Activity of the Lactate Dehydrogenase Inhibitor Oxamic Acid against the Fermentative Bacterium Streptococcus mitis/oralis: Bactericidal Effects and Prevention of Daptomycin Resistance In Vitro and in an Ex Vivo Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Cultivation Conditions
2.3. Determination of Glucose and Lactate Concentrations in Cultivation Media
2.4. Lactate Dehydrogenase (LDH) Assay
2.5. Minimum Inhibitory Concentrations (MICs)
2.6. Time–Kill Curves
2.7. In Vitro Resensitization to DAP
2.8. Ex Vivo Simulated Endocarditis Vegetation (SEV) Model
2.9. Pharmacokinetic (PK) Studies
2.10. Pharmacodynamic (PD) Analyses
2.11. Emergence of DAP-R in the SEV Model
Statistical Analysis
3. Results and Discussion
3.1. OXA Inhibits S. mitis/oralis Growth
3.2. OXA Decreases Glucose/Pyruvate Catabolism
3.3. OXA Decreases LDH Activity
3.4. OXA Is Bactericidal against Both DAP-S and DAP-R Strains
3.5. OXA Prevents the Emergence of the DAP-Resistance Phenotype
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-de-la-Maria, C.; Pericas, J.M.; Del Rio, A.; Castaneda, X.; Vila-Farres, X.; Armero, Y.; Espinal, P.A.; Cervera, C.; Soy, D.; Falces, C.; et al. Early in vitro and in vivo development of high-level daptomycin resistance is common in mitis group streptococci after exposure to daptomycin. Antimicrob. Agents Chemother. 2013, 57, 2319–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, T.L.; Bayer, A.S.; Fowler, V.G. Endocarditis and Intravascular Infections. In Principles and Practices of Infectious Diseases; Mandell, G.L., Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 80. [Google Scholar]
- Ahmed, R.; Hassall, T.; Morland, B.; Gray, J. Viridans streptococcus bacteremia in children on chemotherapy for cancer: An underestimated problem. Pediatr. Hematol. Oncol. 2003, 20, 439–444. [Google Scholar] [CrossRef]
- Marron, A.; Carratala, J.; Gonzalez-Barca, E.; Fernandez-Sevilla, A.; Alcaide, F.; Gudiol, F. Serious complications of bacteremia caused by Viridans streptococci in neutropenic patients with cancer. Clin. Infect. Dis. 2000, 31, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.T.; Chang, L.Y.; Hsueh, P.R.; Lu, C.Y.; Shao, P.L.; Huang, F.Y.; Lee, P.I.; Chen, C.M.; Lee, C.Y.; Huang, L.M. Clinical features and complications of Viridans streptococci bloodstream infection in pediatric hemato-oncology patients. J. Microbiol. Immunol. Infect. 2007, 40, 349–354. [Google Scholar] [PubMed]
- Shelburne, S.A.; Sahasrabhojane, P.; Saldana, M.; Hui, Y.; Xiaoping, S.; Horstmann, N.; Thompson, E.; Flores, A.R. Streptococcus mitis strains causing severe clinical disease in cancer patients. Emerg. Infect. Dis. 2014, 20, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Safdar, A.; Rolston, K.V. Vancomycin tolerance, a potential mechanism for refractory gram-positive bacteremia observational study in patients with cancer. Cancer 2006, 106, 1815–1820. [Google Scholar] [CrossRef] [PubMed]
- Gaupp, R.; Lei, S.; Reed, J.M.; Peisker, H.; Boyle-Vavra, S.; Bayer, A.S.; Bischoff, M.; Herrmann, M.; Daum, R.S.; Powers, R.; et al. Staphylococcus aureus metabolic adaptations during the transition from a daptomycin susceptible phenotypeto a daptomycin non-susceptible phenotype. Antimicrob. Agents Chemother. 2015, 59, 4226–4238. [Google Scholar] [CrossRef] [Green Version]
- Parrett, A.; Reed, J.M.; Gardner, S.G.; Mishra, N.N.; Bayer, A.S.; Powers, R.; Somerville, G.A. Metabolic changes associated with adaptive resistance to daptomycin in Streptococcus mitis-oralis. BMC Microbiol. 2020, 20, 162. [Google Scholar] [CrossRef]
- Reed, J.M.; Gardner, S.G.; Mishra, N.N.; Bayer, A.S.; Somerville, G.A. Metabolic interventions for the prevention and treatment of daptomycin non-susceptibility in Staphylococcus aureus. J. Antimicrob. Chemother. 2019, 74, 2274–2283. [Google Scholar] [CrossRef] [PubMed]
- Somerville, G.A.; Parrett, A.A.; Reed, J.M.; Gardner, S.G.; Morton, M.; Powers, R. Human Serum alters the metabolism and antibiotic susceptibility of Staphylococcus aureus. J. Proteome Res. 2022, 21, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altinoz, M.A.; Ozpinar, A. Oxamate targeting aggressive cancers with special emphasis to brain tumors. Biomed. Pharmacother. 2022, 147, 112686. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.N.; Tran, T.T.; Seepersaud, R.; Garcia-de-la-Maria, C.; Faull, K.; Yoon, A.; Proctor, R.; Miro, J.M.; Rybak, M.J.; Bayer, A.S.; et al. Perturbations of phosphatidatecytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis/oralis by a novel mechanism. Antimicrob. Agents Chemother. 2017, 61, e02435-16. [Google Scholar] [CrossRef] [Green Version]
- M100: Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- Zapata, B.; Alvarez, D.N.; Farah, S.; Garcia-de-la-Maria, C.; Miro, J.M.; Sakoulas, G.; Bayer, A.S.; Mishra, N.N. Prevention of high-level daptomycin-resistance emergence in vitro in Streptococcus mitis-oralis by using combination antimicrobial strategies. Curr. Microbiol. 2018, 75, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Seepersaud, R.; Garcia-de-la-Maria, C.; Mishra, N.N.; Miro, J.M.; Arias, C.A.; Tran, T.T.; Sullam, P.M.; et al. Daptomycin dose-ranging evaluation with single-dose versus multidose ceftriaxone combinations against Streptococcus mitis/oralis in an ex vivo simulated endocarditis vegetation model. Antimicrob. Agents Chemother. 2019, 263, e00386-19. [Google Scholar] [CrossRef] [Green Version]
- Yim, J.; Smith, J.R.; Singh, N.B.; Rice, S.; Stamper, K.; Garcia de la Maria, C.; Bayer, A.S.; Mishra, N.N.; Miró, J.M.; Tran, T.T.; et al. Evaluation of daptomycin combinations with cephalosporins or gentamicin against Streptococcus mitis group strains in an in vitro model of simulated endocardial vegetations (SEVs). J. Antimicrob. Chemother. 2017, 72, 2290–2296. [Google Scholar] [CrossRef] [Green Version]
- Kebriaei, R.; Rice, S.A.; Singh, K.V.; Stamper, K.C.; Dinh, A.Q.; Rios, R.; Diaz, L.; Murray, B.E.; Munita, J.M.; Tran, T.T.; et al. Influence of inoculum effect on the Efficacy of daptomycin monotherapy and in combination with β-Lactams against daptomycin-susceptible Enterococcus faecium harboring LiaSR substitutions. Antimicrob. Agents Chemother. 2018, 62, e00315-18. [Google Scholar] [CrossRef] [Green Version]
- Hershberger, E.; Coyle, E.A.; Kaatz, G.W.; Zervos, M.J.; Rybak, M.J. Comparison of a rabbit model of bacterial endocarditis and an in vitro infection model with simulated endocardial vegetations. Antimicrob. Agents Chemother. 2000, 44, 1921–1924. [Google Scholar] [CrossRef] [Green Version]
- Shelburne, S.A.; Lasky, R.E.; Sahasrabhojane, P.; Tarrand, J.T.; Rolston, K.V.I. Development and validation of a clinical model to predict the presence of β-lactam resistance in viridians group streptococci causing bacteremia in neutropenic cancer patients. Clin. Infect. Dis. 2014, 59, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ron-Bin, H.; Lin, F.Y. Effect of penicillin resistance on presentation and outcome of non-enterococcal streptococcal infective endocarditis. Cardiology 2006, 105, 234–239. [Google Scholar]
- Granchi, C.; Paterni, I.; Rani, R.; Minutolo, F. Small-molecule inhibitors of human LDH5. Future Med. Chem. 2013, 5, 1967–1991. [Google Scholar] [CrossRef] [PubMed]
- Ruddraraju, K.V.; Aggarwal, D.; Zhang, Z.Y. Therapeutic Targeting of Protein Tyrosine Phosphatases from Mycobacterium tuberculosis. Microorganisms 2020, 9, 14. [Google Scholar] [CrossRef] [PubMed]
DAP MIC (µg/mL) | ||
---|---|---|
Strains | DAP | OXA |
DAP-S 351 | 0.5 | 2048 |
DAP-R 351D10 | >256 | 2048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kebriaei, R.; Bayer, A.S.; Lapitan, C.K.; Rybak, M.J.; Somerville, G.A.; Mishra, N.N. Activity of the Lactate Dehydrogenase Inhibitor Oxamic Acid against the Fermentative Bacterium Streptococcus mitis/oralis: Bactericidal Effects and Prevention of Daptomycin Resistance In Vitro and in an Ex Vivo Model. Antibiotics 2022, 11, 1409. https://doi.org/10.3390/antibiotics11101409
Kebriaei R, Bayer AS, Lapitan CK, Rybak MJ, Somerville GA, Mishra NN. Activity of the Lactate Dehydrogenase Inhibitor Oxamic Acid against the Fermentative Bacterium Streptococcus mitis/oralis: Bactericidal Effects and Prevention of Daptomycin Resistance In Vitro and in an Ex Vivo Model. Antibiotics. 2022; 11(10):1409. https://doi.org/10.3390/antibiotics11101409
Chicago/Turabian StyleKebriaei, Razieh, Arnold S. Bayer, Christian K. Lapitan, Michael J. Rybak, Greg A. Somerville, and Nagendra N. Mishra. 2022. "Activity of the Lactate Dehydrogenase Inhibitor Oxamic Acid against the Fermentative Bacterium Streptococcus mitis/oralis: Bactericidal Effects and Prevention of Daptomycin Resistance In Vitro and in an Ex Vivo Model" Antibiotics 11, no. 10: 1409. https://doi.org/10.3390/antibiotics11101409
APA StyleKebriaei, R., Bayer, A. S., Lapitan, C. K., Rybak, M. J., Somerville, G. A., & Mishra, N. N. (2022). Activity of the Lactate Dehydrogenase Inhibitor Oxamic Acid against the Fermentative Bacterium Streptococcus mitis/oralis: Bactericidal Effects and Prevention of Daptomycin Resistance In Vitro and in an Ex Vivo Model. Antibiotics, 11(10), 1409. https://doi.org/10.3390/antibiotics11101409