Antiamoebic Properties of Ceftriaxone and Zinc-Oxide–Cyclodextrin-Conjugated Ceftriaxone
Abstract
:1. Introduction
2. Methodology
2.1. Nanocarriers and Nanoconjugates Employed
2.2. Cultures of A. castellanii
2.3. Cultures of Henrietta Lacks (HeLa) Cervical Cancer Cells
2.4. Amoebicidal Assays
2.5. Amoebistatic Assays
2.6. Encystation Assays
2.7. Excystation Assays
2.8. Cytopathogenicity Assays
2.9. Cytotoxicity Assays
2.10. Statistical Analysis
3. Results
3.1. ZnO-CD-CFT, CFT, ZnO-CD-Control, ZnO-CD-AMPI, and AMPI Displayed No Significant Amoebicidal Activity in 24 h of Incubation at a Concentration of 100 μg/mL
3.2. ZnO-CD-CFT Markedly Inhibited the Growth of A. castellanii at a Concentration of 100 μg/mL in 24 h of Incubation
3.3. ZnO-CD-CFT and CFT Markedly Inhibited the Encystment of A. castellanii at a Concentration of 100 μg/mL in 48 h of Incubation
3.4. ZnO-CD-CFT and CFT Displayed no Statistically Significant Effects against A. castellanii Excystment
3.5. ZnO-CD-CFT Significantly Reduced A. castellanii Cytopathogenicity
3.6. All Tested Compounds Displayed Low Cytotoxicity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin-Escolano, R.; Pérez-Cordón, G.; Arán, V.J.; Marín, C.; Sánchez-Moreno, M.; Rosales, M.J. 5-Nitroindazole derivatives as potential therapeutic alternatives against Acanthamoeba castellanii. Acta Trop. 2022, 232, 106538. [Google Scholar] [CrossRef] [PubMed]
- Grechnikova, M.; Arbon, D.; Ženíšková, K.; Malych, R.; Mach, J.; Krejbichová, L.; Šimáčková, A.; Sutak, R. Elucidation of iron homeostasis in Acanthamoeba castellanii. Int. J. Parasitol. 2022, 52, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Mungroo, M.R.; Khan, N.A.; Maciver, S.; Siddiqui, R. Opportunistic free-living amoebal pathogens. Pathog. Glob. Health 2022, 116, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Rayamajhee, B.; Willcox, M.D.; Henriquez, F.L.; Petsoglou, C.; Subedi, D.; Carnt, N. Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol. 2022, 38, 975–990. [Google Scholar] [CrossRef]
- Rayamajhee, B.; Willcox, M.D.; Henriquez, F.L.; Petsoglou, C.; Carnt, N. Acanthamoeba keratitis: An increasingly common infectious disease of the cornea. Lancet Microbe. 2021, 2, e345–e346. [Google Scholar] [CrossRef]
- Rodríguez-Expósito, R.L.; Reyes-Batlle, M.; Sifaoui, I.; Tejedor, D.; García-Tellado, F.; Piñero, J.E.; Lorenzo-Morales, J. Isobenzofuran-1 (3H)-one derivatives: Amoebicidal activity and program cell death in Acanthamoeba castellanii Neff. Biomed. Pharmacother. 2022, 150, 113062. [Google Scholar] [CrossRef]
- Iqbal, K.; Abdalla, S.A.O.; Anwar, A.; Iqbal, K.M.; Shah, M.R.; Anwar, A.; Siddiqui, R.; Khan, N.A. Isoniazid conjugated magnetic nanoparticles loaded with Amphotericin B as a potent Antiamoebic agent against Acanthamoeba castellanii. Antibiotics 2020, 9, 276. [Google Scholar] [CrossRef]
- Mansur, F.A.; Sridewi, N.; Anwar, A.; Anwar, A.; Shahabuddin, S. Polypyrrole-conjugated zinc oxide nanoparticle as antiamoebic drugs against Acanthamoeba castellanii. Mater. Today Proc. 2022, 62, 7077–7081. [Google Scholar] [CrossRef]
- Saeed, B.Q.; Rawas-Qalaji, M.; Akbar, N.; Siddiqui, R.; Roberta, C.; Manzoor, S.; Muhammad, J.S.; Adrees, A.O.; Al-Shahrabi, R.; Khan, N.A. Evaluation of Nanoparticles with 5-Fluorouracil and Chloroquine on Acanthamoeba castellanii activity. Mol. Biochem. Parasitol. 2022, 250, 111492. [Google Scholar] [CrossRef]
- Herrera-Hidalgo, L.; Gil-Navarro, M.V.; Penchala, S.D.; López-Cortés, L.E.; de Alarcón, A.; Luque-Márquez, R.; López-Cortes, L.F.; Gutiérrez-Valencia, A. Ceftriaxone pharmacokinetics by a sensitive and simple LC–MS/MS method: Development and application. J. Pharm. Biomed. Anal. 2020, 189, 113484. [Google Scholar] [CrossRef]
- Balakrishnan, R.M.; Ilango, I.; Gamana, G.; Bui, X.T.; Pugazhendhi, A. Cobalt ferrite nanoparticles and peroxymonosulfate system for the removal of ampicillin from aqueous solution. J. Water Process Eng. 2021, 40, 101823. [Google Scholar] [CrossRef]
- Tian, B.; Liu, Y.; Liu, J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr. Polym. 2021, 251, 116871. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Cerda, J.; Espinoza-Gómez, H.; Alonso-Núñez, G.; Rivero, I.A.; Gochi-Ponce, Y.; Flores-López, L.Z. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J. Saudi Chem. Soc. 2017, 21, 341–348. [Google Scholar] [CrossRef]
- Akbar, N.; Aslam, Z.; Siddiqui, R.; Shah, M.R.; Khan, N.A. Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express. 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Boghossian, A.; Akbar, N.; Jabri, T.; Aslam, Z.; Shah, M.R.; Alharbi, A.M.; Alfahemi, H.; Khan, N.A. Zinc Oxide Nanoconjugates against Brain-Eating Amoebae. Antibiotics 2022, 11, 1281. [Google Scholar] [CrossRef]
- Siddiqui, R.; Makhlouf, Z.; Akbar, N.; Khamis, M.; Ibrahim, T.; Khan, A.S.; Khan, N.A. Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba. Mol. Biochem. Parasitol. 2022, 250, 111493. [Google Scholar] [CrossRef]
- Akbar, N.; Siddiqui, R.; Khamis, M.; Ibrahim, T.; Khan, N.A. A novel montmorillonite clay-cetylpyridinium chloride complex as a potential antiamoebic composite material in contact lenses disinfection. Exp. Parasitol. 2022, 240, 108330. [Google Scholar] [CrossRef] [PubMed]
- Martín-Navarro, C.M.; Lorenzo-Morales, J.; Machín, R.P.; López-Arencibia, A.; Valladares, B.; Piñero, J.E. Acanthamoeba s: In vitro effects of clinical isolates on murine macrophages, osteosarcoma and HeLa cells. Exp. Parasitol. 2010, 126, 85–88. [Google Scholar] [CrossRef]
- Aiello, M.B.R.; Azcárate, J.C.; Zelaya, E.; Gara, P.D.; Bosio, G.N.; Gensch, T.; Mártire, D.O. Photothermal therapy with silver nanoplates in HeLa cells studied by in situ fluorescence microscopy. Biomater. Sci. 2021, 9, 2608–2619. [Google Scholar] [CrossRef]
- Rajendran, K.; Anwar, A.; Khan, N.A.; Siddiqui, R. Brain-eating amoebae: Silver nanoparticle conjugation enhanced efficacy of anti-amoebic drugs against Naegleria fowleri. ACS Chem. Neurosci. 2017, 8, 2626–2630. [Google Scholar] [CrossRef]
- Ozpinar, N.; Culha, G.; Kaya, T.; Yucel, H. The amoebicidal activity of three substances derived from benzothiazole on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. Acta Trop. 2021, 220, 105981. [Google Scholar] [CrossRef]
- Dudley, R.; Alsam, S.; Khan, N.A. Cellulose biosynthesis pathway is a potential target in the improved treatment of Acanthamoeba keratitis. Appl. Microbiol. Biotechnol. 2007, 75, 133–140. [Google Scholar] [CrossRef]
- Yousuf, F.A.; Mehmood, M.H.; Malik, A.; Siddiqui, R.; Khan, N.A. Antiacanthamoebic properties of natural and marketed honey in Pakistan. Asian Pac. J. Trop. Biomed. 2016, 6, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Alniss, H.Y.; Khan, N.A.; Boghossian, A.; Akbar, N.; Al-Jubeh, H.M.; Msallam, Y.A.; Saeed, B.Q.; Siddiqui, R. Synthesis and evaluation of novel DNA minor groove binders as antiamoebic agents. Antibiotics 2022, 11, 935. [Google Scholar] [CrossRef]
- Dickson, A.; Cooper, E.; Fakae, L.B.; Wang, B.; Chan, K.L.A.; Elsheikha, H.M. In Vitro Growth-and Encystation-Inhibitory Efficacies of Matcha Green Tea and Epigallocatechin Gallate Against Acanthameoba Castellanii. Pathogens 2020, 9, 763. [Google Scholar] [CrossRef]
- Boonhok, R.; Sangkanu, S.; Phumjan, S.; Jongboonjua, R.; Sangnopparat, N.; Kwankaew, P.; Tedasen, A.; Lim, C.L.; de Lourdes Pereira, M.; Rahmatullah, M.; et al. Curcumin effect on Acanthamoeba triangularis encystation under nutrient starvation. PeerJ 2022, 10, e13657. [Google Scholar] [CrossRef]
- Shing, B.; Balen, M.; Debnath, A. Evaluation of Amebicidal and Cysticidal Activities of Antifungal Drug Isavuconazonium Sulfate against Acanthamoeba T4 Strains. Pharmaceuticals 2021, 14, 1294. [Google Scholar] [CrossRef]
- Anwar, A.; Mungroo, M.R.; Anwar, A.; Sullivan, W.J., Jr.; Khan, N.A.; Siddiqui, R. Repositioning of guanabenz in conjugation with gold and silver nanoparticles against pathogenic amoebae Acanthamoeba castellanii and Naegleria fowleri. ACS Infect. Dis. 2019, 5, 2039–2046. [Google Scholar] [CrossRef]
- González-Robles, A.; Salazar-Villatoro, L.; Omaña-Molina, M.; Lorenzo-Morales, J.; Martínez-Palomo, A. Acanthamoeba royreba: Morphological features and in vitro cytopathic effect. Exp. Parasitol. 2013, 133, 369–375. [Google Scholar] [CrossRef]
- Kim, D.Y.; Son, D.H.; Matin, A.; Jung, S.Y. Production of a monoclonal antibody against a galactose-binding protein of Acanthamoeba castellanii and its cytotoxicity. Parasitol. Res. 2021, 120, 3845–3850. [Google Scholar] [CrossRef] [PubMed]
- Mungroo, M.R.; Anwar, A.; Khan, N.A.; Siddiqui, R. Gold-conjugated curcumin as a novel therapeutic agent against brain-eating amoebae. ACS Omega 2020, 5, 12467–12475. [Google Scholar] [CrossRef]
- Jha, B.K.; Seo, I.; Kong, H.H.; Suh, S.I.; Suh, M.H.; Baek, W.K. Tigecycline inhibits proliferation of Acanthamoeba castellanii. Parasitol. Res. 2015, 114, 1189–1195. [Google Scholar] [CrossRef]
- Abdelnasir, S.; Mungroo, M.R.; Shahabuddin, S.; Siddiqui, R.; Khan, N.A.; Anwar, A. Polyaniline-conjugated boron nitride nanoparticles exhibiting potent effects against pathogenic brain-eating amoebae. ACS Chem. Neurosci. 2021, 12, 3579–3587. [Google Scholar] [CrossRef]
- ISO 10993-5: 2009; Biological Evaluation of Medical Devices—Part 5: Tests for in vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Wekerle, M.; Engel, J.; Walochnik, J. Anti-Acanthamoeba disinfection: Hands, surfaces and wounds. Int. J. Antimicrob. Agents 2020, 56, 106122. [Google Scholar] [CrossRef]
- Mbouaka, A.L.; Leitsch, D.; Koehsler, M.; Walochnik, J. Antimicrobial effect of auranofin against Acanthamoeba spp. Int. J. Antimicrob. Agents. 2021, 58, 106425. [Google Scholar] [CrossRef]
- Shing, B.; Singh, S.; Podust, L.M.; McKerrow, J.H.; Debnath, A. The antifungal drug isavuconazole is both amebicidal and cysticidal against Acanthamoeba castellanii. Antimicrob. Agents Chemother. 2020, 64, e02223-19. [Google Scholar] [CrossRef] [PubMed]
- Mungroo, M.R.; Khan, N.A.; Anwar, A.; Siddiqui, R. Nanovehicles in the improved treatment of infections due to brain-eating amoebae. Int. Microbiol. 2022, 25, 225–235. [Google Scholar] [CrossRef]
- Sharma, G.; Kalra, S.K.; Tejan, N.; Ghoshal, U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp. Parasitol. 2020, 218, 108008. [Google Scholar] [CrossRef]
- Niyyati, M.; Sasani, R.; Mohebali, M.; Ghazikhansari, M.; Kargar, F.; Hajialilo, E.; Rezaeian, M. Anti-Acanthamoeba effects of silver and gold nanoparticles and contact lenses disinfection solutions. Iran. J. Parasitol. 2018, 13, 180. [Google Scholar] [PubMed]
- Walvekar, S.; Anwar, A.; Anwar, A.; Sridewi, N.; Khalid, M.; Yow, Y.Y.; Khan, N.A. Anti-amoebic potential of azole scaffolds and nanoparticles against pathogenic Acanthamoeba. Acta Trop. 2020, 211, 105618. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Chi Fung, L.; Anwar, A.; Jagadish, P.; Numan, A.; Khalid, M.; Shahabuddin, S.; Siddiqui, R.; Khan, N.A. Effects of shape and size of cobalt phosphate nanoparticles against Acanthamoeba castellanii. Pathogens 2019, 8, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusrini, E.; Sabira, K.; Hashim, F.; Abdullah, N.A.; Usman, A.; Putra, N.; Prasetyanto, E.A. Design, synthesis and antiamoebic activity of dysprosium-based nanoparticles using contact lenses as carriers against Acanthamoeba sp. Acta Ophthalmol. 2021, 99, e178–e188. [Google Scholar] [CrossRef]
- Hendiger, E.B.; Padzik, M.; Żochowska, A.; Baltaza, W.; Olędzka, G.; Zyskowska, D.; Bluszcz, J.; Jarzynka, S.; Chomicz, L.; Grodzik, M.; et al. Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity. Parasites Vectors. 2020, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, D.; Jíra, J.; Kolářová, K.; Matolínová, I.; Mičová, J.; Remeš, Z.; Rezek, B. Growth inhibition of gram-positive and gram-negative bacteria by zinc oxide hedgehog particles. Int. J. Nanomed. 2021, 16, 3541. [Google Scholar] [CrossRef]
- Alkharashi, M.; Lindsley, K.; Law, H.A.; Sikder, S. Medical interventions for Acanthamoeba keratitis. Cochrane Database Syst. Rev. 2015, 2015, CD010792. [Google Scholar] [CrossRef]
- Rayamajhee, B.; Sharma, S.; Willcox, M.; Henriquez, F.L.; Rajagopal, R.N.; Shrestha, G.S.; Subedi, D.; Bagga, B.; Carnt, N. Assessment of genotypes, endosymbionts and clinical characteristics of Acanthamoeba recovered from ocular infection. BMC Infect. Dis. 2022, 22, 757. [Google Scholar] [CrossRef]
- Li, Y.; Liao, C.; Tjong, S.C. Recent advances in zinc oxide nanostructures with antimicrobial activities. Int. J. Mol. Sci. 2020, 21, 8836. [Google Scholar] [CrossRef]
Abbreviation | Full Name |
---|---|
ZnO-CD-Control | Zinc Oxide β-cyclodextrin |
CFT | Ceftriaxone |
ZnO-CD-CFT | Zinc Oxide β-cyclodextrin ceftriaxone |
ZnO-CD-AMPI | Zinc Oxide Ampicillin |
AMPI | Ampicillin |
Negative control | Amoebae alone in medium |
Positive control | Amoebae with 0.25% sodium dodecyl sulfate (SDS) in medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhlouf, Z.; Akbar, N.; Khan, N.A.; Shah, M.R.; Alharbi, A.M.; Alfahemi, H.; Siddiqui, R. Antiamoebic Properties of Ceftriaxone and Zinc-Oxide–Cyclodextrin-Conjugated Ceftriaxone. Antibiotics 2022, 11, 1721. https://doi.org/10.3390/antibiotics11121721
Makhlouf Z, Akbar N, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Antiamoebic Properties of Ceftriaxone and Zinc-Oxide–Cyclodextrin-Conjugated Ceftriaxone. Antibiotics. 2022; 11(12):1721. https://doi.org/10.3390/antibiotics11121721
Chicago/Turabian StyleMakhlouf, Zinb, Noor Akbar, Naveed Ahmed Khan, Muhammad Raza Shah, Ahmad M. Alharbi, Hasan Alfahemi, and Ruqaiyyah Siddiqui. 2022. "Antiamoebic Properties of Ceftriaxone and Zinc-Oxide–Cyclodextrin-Conjugated Ceftriaxone" Antibiotics 11, no. 12: 1721. https://doi.org/10.3390/antibiotics11121721
APA StyleMakhlouf, Z., Akbar, N., Khan, N. A., Shah, M. R., Alharbi, A. M., Alfahemi, H., & Siddiqui, R. (2022). Antiamoebic Properties of Ceftriaxone and Zinc-Oxide–Cyclodextrin-Conjugated Ceftriaxone. Antibiotics, 11(12), 1721. https://doi.org/10.3390/antibiotics11121721