Biocompatibility and Comfort during Extended Wear of Mel4 Peptide-Coated Antimicrobial Contact Lenses
Abstract
:1. Introduction
2. Results
2.1. Assessment of Activity of Mel4-Coated Lenses Prior to Lens Wear
2.2. Subject Demographics
2.3. Clinical Lens Surface Characteristics
2.4. Lens Fit Characteristics
2.5. Ocular Physiology
2.6. Subjective Ratings
2.7. Ocular Responses One Month after Cessation of Lens Wear
2.8. Ocular Responses of Participants Who Dropped out of Lens Wear during the Study Compared to Those Who Completed the Study
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Production and Quantification of Mel4 Peptide Attached to Contact Lenses
4.3. Clinical Procedures
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fazly Bazzaz, B.S.; Khameneh, B.; Jalili-Behabadi, M.M.; Malaekeh-Nikouei, B.; Mohajeri, S.A. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont. Lens Anterior Eye 2014, 37, 149–152. [Google Scholar] [CrossRef] [PubMed]
- No, J.W.; Kim, D.H.; Lee, M.J.; Kim, D.H.; Kim, T.H.; Sung, A.Y. Preparation and characterization of ophthalmic lens materials containing titanium silicon oxide and silver nanoparticles. J. Nanosci. Nanotechnol. 2015, 15, 8016–8022. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, J.; Qu, C.; Bo, G.; Jiang, L.; Zhao, H.; Zhang, J.; Lin, Y.; Hua, Y.; Yang, P.; et al. A mussel-inspired facile method to prepare multilayer-AgNP-loaded contact lens for early treatment of bacterial and fungal keratitis. ACS Biomater. Sci. Eng. 2018, 4, 1568–1579. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Kumar, A.; Ozkan, J.; Bandara, R.; Ding, A.; Perera, I.; Steinberg, P.; Kumar, N.; Lao, W.; Griesser, S.S.; et al. Fimbrolide-coated antimicrobial lenses: Their in vitro and in vivo effects. Optom. Vis. Sci. 2008, 85, 292–300. [Google Scholar] [CrossRef]
- Gallagher, A.G.; Alorabi, J.A.; Wellings, D.A.; Lace, R.; Horsburgh, M.J.; Williams, R.L. A novel peptide hydrogel for an antimicrobial bandage contact lens. Adv. Healthc. Mater. 2016, 5, 2013–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aveyard, J.; Deller, R.C.; Lace, R.; Williams, R.L.; Kaye, S.B.; Kolegraff, K.N.; Curran, J.M.; D’Sa, R.A. Antimicrobial nitric oxide releasing contact lens gels for the treatment of microbial keratitis. ACS Appl. Mater. Interfaces 2019, 11, 37491–37501. [Google Scholar] [CrossRef]
- Dutta, D.; Cole, N.; Kumar, N.; Willcox, M.D. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest. Ophthalmol. Vis. Sci. 2013, 54, 175–182. [Google Scholar] [CrossRef]
- Dutta, D.; Vijay, A.K.; Kumar, N.; Willcox, M.D. Melimine-coated antimicrobial contact lenses reduce microbial keratitis in an animal model. Invest. Ophthalmol. Vis. Sci. 2016, 57, 5616–5624. [Google Scholar] [CrossRef] [Green Version]
- Cole, N.; Hume, E.B.; Vijay, A.K.; Sankaridurg, P.; Kumar, N.; Willcox, M.D. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest. Ophthalmol. Vis. Sci. 2010, 51, 390–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, D.; Ozkan, J.; Willcox, M.D. Biocompatibility of antimicrobial melimine lenses: Rabbit and human studies. Optom. Vis. Sci. 2014, 91, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Willcox, M.D.P.; Chen, R.; Kalaiselvan, P.; Yasir, M.; Rasul, R.; Kumar, N.; Dutta, D. The development of an antimicrobial contact lens—From the laboratory to the clinic. Curr. Protein Pept. Sci. 2020, 21, 357–368. [Google Scholar] [CrossRef]
- Dutta, D.; Kumar, N.; Willicox, M.D.P. Antimicrobial activity of four cationic peptides immobilised to poly-hydroxyethylmethacrylate. Biofouling 2016, 32, 429–438. [Google Scholar] [CrossRef]
- Dutta, D.; Zhao, T.; Cheah, K.B.; Holmlund, L.; Willcox, M.D.P. Activity of a melimine derived peptide Mel4 against Stenotrophomonas, Delftia, Elizabethkingia, Burkholderia and biocompatibility as a contact lens coating. Cont. Lens Anterior Eye 2017, 40, 175–183. [Google Scholar] [CrossRef]
- Dutta, D.; Kamphuis, B.; Ozcelik, B.; Thissen, H.; Pinarbasi, R.; Kumar, N.; Willcox, M.D.P. Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom. Vis. Sci. 2018, 95, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvan, P.; Konda, N.; Pampi, N.; Vaddavalli, P.K.; Sharma, S.; Stapleton, F.; Kumar, N.; Willcox, M.D.P.; Dutta, D. Effect of antimicrobial contact lenses on corneal infiltrative events: A randomized clinical trial. Transl. Vis. Sci. Technol. 2021, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Kalaiselvan, P.; Dutta, D.; Bhombal, F.; Konda, N.; Vaddavalli, P.K.; Sharma, S.; Stapleton, F.; Willcox, M.D.P. Ocular microbiota and lens contamination following Mel4 peptide-coated antimicrobial contact lens (MACL) extended wear. Cont. Lens Anterior Eye 2021, 101431. [Google Scholar] [CrossRef] [PubMed]
- Landolt-Marticorena, C.; Williams, K.A.; Deber, C.M.; Reithmeier, R.A. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins. J. Mol. Biol. 1993, 229, 602–608. [Google Scholar] [CrossRef]
- Reithmeier, R.A. Characterization and modeling of membrane proteins using sequence analysis. Curr. Opin. Struct. Biol. 1995, 5, 491–500. [Google Scholar] [CrossRef]
- Christiaens, B.; Symoens, S.; Verheyden, S.; Engelborghs, Y.; Joliot, A.; Prochiantz, A.; Vandekerckhove, J.; Rosseneu, M.; Vanloo, B. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur. J. Biochem. 2002, 269, 2918–2926. [Google Scholar] [CrossRef]
- Willcox, M.; Keir, N.; Maseedupally, V.; Masoudi, S.; McDermott, A.; Mobeen, R.; Purslow, C.; Santodomingo-Rubido, J.; Tavazzi, S.; Zeri, F.; et al. CLEAR—Contact lens wettability, cleaning, disinfection and interactions with tears. Cont. Lens Anterior Eye 2021, 44, 157–191. [Google Scholar] [CrossRef]
- Kaspar, H.; Dettmer, K.; Gronwald, W.; Oefner, P.J. Advances in amino acid analysis. Anal. Bioanal. Chem. 2009, 393, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Evaluation of soft contact lens fitting characteristics. Optom. Vis. Sci. 1996, 73, 247–254. [Google Scholar] [CrossRef]
- Stern, J.; Wong, R.; Naduvilath, T.J.; Stretton, S.; Holden, B.A.; Sweeney, D.F. Comparison of the performance of 6- or 30-night extended wear schedules with silicone hydrogel lenses over 3 years. Optom. Vis. Sci. 2004, 81, 398–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terry, R.L.; Schnider, C.M.; Holden, B.A.; Cornish, R.; Grant, T.; Sweeney, D.; La Hood, D.; Back, A. CCLRU standards for success of daily and extended wear contact lenses. Optom. Vis. Sci. 1993, 70, 234–243. [Google Scholar] [CrossRef]
- Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesthesiol. 2017, 70, 144–156. [Google Scholar] [CrossRef] [PubMed]
Demographic and Biometric Details | Subjects Dispensed with Study Lenses (n = 176) | ||
---|---|---|---|
Mel4-Lens-Wearing Eye | Control-Lens-Wearing Eye | p-Value | |
Age (years): Mean ± SD Range | 22.6 ± 4.2 18 to 42 | - | |
Gender (Male:Female) | 93:83 | - | |
Refractive error-Sphere (Ds) 1: Mean ± SD; Range | −2.82 ± 1.44 −0.50 to −6.50 | −2.80 ± 1.46 −0.50 to −6.50 | 0.528 |
Refractive error-Cylinder (Dc): Mean ± SD; Range | −0.25 ± 0.35 −0.25 to −1.50 | −0.22 ± 0.35 −0.25 to −1.50 | 0.249 |
Keratometry-Flat (D): Mean ± SD; Range | 43.02 ± 1.44 37.50 to 47.25 | 43.01 ± 1.46 37.50 to 47.25 | 0.663 |
Keratometry-Steep (D): Mean ± SD; Range | 43.76 ± 1.58 38.75 to 48.50 | 43.71 ± 1.58 38.75 to 48.50 | 0.105 |
Contact lens wearer (Neophyte:Experienced lens wearer) | 128:48 | - | |
Contact lens base curve (8.3:8.7) mm | 106:70 | - | |
Contact lens power (Ds): Mean ± SD; Range | −2.84 ± 1.36 −1.00 to −6.00 | −2.84 ± 1.39 −1.00 to −6.00 | 0.869 |
Variables (Range, Incremental Steps) | Visits with Lens * | Number of Samples | Mel4 Lens | Control Lens | Linear Mixed Model | ||
---|---|---|---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | Lens (Mel4 vs. Control) | Visit | Lens vs. Visit | |||
Front surface wetting (0–4, 0.1) | Lens Dispensing | 176 | 3.7 ± 0.6 | 3.7 ± 0.6 | 0.593 | 0.001 | 0.513 |
1N | 165 | 3.6 ± 0.6 | 3.7 ± 0.5 | ||||
2W | 153 | 3.6 ± 0.3 | 3.6 ± 0.3 | ||||
1M | 144 | 3.6 ± 0.3 | 3.5 ± 0.3 | ||||
3M | 128 | 3.6 ± 0.3 | 3.5 ± 0.3 | ||||
Front surface deposits (0–4, 0.1) | Lens Dispensing | 176 | 0.2 ± 0.3 | 0.2 ± 0.3 | 0.896 | 0.001 | 0.996 |
1N | 165 | 0.3 ± 0.4 | 0.3 ± 0.4 | ||||
2W | 153 | 0.6 ± 0.5 | 0.6 ± 0.5 | ||||
1M | 144 | 0.6 ± 0.6 | 0.6 ± 0.6 | ||||
3M | 128 | 0.7 ± 0.6 | 0.7 ± 0.6 | ||||
Back surface debris (0–4, 0.1) | Lens Dispensing | 176 | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.715 | 0.001 | 0.857 |
1N | 165 | 0.2 ± 0.2 | 0.2 ± 0.2 | ||||
2W | 153 | 0.3 ± 0.4 | 0.3 ± 0.4 | ||||
1M | 144 | 0.4 ± 0.5 | 0.4 ± 0.5 | ||||
3M | 128 | 0.4 ± 0.5 | 0.4 ± 0.5 |
Variables (Range, Incremental Steps) | Visits with Lens * | Number of Samples | Mel4 Lens | Control Lens | Linear Mixed Model | ||
---|---|---|---|---|---|---|---|
(Mean ± SD)/ (Median and Range) | (Mean ± SD)/ (Median and Range) | Lens | Visit | Lens vs. Visit | |||
Centration X-axis (−1 to +1, 0.1 mm) | Lens Dispensing | 176 | 0 (−0.3–0.2) | 0 (−0.3–0.2) | 0.589 | 0.409 | 0.950 |
1N | 165 | 0 (−0.5–0.3) | 0 (−0.5–0.3) | ||||
2W | 153 | 0 (−0.3–0.2) | 0 (−0.3–0.2) | ||||
1M | 144 | 0 (−0.5–0.2) | 0 (−0.5–0.0) | ||||
3M | 128 | 0 (−0.3–0.2) | 0 (−0.3–0.2) | ||||
Centration Y-axis (−1 to +1, 0.1 mm) | Lens Dispensing | 176 | 0 (−0.3–0.5) | 0 (−0.3–0.3) | 0.595 | 0.118 | 0.266 |
1N | 165 | 0 (−0.4–0.5) | 0 (−0.3–0.5) | ||||
2W | 153 | 0 (−0.3–0.5) | 0 (−0.3–0.5) | ||||
1M | 144 | 0 (−0.4–0.4) | 0 (−0.3–0.4) | ||||
3M | 128 | 0 (−0.2–0.3) | 0 (−0.2–0.3) | ||||
Primary gaze movement (0–10, 0.1) | Lens Dispensing | 176 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.988 | 0.049 | 0.752 |
1N | 165 | 0.4 ± 0.1 | 0.4 ± 0.1 | ||||
2W | 153 | 0.4 ± 0.1 | 0.4 ± 0.1 | ||||
1M | 144 | 0.4 ± 0.1 | 0.4 ± 0.1 | ||||
3M | 128 | 0.4 ± 0.1 | 0.4 ± 0.1 | ||||
Primary gaze lag (0–10, 0.1) | Lens Dispensing | 176 | 0.1 ± 0.1 | 0.1 ± 0.1 | 1.000 | 0.005 | - |
1N | 165 | 0.1 ± 0.1 | 0.1 ± 0.1 | ||||
2W | 153 | 0.1 ± 0.1 | 0.1 ± 0.1 | ||||
1M | 144 | 0.2 ± 0.1 | 0.2 ± 0.1 | ||||
3M | 128 | 0.2 ± 0.1 | 0.2 ± 0.1 | ||||
Tightness (0–100, 1)% | Lens Dispensing | 176 | 41 ± 3 | 41 ± 3 | 0.817 | 0.001 | 0.968 |
1N | 165 | 41 ± 3 | 41 ± 3 | ||||
2W | 153 | 42 ± 3 | 42 ± 3 | ||||
1M | 144 | 41 ± 3 | 41 ± 3 | ||||
3M | 128 | 42 ± 3 | 42 ± 3 | ||||
Overall acceptance (0–4, 0.1) | Lens Dispensing | 176 | 3.8 ± 0.1 | 3.8 ± 0.1 | 0.410 | 0.001 | 0.380 |
1N | 165 | 3.8 ± 0.1 | 3.8 ± 0.1 | ||||
2W | 153 | 3.8 ± 0.1 | 3.8 ± 0.1 | ||||
1M | 144 | 3.8 ± 0.1 | 3.8 ± 0.1 | ||||
3M | 128 | 3.8 ± 0.1 | 3.8 ± 0.1 |
Variables (Range, Incremental Steps) | Visits with Lens * | Number of Samples | Mel4 Lens | Control Lens | Linear Mixed Model | ||
---|---|---|---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | Lens (Mel4 vs. Control) | Visit | Lens vs. Visit | |||
Bulbar Redness (0–4, 0.1) | 1N | 167 | 1.5 ± 0.2 | 1.5 ± 0.2 | 0.758 | 0.001 | 0.135 |
2W | 153 | 1.5 ± 0.2 | 1.5 ± 0.2 | ||||
1M | 144 | 1.6 ± 0.2 | 1.6 ± 0.2 | ||||
3M | 129 | 1.6 ± 0.2 | 1.6 ± 0.2 | ||||
Limbal Redness (0–4, 0.1) | 1N | 167 | 1.2 ± 0.3 | 1.2 ± 0.3 | 0.961 | 0.001 | 0.660 |
2W | 153 | 1.2 ± 0.2 | 1.2 ± 0.2 | ||||
1M | 144 | 1.3 ± 0.3 | 1.3 ± 0.3 | ||||
3M | 129 | 1.4 ± 0.2 | 1.4 ± 0.2 | ||||
Palpebral Redness (0–4, 0.1) | 1N | 167 | 1.5 ± 0.2 | 1.6 ± 0.2 | 0.610 | 0.001 | 0.053 |
2W | 153 | 1.6 ± 0.3 | 1.6 ± 0.3 | ||||
1M | 144 | 1.6 ± 0.3 | 1.6 ± 0.3 | ||||
3M | 129 | 1.7 ± 0.3 | 1.7 ± 0.3 | ||||
Palpebral Roughness (0–4, 0.1) | 1N | 167 | 1.2 ± 0.3 | 1.3 ± 0.3 | 0.388 | 0.001 | 0.574 |
2W | 153 | 1.3 ± 0.3 | 1.3 ± 0.3 | ||||
1M | 144 | 1.3 ± 0.3 | 1.3 ± 0.3 | ||||
3M | 129 | 1.4 ± 0.3 | 1.4 ± 0.3 | ||||
Lens Induced Conjunctival Staining (0–4, 0.1) | 1N | 167 | 0.2 ± 0.2 | 0.2 ± 0.2 | 1.000 | 0.001 | 1.000 |
2W | 153 | 0.2 ± 0.3 | 0.2 ± 0.2 | ||||
1M | 144 | 0.3 ± 0.3 | 0.3 ± 0.3 | ||||
3M | 129 | 0.3 ± 0.3 | 0.3 ± 0.3 | ||||
Lens Induced Conjunctival Indentation (0–4, 0.1) | 1N | 167 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.112 | 0.001 | 0.041 |
2W | 153 | 0.1 ± 0.2 | 0.1 ± 0.2 | ||||
1M | 144 | 0.1 ± 0.2 | 0.1 ± 0.2 | ||||
3M | 129 | 0.1 ± 0.2 | 0.1 ± 0.2 |
Variables (Type; Range, Incremental Steps) | Visits with Lens * | Number of Samples | Mel4 Lens | Control Lens | Linear Mixed Model | ||
---|---|---|---|---|---|---|---|
(Median and Range) | (Median and Range) | Lens (Mel4 vs. Control) | Visit | Lens vs. Visit | |||
Centre (Extent; 0–4, 1) | 1N | 162 | 0 (0–0) | 0 (0–0) | 0.674 | 0.200 | 0.632 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–0) | 0 (0–1) | ||||
3M | 129 | 0 (0–1) | 0 (0–1) | ||||
Centre (Depth; 0–4, 1) | 1N | 162 | 0 (0–0) | 0 (0–0) | 0.674 | 0.200 | 0.632 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–0) | 0 (0–1) | ||||
3M | 129 | 0 (0–1) | 0 (0–1) | ||||
Centre (Type; 0–4, 0.5) | 1N | 162 * | 0 (0–0) | 0 (0–0) | 0.674 | 0.200 | 0.632 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–0) | 0 (0–1) | ||||
3M | 129 | 0 (0–1) | 0 (0–1) | ||||
Nasal (Extent; 0–4, 1) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.670 | 0.426 | 0.262 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–0) | 0 (0–1) | ||||
Nasal (Depth; 0–4, 1) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.869 | 0.421 | 0.254 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–0) | 0 (0–1) | ||||
Nasal (Type; 0–4, 0.5) | 1N | 162 | 0 (0–1) | 0 (0–1.5) | 0.586 | 0.386 | 0.342 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–0) | 0 (0–1) | ||||
Temporal (Extent; 0–4, 1) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.856 | 0.437 | 0.457 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–0) | 0 (0–1) | ||||
3M | 129 | 0 (0–1) | 0 (0–0) | ||||
Temporal (Depth; 0–4, 1) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.856 | 0.437 | 0.457 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–0) | 0 (0–1) | ||||
3M | 129 | 0 (0–1) | 0 (0–0) | ||||
Temporal (Type; 0–4, 0.5) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.780 | 0.340 | 0.498 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–0) | 0 (0–0.5) | ||||
3M | 129 | 0 (0–1) | 0 (0–0) | ||||
Superior (Extent; 0–4, 1) | 1N | 162 | 0 (0–0) | 0 (0–1) | 0.368 | 0.242 | 0.362 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–1) | 0 (0–1) | ||||
Superior (Depth; 0–4, 1) | 1N | 162 | 0 (0–0) | 0 (0–1) | 0.368 | 0.242 | 0.362 |
2W | 153 | 0 (0–1) | 0 (0–1) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–1) | 0 (0–1) | ||||
Superior (Type; 0–4, 0.5) | 1N | 162 | 0 (0–0) | 0 (0–1) | 0.649 | 0.151 | 0.258 |
2W | 153 | 0 (0–1) | 0 (0–0.5) | ||||
1M | 144 | 0 (0–1) | 0 (0–1.5) | ||||
3M | 129 | 0 (0–1) | 0 (0–1) | ||||
Inferior (Extent; 0–4, 1) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.119 | 0.238 | 0.337 |
2W | 153 | 0 (0–1) | 0 (0–2) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–2) | 0 (0–2) | ||||
Inferior (Depth; 0–4, 1) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.119 | 0.238 | 0.337 |
2W | 153 | 0 (0–1) | 0 (0–2) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–2) | 0 (0–2) | ||||
Inferior (Type; 0–4, 0.5) | 1N | 162 | 0 (0–1) | 0 (0–1) | 0.119 | 0.238 | 0.337 |
2W | 153 | 0 (0–1) | 0 (0–2) | ||||
1M | 144 | 0 (0–1) | 0 (0–2) | ||||
3M | 129 | 0 (0–2) | 0 (0–2) |
Variables (Range, Incremental Steps) | Visits with Lens * | Number of Samples | Mel4 Lens | Control Lens | Linear Mixed Model | ||
---|---|---|---|---|---|---|---|
(Mean ± SD) | (Mean ± SD) | Lens (Mel4 vs. Control) | Visit | Lens vs. Visit | |||
Overall comfort (1–100, 1) | 1N | 167 | 92 ± 8 | 92 ± 8 | 0.770 | 0.001 | 0.556 |
2W | 153 | 91 ± 7 | 91 ± 8 | ||||
1M | 144 | 90 ± 7 | 91 ± 9 | ||||
3M | 129 | 88 ± 8 | 89 ± 7 | ||||
Overall dryness (1–100, 1) | 1N | 167 | 8 ± 5 | 8 ± 5 | 0.789 | 0.001 | 0.742 |
2W | 153 | 11 ± 11 | 11 ± 11 | ||||
1M | 144 | 11 ± 11 | 12 ± 12 | ||||
3M | 129 | 13 ± 11 | 13 ± 11 | ||||
Edge awareness (0–10, 1) | 1N | 165 | 1 (1–2) | 1 (1–2) | 0.135 | 0.077 | 0.969 |
2W | 153 | 1 (1–4) | 1 (1–5) | ||||
1M | 144 | 1 (1–3) | 1 (1–3) | ||||
3M | 128 | 1 (1–3) | 1 (1–3) | ||||
Lens awareness (0–10, 1) | 1N | 165 | 1 (1–2) | 1 (1–2) | 0.139 | 0.471 | 0.858 |
2W | 153 | 1 (1–4) | 1 (1–4) | ||||
1M | 144 | 1 (1–3) | 1 (1–3) | ||||
3M | 128 | 1 (1–3) | 1 (1–3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaiselvan, P.; Dutta, D.; Konda, N.; Vaddavalli, P.K.; Sharma, S.; Stapleton, F.; Willcox, M.D.P. Biocompatibility and Comfort during Extended Wear of Mel4 Peptide-Coated Antimicrobial Contact Lenses. Antibiotics 2022, 11, 58. https://doi.org/10.3390/antibiotics11010058
Kalaiselvan P, Dutta D, Konda N, Vaddavalli PK, Sharma S, Stapleton F, Willcox MDP. Biocompatibility and Comfort during Extended Wear of Mel4 Peptide-Coated Antimicrobial Contact Lenses. Antibiotics. 2022; 11(1):58. https://doi.org/10.3390/antibiotics11010058
Chicago/Turabian StyleKalaiselvan, Parthasarathi, Debarun Dutta, Nagaraju Konda, Pravin Krishna Vaddavalli, Savitri Sharma, Fiona Stapleton, and Mark D. P. Willcox. 2022. "Biocompatibility and Comfort during Extended Wear of Mel4 Peptide-Coated Antimicrobial Contact Lenses" Antibiotics 11, no. 1: 58. https://doi.org/10.3390/antibiotics11010058
APA StyleKalaiselvan, P., Dutta, D., Konda, N., Vaddavalli, P. K., Sharma, S., Stapleton, F., & Willcox, M. D. P. (2022). Biocompatibility and Comfort during Extended Wear of Mel4 Peptide-Coated Antimicrobial Contact Lenses. Antibiotics, 11(1), 58. https://doi.org/10.3390/antibiotics11010058