Local Epidemiology of Nosocomial Staphylococcus aureus Infection in a Nigerian University Teaching Hospital
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of the Enrolled Surgical Inpatient Cohort and S. aureus Carriage
2.2. Characteristics of Inpatients with Nosocomial S. aureus Infection
2.3. Antibiotic Resistance Geno- and Phenotypes of Infection-Related S. aureus
2.4. Distribution of Toxin Genes, Agr Types and Spa/MLST Types
Pattern | No. of Isolates | *MDR | MSSA/MRSA | P E N | G E N | M O X | E R Y | C L I | T E T | S X T | V A N | PTSAgs, lukS-PV and lukF-PV, and EDIN Genes | spa Type | MLST | agr Group |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Infection-related S. aureus isolates (n = 47) | |||||||||||||||
A | 2 | Y | MRSA | R | S | S | S | S | S | R | S | ND | t786 | ST88 | IV |
B | 1 | N | MSSA | R | S | S | S | S | R | R | S | sea | t084 | ST15 | II |
C | 1 | N | MSSA | R | S | S | S | S | R | R | S | sea, lukS-PV and lukF-PV | t084 | ST15 | IV |
D | 2 | N | MSSA | R | S | S | S | S | S | R | S | sea, lukS-PV and lukF-PV | t084 | ST15 | II |
E | 1 | Y | MSSA | R | S | S | R | R | R | R | S | sea, lukS-PV and lukF-PV | t091 | ST7 | III |
F | 1 | Y | MRSA | R | R | R | S | S | R | R | S | ND | t091 | ST7 | III |
G | 26 | Y # | MSSA | R | S | R | R | R | R | R | S | ND | t091 | ST7 | III |
I2 | S6 | S6 | S3 | S8 | |||||||||||
H | 1 | N | MSSA | R | S | S | S | S | S | S | S | sea, seh | t127 | ST1 | III |
I | 1 | N | MSSA | R | R | S | S | S | R | S | S | seh | t127 | ST1 | IV |
J | 1 | N | MSSA | R | S | S | R | S | S | R | S | seg-sei, edinA | t2724 | ST15 | II |
K | 1 | N | MSSA | S | S | S | S | S | S | R | S | ND | t355 | ST152 | III |
L | 1 | Y | MRSA | R | S | S | S | S | S | S | S | sei, lukS-PV and lukF-PV | t355 | ST152 | III |
M | 1 | Y | MRSA | R | S | S | S | S | S | S | S | lukS-PV and lukF-PV | t355 | ST152 | III |
N | 1 | N | MSSA | R | S | S | S | S | S | R | S | seg-sei, edinA | t311 | ST15 | II |
O | 1 | N | MSSA | R | S | S | S | S | S | S | S | seg-sei | t2731 | ST5 | III |
P | 1 | N | MSSA | R | S | S | S | S | S | R | S | sea, seb | t085 | ST1 | II |
Q | 1 | Y | MSSA | R | R | S | R | S | R | R | S | sed | t064 | ST8 | II |
R | 1 | Y | MRSA | R | R | I | R | R | R | R | S | ND | t037 | ST241 | III |
S | 1 | N | MSSA | R | S | S | S | S | S | R | S | seh | t7762 | ST1 | IV |
T | 1 | Y | MRSA | R | S | I | S | S | R | R | S | sea, seb | t008 | ST8 | III |
Carriage-associated S. aureus isolates (n = 62) | |||||||||||||||
A | 29 | Y ## | MSSA | R | S | R | R | R | R | R | S | ND | t091 | ST7 | III |
I2 | S3 | S5 | S8 | ||||||||||||
B | 4 | Y | MRSA | R | S | S | S | S | S | R | S | ND | t786 | ST88 | IV |
C | 1 | Y | MRSA | R | S | S | S | S | S | R | S | sea, luk S-PV and luk F-PV | t786 | ST88 | II |
D | 2 | Y | MSSA | R | S | S | S | S | R1 | R1 | S | ND | t084 | ST15 | II |
E | 1 | N | MSSA | S | S | R | S | S | S | R | S | ND | t091 | ST7 | III |
F | 1 | Y | MSSA | R | S | R | R | R | R | R | S | sea, luk S-PV and luk F-PV | t091 | ST7 | III |
G | 2 | Y | MSSA | R | R | S | S | S | R | R1 | S | sea, seh, luk S-PV and luk F-PV | t127 | ST1 | IV |
H | 2 | Y | MRSA | R | S | R1 | R | S | R | R | S | seg-sei, edin-A | t311 | ST15 | II |
I | 4 | Y | MSSA | R | S | S | R | S | S | R1 | S | seg-sei, edin-A | t2724 | ST15 | II |
J | 1 | N | MSSA | S | S | S | S | S | S | S | S | seg-sei | t2724 | ST15 | II |
K | 2 | Y | MRSA | R | S | S | S | S | S | S | S | luk S-PV and luk F-PV | t355 | ST152 | III |
L | 2 | Y | MRSA | R | S | S | S | S | R | S1 | S | ND | t355 | ST152 | III |
M | 2 | N | MSSA | R | S | S | S | S | R1 | S | S | ND | t355 | ST152 | III |
N | 1 | N | MSSA | R | S | S | S | S | R | S | S | sea, seb, sec, luk S-PV and luk F-PV | t064 | ST8 | III |
O | 1 | Y | MRSA | R | S | S | R | S | R | R | S | sea, seb | t064 | ST8 | III |
P | 1 | N | MSSA | R | S | S | S | S | R | S | S | luk S-PV and luk F-PV | t4690 | ST153 | III |
Q | 2 | N | MSSA | R | S | S | S | S | S | R | S | luk S-PV and luk F-PV | t355 | ST152 | III |
R | 1 | N | MSSA | R | S | S | S | S | S | R | S | sea, luk S-PV and luk F-PV | t084 | S15 | II |
S | 1 | N | MSSA | S | S | S | S | S | R | S | S | seg-sei | t091 | ST7 | II |
T | 1 | Y | MSSA | R | S | R | R | R | R | R | S | tst | t091 | ST7 | III |
U | 1 | Y | MSSA | R | S | R | R | R | R | S | S | ND | t1685 | ST7 | III |
2.5. Stratification of Patients with Nosocomial S. aureus Infection According to Nasal S. aureus Carriage
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Patients
- Nosocomial (or healthcare-associated) MSSA and MRSA acquisition; was defined as isolation of MSSA and MRSA from any specimen including surveillance probes obtained from a surgical inpatient more than 48 h after admission who was previously identified as non-carrier (as determined by non-recovery of S. aureus from nasal swabs and/or open wound swabs of the same patient);
- Nosocomial (or healthcare-associated) infection by MSSA and MRSA, respectively; was defined as the detection of MSSA and MRSA in a purulent specimen, superficial or deep soft-tissue lesion, skin abscesses, blood, sputum, or urine samples, obtained 48 h or more after admission. In addition, infection was only assumed, if at least two clinical symptoms of infection (e.g., fever, localized pain) associated with the respective site were present;
- Surgical-site S. aureus infection; was defined as recovery of S. aureus from a superficial or deep surgical incision site, with or without drainage within 30 days after surgery.
4.3. Samples
4.4. Microbiological Techniques
4.5. Toxin Genes Detection
4.6. Typing of S. aureus Isolates
4.7. Statistical Approaches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.J., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; David, M.Z.; Skov, R.L.; von Eiff, C. Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci. In Manual of Clinical Microbiology; Jorgensen, J.H., Carroll, K.C., Funke, G., Pfaller, M.A., Landry, M.L., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2019; pp. 367–398. [Google Scholar]
- Noskin, G.A.; Rubin, R.J.; Schentag, J.J.; Kluytmans, J.; Hedblom, E.C.; Smulders, M.; Lapetina, E.; Gemmen, E. The burden of Staphylococcus aureus infections on hospitals in the United States: An analysis of the 2000 and 2001 Nationwide Inpatient Sample Database. Arch. Intern. Med. 2005, 165, 1756–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasigade, J.P.; Dumitrescu, O.; Lina, G. New Epidemiology of Staphylococcus aureus infections. Clin. Microbiol. Infect. 2014, 20, 587–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.Y.; Schaumburg, F.; Ellington, M.J.; Corander, J.; Pichon, B.; Leendertz, F.; Bentley, S.D.; Parkhill, J.; Holt, D.C.; Peters, G.; et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: The non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Schaumburg, F.; Kearns, A.; Larson, A.R.; Lindsay, J.A.; Skov, R.L.; Westh, H. Implications of identifying the recently defined members of the Staphylococcus aureus complex S. argenteus and S. schweitzeri: A position paper of the ESCMID Study Group for Staphylococci and Staphylococcal Diseases (ESGS). Clin. Microbiol. Infect. 2019, 25, 1064–1070. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Okuma, K.; Ma, X.X.; Yamamoto, M.; Hori, S.; Kapi, M. New trends in Staphylococcus aureus infections: Glycopeptides resistance in hospital and methicillin resistance in the community. Curr. Opin. Infect. Dis. 2002, 15, 407–413. [Google Scholar] [CrossRef]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.E.; et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: Worldwide emergence. Emerg. Infect. Dis. 2003, 9, 978–984. [Google Scholar] [CrossRef]
- Köck, R.; Schaumburg, F.; Mellmann, A.; Köksal, M.; Jurke, A.; Becker, K.; Friedrich, A.W. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS ONE 2013, 8, e55040. [Google Scholar] [CrossRef] [Green Version]
- Kinross, P.; Petersen, A.; Skov, R.; van Hauwermeiren, E.; Pantosti, A.; Laurent, F.; Voss, A.; Kluytmans, J.; Struelens, M.J.; Heuer, O.; et al. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) among human MRSA isolates, European Union/European Economic Area Countries, 2013. Eur. Surveill. 2017, 22, 16–00696. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Alabi, A.S.; Mombo-Ngoma, G.; Kaba, H.; Zoleko, R.M.; Diop, D.A.; Mackanga, J.R.; Basra, A.; Gonzalez, R.; Menendez, C.; et al. Transmission of Staphylococcus aureus between mothers and infants in an African setting. Clin. Microbiol. Infect. 2014, 20, O390–O396. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Dobrick, J.B.; Jadavji, A.; Adam, R.D. Staphylococcus aureus bacteremia at a referral medical center in Kenya: A retrospective review of cases from 2010 to 2018. PLoS ONE 2020, 15, e0234914. [Google Scholar] [CrossRef] [PubMed]
- Schaumburg, F.; Alabi, A.S.; Peters, G.; Becker, K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. 2014, 20, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations, World Population Prospects. 2017. Available online: https://population.un.org/wpp/Maps/ (accessed on 6 May 2022).
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef]
- Kolawole, D.; Adeyanju, A.; Schaumburg, F.; Akinyoola, A.; Lawal, O.; Amusa, Y.; Köck, R.; Becker, K. Characterization of colonizing Staphylococcus aureus isolated from surgical wards’ patients in a Nigerian university hospital. PLoS ONE 2013, 8, e68721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaumburg, F.; Ngoa, U.A.; Kösters, K.; Köck, R.; Adegnika, A.A.; Kremsner, P.G.; Lell, B.; Peters, G.; Mellmann, A.; Becker, K. Virulence factors and genotypes of Staphylococcus aureus from infection and carriage in Gabon. Clin. Microbiol. Infect. 2011, 17, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- Ruimy, R.; Maiga, A.; Armand-Lefevre, L.; Maiga, I.; Diallo, A.; Koumare, K.A.; Ouattara, K.; Soumare, S.; Gaillard, K.; Lucet, J.C.; et al. The carriage population of Staphylococcus aureus from Mali is composed of a combination of pandemic clones and the divergent Panton-Valentine leukocidin-positive genotype ST152. J. Bacteriol. 2008, 190, 3962–3968. [Google Scholar] [CrossRef] [Green Version]
- Okon, K.O.; Shittu, A.O.; Kudi, A.A.; Umar, H.; Becker, K.; Schaumburg, F. Population dynamics of Staphylococcus aureus from Northeastern Nigeria in 2007 and 2012. Epidemiol. Infect. 2014, 142, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Kraef, C.; Alabi, A.S.; Peters, G.; Becker, K.; Kremsner, P.G.; Rossatanga, E.G.; Mellmann, A.; Grobusch, M.P.; Zanger, P.; Schaumburg, F. Co-detection of Panton-Valentine leukocidin encoding genes and cotrimoxazole resistance in Staphylococcus aureus in Gabon: Implications for HIV-patients’ care. Front. Microbiol. 2015, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Egyir, B.; Guardabassi, L.; Sørum, M.; Nielsen, S.S.; Kolekang, A.; Frimpong, E.; Addo, K.K.; Newman, M.J.; Larson, A.R. Molecular Epidemiology and Antimicrobial Susceptibility of Clinical Staphylococcus aureus from Healthcare Institutions in Ghana. PLoS ONE 2014, 9, e89716. [Google Scholar] [CrossRef]
- Shittu, A.O.; Kaba, M.; Abdulgader, S.M.; Ajao, Y.O.; Abiola, M.O.; Olatimehin, A.O. Mupirocin-resistant Staphylococcus aureus in Africa: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2018, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, B.T.; Ashley, E.A.; Ongarello, S.; Havumaki, J.; Wijegoonewardena, M.; Gonzalez, U.; Dittrich, S. Antimicrobial resistance in Africa: A systematic review. BMC Infectious Diseases 2017, 17, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egyir, B.; Dsani, E.; Owusu-Nyantakyi, C.; Amuasi, G.R.; Owusu, F.A.; Allegye-Cudjoe, E.; Addo, K.K. Antimicrobial resistance and genomic analysis of staphylococci isolated from livestock and farm attendants in Northern Ghana. BMC Microbiol. 2022, 22, 180. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Acelas, A.L.; Engelman, B.; Abreu-Almeida, M.D. Risk factors for health care–associated infection in hospitalized adults: Systematic review and meta-analysis. Am. J. Infect. Control 2017, 45, e149–e156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Kluytmans, J.A.J.W.; Mouton, J.W.; Ijzerman, E.P.F.; Vandenbroucke-Grauls, C.M.J.E.; Maat, A.W.J.M.; Wagenvoort, J.H.T.; Verbrugh, H.A. Nasal carriage of Staphylococcus aureus as a major risk factor for wound infections after cardiac surgery. J. Infect. Dis. 1995, 171, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Harbarth, S.; Fankhauser, C.; Schrenzel, J.; Christenson, J.; Gervaz, P.; Bandiera-Clerc, C.; Renzi, G.; Vernaz, N.; Sax, H. Universal Screening for Methicillin-Resistant Staphylococcus aureus at Hospital Admission and Nosocomial infection in Surgical Patients. J. Am. Med. Assoc. 2008, 299, 1149–1157. [Google Scholar] [CrossRef] [Green Version]
- Shooter, R.A.; Smith, M.A.; Griffiths, J.D.; Brown, M.E.A.; Williams, R.E.O.; Rippon, J.E.; Jevons, M.P. Spread of staphylococci in a surgical ward. Br. Med. J. 1958, 1, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, E.H.; Devenish, E.A.; Cowan, S.T. Pathogenic staphylococci. Their incidence in the nose and on the skin. Lancet 1939, 234, 870–873. [Google Scholar] [CrossRef]
- Van Belkum, A.; Verkaik, N.J.; de Vogel, C.P.; Boelens, H.A.; Verveer, J.; Nouwen, J.L.; Verbrugh, H.A.; Wertheim, H.F.L. Reclassification of Staphylococcus aureus nasal carriage types. J. Infect. Dis. 2009, 199, 1820–1826. [Google Scholar] [CrossRef]
- Kaspar, U.; Kriegeskorte, A.; Schubert, T.; Peters, G.; Rudack, C.; Pieper, D.H.; Wos-Oxley, M.; Becker, K. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ. Microbiol. 2016, 18, 2130–2142. [Google Scholar] [CrossRef] [PubMed]
- Von Eiff, C.; Becker, K.; Machka, K.; Stammer, H.; Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 2001, 344, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, H.J. The relation between the nasal-staphylococcal-carrier state and the incidence of postoperative complications. N. Engl. J. Med. 1959, 260, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Young, B.C.; Golubchik, T.; Batty, E.M.; Fung, R.; Larner-Svensson, H.; Votintseva, A.A.; Miller, R.R.; Godwin, H.; Knox, K.; Everitt, R.G.; et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc. Natl. Acad. Sci. USA 2012, 109, 4550–4555. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Yu, F.Y.; Qin, Z.Q.; Chen, C.; He, S.; Chen, Z.Q.; Zhang, L.Q.; Wang, L.X. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections (SSTIs). BMC Infect. Dis. 2010, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Shuter, J.; Hatcher, B.; Lowy, F.D. Staphylococcus aureus Binding to Human Nasal Mucin. Infect. Immun. 1996, 64, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Hidron, A.I.; Kourbatova, E.V.; Halvosa, J.S.; Terrell, B.J.; McDougal, L.K.; Tenover, F.C.; Blumberg, H.M.; King, M.D. Risk factors for colonization with methicillin-resistant Staphylococcus aureus (MRSA) in patients admitted to an urban hospital; emergence of community associated MRSA nasal carriage. Clin. Infect. Dis. 2005, 41, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Strauß, L.; Stegger, M.; Akpaka, P.E.; Alabi, A.; Breurec, S.; Coombs, G.; Egyir, B.; Larsen, A.R.; Laurent, F.; Monecke, S.; et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl. Acad. Sci. USA 2017, 114, E10596–E10604. [Google Scholar] [CrossRef] [Green Version]
- Gillet, Y.; Issartel, B.; Vanhems, P.; Fournet, J.C.; Lina, G.; Bes, M.; Vandenesch, F.; Piemont, Y.; Brousse, M.; Floret, D.; et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotizing pneumonia in young immunocompetent patients. Lancet 2002, 359, 753–759. [Google Scholar] [CrossRef]
- Novick, R.P. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 2003, 48, 1429–1449. [Google Scholar] [CrossRef] [PubMed]
- Ritz, H.L.; Kirkland, J.J.; Bond, G.G.; Warner, E.K.; Petty, G.P. Association of high levels of serum antibody to staphylococcal toxic shock antigen with nasal carriage of toxic shock antigen-producing strains of Staphylococcus aureus. Infect. Immun. 1984, 43, 954–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaumburg, F.; Witten, A.; Flamen, A.; Stoll, M.; Alabi, A.S.; Kremsner, P.G.; Löffler, B.; Zipfel, P.F.; Velavan, T.P.; Peters, G. Complement 5a Receptor Polymorphisms Are Associated with Panton-Valentine Leukocidin-positive Staphylococcus aureus Colonization in African Pygmies. Clin. Infect. Dis. 2019, 68, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, Y. Cell Type-specific Signaling Function of RhoA GTPase: Lessons from Mouse Gene Targeting. J. Biol. Chem. 2013, 288, 36179–36188. [Google Scholar] [CrossRef] [Green Version]
- Munro, P.; Clément, R.; Lavigne, J.P.; Pulcini, C.; Lemichezz, E.; Landraud, L. High prevalence of edin-C encoding RhoA-targeting toxin in Clinical Isolates of Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Grison, C.M.; Lambey, P.; Jeannot, S.; Del Nero, E.; Fontanel, S.; Peysson, F.; Heuninck, J.; Sounier, R.; Durroux, T.; Leyrat, C.; et al. Molecular insights into mechanisms of GPCR hijacking by Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2021, 118, e2108856118. [Google Scholar] [CrossRef]
- Spaan, A.N.; Schiepers, A.; de Haas, C.J.C.; van Hooijdonk, D.D.J.J.; Badiou, C.; Contamin, H.; Vandenesch, F.; Lina, G.; Gerard, N.P.; Gerard, C.; et al. Differential Interaction of the Staphylococcal Toxins Panton-Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors. J. Immunol. 2015, 195, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- McCabe, W.R.; Jackson, G.G. Gram-Negative Bacteremia: I. Etiology and Ecology. JAMA Arch. Intern. Med. 1962, 110, 847–855. [Google Scholar] [CrossRef]
- Köck, R.; Werner, P.; Friedrich, A.W.; Fegeler, C.; Becker, K. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population. New Microbes New Infect. 2016, 9, 24–34. [Google Scholar] [CrossRef]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Schaumburg, F.; Fegeler, C.; Friedrich, A.W.; Köck, R. Staphylococcus aureus from the German general population is highly diverse. Int. J. Med. Microbiol. 2017, 307, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Idelevich, E.A.; Schüle, I.; Grünastel, B.; Wüllenweber, J.; Peters, G.; Becker, K. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin. Microbiol. Infect. 2014, 20, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Pagnier, I.; Schuhen, B.; Wenzelburger, F.; Friedrich, A.W.; Kipp, F.; Peters, G.; von Eiff, C. Does nasal cocolonization by methicillin-resistant coagulase-negative staphylococci and methicillin-susceptible Staphylococcus aureus strains occur frequently enough to represent a risk of false-positive methicillin-resistant S. aureus determinations by molecular methods? J. Clin. Microbiol. 2006, 44, 229–231. [Google Scholar] [PubMed] [Green Version]
- Kriegeskorte, A.; Ballhausen, B.; Idelevich, E.A.; Köck, R.; Friedrich, A.W.; Karch, H.; Peters, G.; Becker, K. Human MRSA isolates with novel genetic homolog, Germany. Emerg. Infect. Dis. 2012, 18, 1016–1018. [Google Scholar] [CrossRef]
- Becker, K.; Friedrich, A.W.; Lubritz, G.; Weilert, M.; Peters, G.; von Eiff, C. Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J. Clin. Microbiol. 2003, 41, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Von Eiff, C.; Friedrich, A.W.; Peters, G.; Becker, K. Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 2004, 49, 157–162. [Google Scholar] [CrossRef]
- Blaiotta, G.; Fusco, V.; von Eiff, C.; Villani, F.; Becker, K. Biotyping of enterotoxigenic Staphylococcus aureus by enterotoxin gene cluster (egc) polymorphism and spa typing analyses. Appl. Environ. Microbiol. 2006, 72, 6117–6123. [Google Scholar] [CrossRef] [Green Version]
- Mellmann, A.; Weniger, T.; Berssenbrügge, C.; Keckevoet, U.; Friedrich, A.W.; Harmsen, D.; Grundmann, H. Characterization of clonal relatedness among the natural population of Staphylococcus aureus strains by using spa sequence typing and the BURP (based upon repeat patterns) algorithm. J. Clin. Microbiol. 2008, 46, 2805–2808. [Google Scholar] [CrossRef] [Green Version]
- Mellmann, A.; Weniger, T.; Berssenbrügge, C.; Rothgänger, J.; Sammeth, M.; Stoye, J.; Harmsen, D. Based Upon Repeat Pattern (BURP): An algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms. BMC Microbiol. 2007, 7, 98. [Google Scholar] [CrossRef]
- Lina, G.; Boutite, F.; Tristan, A.; Bes, M.; Etienne, J.; Vandenesch, F. Bacterial competition for human nasal cavity colonization: Role of staphylococcal agr alleles. Appl. Environ. Microbiol. 2003, 69, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed]
Characteristics * | Male | Female | Total |
---|---|---|---|
Total number of patients enrolled | 182 | 143 | 325 |
Age, mean ± SD | 36.0 ± 18.6 | 37.4 ± 20.3 | 36.6 ± 19.4 |
Median (range) | 35.6 (1–83) | 30.4 (1–90) | 35.8 (1–90) |
LOS, mean days ± SD | 33.9 ± 32.5 | 36.0 ± 40.3 | 34.8 ± 36.1 |
Specialty affiliation of patients: | |||
General Surgery | 12 (6.6) | 13 (9.1) | 25 (7.7) |
Cardiothoracic surgery | 1 (0.5) | 2 (1.4) | 3 (1.0) |
Abdominal surgery | 9 (4.9) | 18 (12.6) | 27 (8.3) |
Plastic surgery | 25 (13.7) | 5 (3.5) | 30 (9.2) |
Orthopedic surgery | 119 (65.4) | 77 (53.8) | 196 (60.3) |
Urology | 7 (2.1) | 2 (1.4) | 9 (2.7) |
Gynecology | - | 13 (9.0) | 13 (4.0) |
Pediatric surgery | 8 (4.4) | 11 (7.7) | 19 (5.8) |
Unspecified type of surgery | 1 (0.5) | 2 (1.4) | 3 (0.9) |
No. of patients with S. aureus carriage within 48 h after admission | 45 (24.7) | 17 (11.9) | 62 (19.0) |
No. of patients with MRSA carriage | 8 (4.4) | 4 (2.8) | 12 (3.7) |
No. of patients with MSSA carriage | 37 (20.3) | 13 (9.0) | 50 (15.4) |
No. of patients with PVL-positive S. aureus carriage: | 7 (3.8) | 4 (2.8) | 11 (3.4) |
Of which PVL-positive MSSA carriage | 5 (2.7) | 3 (2.1) | 8 (2.5) |
Of which PVL-positive MRSA carriage | 2 (1.1) | 1 (0.7) | 3 (0.9) |
No. of patients without S. aureus carriage at screening | 136 (74.7) | 127 (88.8) | 263 (80.9) |
Total no. of patients with co-morbid conditions | 153 (84.1) | 129 (90.2) | 279 (85.8) |
McCabe score (at screening): Mean (Range) | 1.0 (1.0–2.0) | 1.1 (1.0–2.0) | 1.1 (1.0–2.0) |
No. patients receiving antibiotics without activity against MRSA | 156 (85.7) | 106 (74.1) | 262 (80.6) |
No. patients receiving antibiotic treatment active against MRSA | 1 (0.5) | 2 (1.4) | 3 (1.0) |
No. of patients who underwent surgical procedures | 138 (75.8) | 98 (68.5) | 236 (72.6) |
No. of patients with two or more surgical procedures | 56 (30.7) | 34 (23.7) | 90 (27.7) |
Surgical procedures (CDC classification) | |||
Clean | 26 (12.7) | 31 (22.8) | 57 (16.7) |
Clean-Contaminated | 178 (87.3) | 106 (77.9) | 284 (83.3) |
Emergency | 18 (8.8) | 15 (11.0) | 33 (9.7) |
Elective | 186 (91.2) | 122 (88.9) | 308 (90.3) |
Total number of surgical procedures | 204 (59.8) | 137 (40.2) | 341 (100) |
Incomplete medical records | 9 (4.9) | 5 (3.5) | 14 (4.3) |
Intravenous devices > 24 h | 99 (54.4) | 71 (49.6) | 170 (52.3) |
Urinary catheters > 24 h | 52 (28.5) | 41 (28.6) | 93 (28.6) |
Hemodialysis | 1 (0.5) | 0 (0.0) | 1 (0.31) |
Total no. of inpatient-days | 6,137 | 5,155 | 11,292 |
Variable | S. aureus Carriers (n = 62) | S. aureus Non-Carriers (n = 263) | p-Value a | Relative Prevalence (99% CI) | ||
---|---|---|---|---|---|---|
n | n with Infection (% Carriers) | n | n with Infection (% Non-Carriers) | |||
Nosocomial S. aureus infection | 62 | 27 (43.5) | 263 | 20 (7.6) | 0.0001 | 5.73 (2.93-11.13) |
MRSA | 12 | 3 (25.0) | 313 | 4 (1.3) | 0.0001MH | 19.56 (3.18-120.2) |
Hospitalized ≤ 12 months | 15 | 7 (46.6) | 53 | 7 (13.2) | 0.002MH | 3.53 (1.12-11.2) |
Antibiotic therapy ≤ 12 months | 6 | 4 (66.6) | 11 | 4 (36.36) | 0.122MH | 1.83 (0.51-6.51) |
Intravenous device ≤ 12 months | 12 | 5 (41.6) | 27 | 3 (11.1) | 0.015MH | 3.75 (0.71-19.63) |
Surgery ≤ 12 months | 9 | 3 (33.3) | 24 | 5 (20.8) | 0.231MH | 1.60 (0.33-7.84) |
LOS (This study) ≤ 3days | 3 | 1 (33.3) | 28 | 0 (0.0) | 0.096F | Undefined |
LOS ≤ 2 weeks | 14 | 3 (21.4) | 83 | 5 (6.0) | 0.026MH | 3.55 (0.63-20.02) |
LOS ≤ 4 weeks | 12 | 7 (58.3) | 60 | 6 (10.0) | 0.0001MH | 5.83 (1.79-18.97) |
LOS ≤ 8 weeks | 19 | 8 (42.1) | 50 | 3 (6.0) | 0.0001MH | 7.02 (1.42-34.75) |
LOS ≤ 12 weeks | 8 | 5 (62.5) | 25 | 4 (16.0) | 0.005MH | 3.91 (0.98-15.45) |
LOS > 12 weeks | 6 | 3 (50.0) | 17 | 2 (11.7) | 0.088F | 4.25 (0.57-31.66) |
Antibiotic use (this study) | 58 | 26 (44.8) | 207 | 20 (9.6) | 0.0001 | 4.64 (2.38-9.01) |
Intravenous device (˃24 h) | 24 | 9 (37.5) | 64 | 4 (6.3) | 0.0001MH | 6.00 (1.45-24.82) |
Urinary catheter (˃24 h) | 2 | 1 (50.0) | 8 | 0 (0.0) | 0.200F | Undefined |
Hemodialysis | 1 | 0 (0.0) | 0 | 0 | - | Undefined |
Surgery (this study) | 53 | 22 (41.5) | 184 | 15 (8.2) | 0.0001 | 5.09 (2.37-10.92) |
Emergency | 12 | 9 (75.0) | 21 | 2 (9.5) | 0.0001MH | 7.87 (1.32-46.93) |
Elective | 41 | 13 (31.7) | 163 | 13 (7.9) | 0.0001 | 3.98 (1.61-9.82) |
≥ 2 surgeries (This study) | 29 | 16 (55.2) | 61 | 10 (16.4) | 0.0001 | 3.37 (1.42-7.95) |
Comorbidities | 49 | 24 (48.9) | 176 | 20 (11.4) | 0.0001 | 4.31 (2.23-8.34) |
Bone disease. | 17 | 5 (29.4) | 55 | 4 (7.3) | 0.008MH | 4.04 (0.84-19.5) |
Skin and soft-tissue disease | 7 | 3 (42.8) | 28 | 4 (14.3) | 0.047MH | 3.00 (0.58-15.45) |
Bone, skin and soft-tissue disease | 19 | 13 (68.4) | 38 | 9 (23.7) | 0.001MH | 2.89 (1.23-6.76) |
Cardiovascular disease | 2 | 2 (100) | 17 | 2 (11.7) | 0.035F | 8.50 (1.54-47.04) |
Pulmonary disease | 1 | 0 (0.0) | 4 | 2 (50.0) | 0.600F | 2.0 (0.55-7.25) |
Genitourinary disease | 1 | 0 (0.0) | 15 | 1 (6.6) | 0.125F | 15.0 (1.25-180.6) |
Neurological disease | 0 | 0 (0.0) | 8 | 2 (25.0) | - | Undefined |
Diabetes mellitus | 1 | 1 (100) | 8 | 1 (12.5) | 0.222F | 8.00 (0.72-89.03) |
Total number of patient-days | 2,529 | 1,441 (56.9) | 8,763 | 996 (11.4) | 0.0001 | 5.01 (4.58-5.48) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyanju, A.; Schaumburg, F.; Onayade, A.; Akinyoola, A.; Adeyemi, T.; Ugbo, O.; Köck, R.; Amusa, Y.; Lawal, O.; Adeyanju, T.; et al. Local Epidemiology of Nosocomial Staphylococcus aureus Infection in a Nigerian University Teaching Hospital. Antibiotics 2022, 11, 1372. https://doi.org/10.3390/antibiotics11101372
Adeyanju A, Schaumburg F, Onayade A, Akinyoola A, Adeyemi T, Ugbo O, Köck R, Amusa Y, Lawal O, Adeyanju T, et al. Local Epidemiology of Nosocomial Staphylococcus aureus Infection in a Nigerian University Teaching Hospital. Antibiotics. 2022; 11(10):1372. https://doi.org/10.3390/antibiotics11101372
Chicago/Turabian StyleAdeyanju, Adeniran, Frieder Schaumburg, Adedeji Onayade, Akinyele Akinyoola, Taofeeq Adeyemi, Osaretin Ugbo, Robin Köck, Yemisi Amusa, Oladejo Lawal, Temilade Adeyanju, and et al. 2022. "Local Epidemiology of Nosocomial Staphylococcus aureus Infection in a Nigerian University Teaching Hospital" Antibiotics 11, no. 10: 1372. https://doi.org/10.3390/antibiotics11101372
APA StyleAdeyanju, A., Schaumburg, F., Onayade, A., Akinyoola, A., Adeyemi, T., Ugbo, O., Köck, R., Amusa, Y., Lawal, O., Adeyanju, T., Torimiro, N., Akinpelu, D., Kolawole, D., Kohler, C., & Becker, K. (2022). Local Epidemiology of Nosocomial Staphylococcus aureus Infection in a Nigerian University Teaching Hospital. Antibiotics, 11(10), 1372. https://doi.org/10.3390/antibiotics11101372