h for up to six days Chronic use: 1–2 g orally daily |
Metronidazole |
Active against anaerobic bacteria, protozoa, and microaerophilic bacteria
Inhibits protein synthesis by interacting with DNA and causing helical DNA structure and strand breakage loss | No more recommended to manage the acute episode or chronic management of HE |
Vancomycin |
Active against Gram-positive bacteria, including MRSA: effective for Streptococci, Enterococci, and methicillin-susceptible Staphylococcus aureus (MSSA) infections
Inhibits the polymerization of peptidoglycans in the bacterial cell wall |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoratti, C.; Moretti, R.; Rebuzzi, L.; Albergati, I.V.; Di Somma, A.; Decorti, G.; Di Bella, S.; Crocè, L.S.; Giuffrè, M. Antibiotics and Liver Cirrhosis: What the Physicians Need to Know. Antibiotics 2022, 11, 31. https://doi.org/10.3390/antibiotics11010031
Zoratti C, Moretti R, Rebuzzi L, Albergati IV, Di Somma A, Decorti G, Di Bella S, Crocè LS, Giuffrè M. Antibiotics and Liver Cirrhosis: What the Physicians Need to Know. Antibiotics. 2022; 11(1):31. https://doi.org/10.3390/antibiotics11010031
Chicago/Turabian StyleZoratti, Caterina, Rita Moretti, Lisa Rebuzzi, Irma Valeria Albergati, Antonietta Di Somma, Giuliana Decorti, Stefano Di Bella, Lory Saveria Crocè, and Mauro Giuffrè. 2022. "Antibiotics and Liver Cirrhosis: What the Physicians Need to Know" Antibiotics 11, no. 1: 31. https://doi.org/10.3390/antibiotics11010031
APA StyleZoratti, C., Moretti, R., Rebuzzi, L., Albergati, I. V., Di Somma, A., Decorti, G., Di Bella, S., Crocè, L. S., & Giuffrè, M. (2022). Antibiotics and Liver Cirrhosis: What the Physicians Need to Know. Antibiotics, 11(1), 31. https://doi.org/10.3390/antibiotics11010031